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Abstract

This thesis proposes an adaptation of the Wave Function Collapse (WFC) algorithm to
generate synthetic vertex-labelled, undirected graphs and evaluates its application as a
data augmentation method for graph classification. The introduced algorithm extracts
from a given input graph a multiset of rooted radius-r neighbourhood patterns and de-
rives pattern-compatibility constraints via pairwise comparisons. These constraints guide
the generation of a synthetic graph that preserves the input graph’s local neighbour-
hood structure while allowing global variation. The method is incorporated into a graph
classification pipeline for augmenting training sets. A configurable number of training
graphs are duplicated. One synthetic graph is generated for each duplicated instance, and
the resulting synthetic graphs are added to the original training set before model train-
ing. The resulting augmented training sets are evaluated on three TUDataset benchmarks
(MSRC_21, PROTEINS and DD) using a fixed graph convolutional network implemented
in PyTorch Geometric. For each dataset, multiple configurations are evaluated, defined
by the pattern radius r, the target size range of the synthesised graphs, and the number
of synthetic graphs added to the training set. Performance on the held-out test set is
reported as test accuracy, macro-F1, and balanced accuracy, relative to a baseline trained
on the original (non-augmented) training set. The best dataset-specific configuration im-
proves test accuracy by +2.59 percentage points (pp) on MSRC_21 and by +3.54 pp
on DD. On PROTEINS, the best configuration yields a smaller gain of +1.73 pp, while
several configurations reduce performance. Overall, the results indicate that the proposed
WFC-based training set augmentation can be practical, but its benefits differ between
datasets and configurations.
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Chapter 1

Introduction

1.1 Motivation and Problem

A recurring practical challenge in supervised graph classification is limited dataset size
and class imbalance in graph classification benchmarks [1, 2]. For instance, the D&D
(DD) protein dataset in the TUDataset collection consists of 1178 proteins represented as
graphs, with 691 enzymes and 487 non-enzymes [3, 4]. Such imbalanced class distributions
can pose significant challenges for learning algorithms and bias trained classifiers toward
the majority class [2]. When class-specific substructures are rare, models may fail to learn
them reliably, particularly under imbalance [5]. Classifiers that aggregate information
from local neighbourhoods, such as Graph Convolutional Networks (GCNs) [6], can be
especially sensitive in this setting, since under class imbalance, they may overfit majority-
class patterns while underrepresenting minority-class signals [5].

To mitigate these limitations, graph data augmentation is applied to increase data
diversity and improve robustness in graph neural network training [7]. A typical aug-
mentation technique perturbs the original graph, for example, by randomly removing or
masking vertices or edges [7]. Such local perturbations can improve robustness but provide
limited control over the resulting structures and may alter potentially informative k-hop
neighbourhoods [7]. This thesis examines a complementary approach: graph-level aug-
mentation that synthesises new graphs by adapting the Wave Function Collapse (WFC)
algorithm from grid-based images to graph-structured data, to preserve local structural
patterns and graph statistics from the training data.

1.2 Wave Function Collapse

Wave Function Collapse (WFC), proposed by Maxim Gumin, is a constraint-based gener-
ation algorithm that synthesises new images from local patterns learned from an example
input [8]. Intuitively, WFC scans the example to collect small local patterns, estimates
how frequently they occur, and extracts adjacency constraints from them. New images
are then generated by redrawing the content on a predefined output grid while respecting
these learned adjacency constraints, so that every small local region in the output resem-
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bles some region observed in the input [9]. In this way, WFC reproduces local patterns
(motifs) and their frequency distribution while still allowing global variability.

Since its introduction, several variants of WFC have been explored for different forms
of content, including tile-based game levels [9], 3D voxel-based models [10], and imple-
mentations on hexagonal grids [11]. In this thesis, the overlapping WFC model is taken
as the starting point and reformulated to operate on graph-structured data rather than
regular grids. This reformulated variant is referred to throughout this work as the Graph
WFC algorithm for simplicity.

1.3 Graph WFC

The Graph WFC algorithm adapts the core idea of WFC from regular grids to graph-
structured data. As in WFC, it extracts a set of local patterns and their compatibility
relations from the training data and then assembles a synthetic graph by enforcing these
constraints [8, 9]. The synthetic graph is expanded incrementally by adding vertices and
edges while aiming to approximately preserve empirical statistics of the training data, such
as the vertex-degree distribution. This yields graphs that are locally consistent with the
observed patterns, but may differ in overall size, global structure, and connectivity [9].

In line with the motivation in Section 1.1, Graph WFC is designed to improve the
training of GCN-based classifiers on small or imbalanced datasets. Effective augmenta-
tion should introduce synthesised graphs that are locally plausible while still exposing
the classifier to new and unseen data. With its explicit, constraint-based construction
and absence of learned parameters, Graph WFC provides an alternative augmentation
mechanism that enforces compatibility constraints derived from observed local patterns,
rather than applying stochastic perturbations such as vertex and edge dropping or feature
masking [7, 9].

Since the method does not require fitting additional learned parameters, it avoids a
separate training stage. However, synthesis time can vary substantially and may require
backtracking or restarts as constraint density increases [9]. In this thesis, Graph WFC
is used solely as an augmentation technique for graph classification. A key strength of
the method is the preservation of local patterns that may be discriminative, whereas a
corresponding weakness is the lack of guarantees for properties that depend on long-range
structure.

1.4 Approach

This section summarises the experimental protocol used to evaluate Graph WFC as a data
augmentation method for graph classification with a GCN [6]. Each dataset is divided into
training, validation, and test subsets using stratified sampling to approximately preserve
class proportions in each subset. The validation and test subsets are excluded from aug-
mentation and from parameter fitting, with the validation subset used for model selection
and the test subset reserved for final evaluation. Graph WFC is applied exclusively to
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the training subset: training graphs are exported to the Graph WFC pipeline, vertex at-
tributes are encoded into discrete codes, synthetic graphs are generated, and the resulting
graphs are imported back into the learning pipeline. The GCN is then trained either on
the original training subset (baseline) or on an augmented training set that combines the
original graphs with those generated by Graph WFC.

To assess when augmentation is beneficial, multiple training runs are conducted per
dataset with different random seeds. The main experimental factor is the number of
training graphs exported to Graph WFC and augmented with synthetic counterparts,
relative to a baseline that uses only real training graphs. Two further factors are varied: the
target graph size used during synthesis and the pattern size, which determines the size of
the pattern used to derive compatibility constraints in Graph WFC. Experiments explore
feasible combinations of these settings for each dataset to identify parameter settings in
which Graph WFC augmentation consistently improves performance without changing
the classifier. Details of the Graph WFC implementation are presented in Chapter 3,
and the datasets, models, augmentation pipeline, and evaluation protocol are described
in Chapter 4.

1.5 Research Question and Goals

The following central research question guides this thesis:

RQ: Does Graph-WFC-based data augmentation improve the test-set perfor-
mance of GCN-based graph classifiers on small or imbalanced graph classifica-
tion benchmarks, as measured by accuracy, macro-F1, and balanced accuracy,
compared with training on the original graphs only?

To address this question, the work pursues two main goals:

• G1 — Design and implement Graph WFC for undirected, vertex-labelled graphs
and integrate it as a configurable graph-level augmentation component in a graph-
classification pipeline, with controllable parameters for augmentation amount, target
graph size, and pattern size.

• G2 — Quantitatively evaluate the effect of Graph WFC augmentation on GCN per-
formance across datasets and augmentation settings, and identify parameter regimes
in which augmentation is beneficial or detrimental relative to a baseline trained only
on real graphs.
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Chapter 2

Background

2.1 Graphs

In Graph WFC, the key combinatorial objects are rooted neighbourhoods of bounded
radius in a given training graph, viewed as induced subgraphs of that graph. These
special subgraphs are considered up to isomorphism. The aim of this section is to provide
the necessary theory, step by step, to formalise these rooted neighbourhoods.

Graphs are treated throughout this thesis in a purely combinatorial sense: vertices form
a finite set, edges define undirected adjacency between vertices, and labels distinguish
vertex types. The notation and terminology largely follow the standard conventions of
Diestel and West [12, 13], adapted to finite, simple, undirected graphs with vertex labels.

Thus, the section begins with the underlying combinatorial structure:

Definition 2.1.1 (Graph). A graph is a pair G = (V,E) where V is a finite set and

E ⊆
(
V

2

)
:=

{
{x, y} | x, y ∈ V, x ̸= y

}
,

whose elements are called the edges of G. The elements of V are the vertices of G. By
construction, loops and multiple edges are excluded, so G is a finite simple undirected
graph.

Definition 2.1.2 (Subgraphs and induced subgraphs). Let G = (V,E) be a graph. If
V ′ ⊆ V and E′ ⊆ E are such that every edge e ∈ E′ satisfies e ⊆ V ′, then G′ = (V ′, E′)

is a subgraph of G. If V ′ ⊆ V and

E′ := { e ∈ E | e ⊆ V ′ },

then
G[V ′] := (V ′, E′)

is the induced subgraph of G on V ′.

A subgraph consists of a subset of the vertices and edges of a graph. An induced
subgraph G[V ′] on a vertex set V ′ includes all edges of G with both endpoints in V ′,
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whereas a general subgraph may omit some of these edges. Graphs frequently contain
vertices of different types, which in this context are represented by vertex labels, while
edges remain unlabelled.

Definition 2.1.3 (Vertex-labelling). Let G = (V,E) be a graph. A vertex-labelling of G
is a function ℓ : V → Σ, where Σ is a finite alphabet of labels. The labels are categorical
symbols (only equality matters), and multiple vertices may share the same label. A graph
equipped with a vertex-labelling is written (V,E, ℓ) and is called a vertex-labelled graph.
When the context is clear, (V,E, ℓ) is abbreviated by G.

In this setting, the vertex set V represents the objects of interest, the edge set E records
which pairs of vertices are adjacent, and the vertex-labelling ℓ assigns a categorical type
to each vertex. Local structure in a graph is described in terms of the vertices adjacent
to a given vertex and the number of such neighbours.

Definition 2.1.4 (Neighbourhood and degree). Let G = (V,E) be a graph and x ∈ V .
The neighbourhood of x is

NG(x) := { y ∈ V | {x, y} ∈ E }.

The degree of x is
dG(x) := |NG(x)|.

When the graph G is clear from context, the shorter notations N(x) and d(x) are used.

Thus NG(x) collects all vertices adjacent to x, and dG(x) records how many such
neighbours x has. These quantities describe the immediate local environment of a vertex
and will form the basis for the radius-r neighbourhoods introduced below.

To move beyond the immediate neighbourhood of a vertex, a notion of how far apart
two vertices lie in a graph is needed, which will be provided by paths and the associated
distance function.

Definition 2.1.5 (Simple paths and distance). Let G = (V,E) be a graph. A simple path
in G is a finite sequence of pairwise distinct vertices

(v0, . . . , vk)

such that {vi−1, vi} ∈ E for all i = 1, . . . , k. Its length is k, the number of edges. For
x, y ∈ V , an x–y path is a simple path in G with v0 = x and vk = y. The distance
distG(x, y) is the length of a shortest x–y path in G. If no such path exists, then

distG(x, y) :=∞.

For x, y ∈ V , the distance distG(x, y) measures the minimal number of steps needed
to move from x to y along edges of the graph. By construction, distG(x, x) = 0 and
the distance is symmetric in its arguments. When x and y lie in different connected
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components of G, the convention distG(x, y) = ∞ records that there is no connecting
path. In this sense, the distance function captures how close or far vertices are in the
connectivity structure of G: small values indicate that two vertices are linked by short
paths, whereas large values or ∞ indicate weak or absent connectivity.

The distance function induces vertex-centred neighbourhoods that collect all vertices
within a prescribed radius of a given centre. These neighbourhoods are formalised as balls,
see Lyons and Peres [14].

Definition 2.1.6 (Balls). Let G = (V,E) be a graph and v ∈ V . For r ∈ N0 :=

{0, 1, 2, . . . }, the (closed) ball of radius r around v is

BG(v, r) := {u ∈ V | distG(u, v) ≤ r }.

Thus BG(v, 0) = {v} contains only the centre, while BG(v, 1) = {v} ∪NG(v) consists
of v together with all its neighbours. As r increases, the balls form a nested family

BG(v, 0) ⊆ BG(v, 1) ⊆ BG(v, 2) ⊆ · · ·

that captures progressively larger portions of the graph around v. For finite graphs, each
ball is a finite vertex set, and restricting G to BG(v, r) yields a finite induced subgraph
that will serve as the radius-r neighbourhood of v in what follows.

To describe local structure not only in terms of adjacency but also in terms of vertex
labels, it is convenient to consider the induced subgraph on a ball around a vertex, together
with the distinguished centre and the restricted labelling.

Definition 2.1.7 (Rooted radius-r neighbourhoods). Let G = (V,E, ℓ) be a vertex-
labelled graph, v ∈ V , and r ∈ N0. The rooted radius-r neighbourhood of v in G is
the triple

HG(v, r) :=
(
G[BG(v, r)], v, ℓ|BG(v,r)

)
,

that is, the induced subgraph on the ball BG(v, r) together with root v and the restriction
of the labelling ℓ to BG(v, r). For r = 1, this is the induced subgraph on {v}∪NG(v) with
distinguished centre v and labels inherited from G.

The rooted neighbourhood HG(v, r) is finite and vertex-labelled: the vertex v plays
the role of the root, the ball BG(v, r) specifies all vertices within distance at most r of v,
and edges and labels are inherited from G. In particular, HG(v, r) collects

• the vertices in BG(v, r),

• all edges of G between those vertices, and

• the values of the labelling function ℓ : V → Σ restricted to BG(v, r), that is, the
function ℓ|BG(v,r) : BG(v, r)→ Σ.

Equivalently, the restricted labelling satisfies ℓ|BG(v,r)(u) = ℓ(u) for all u ∈ BG(v, r).
It is simply the original labelling ℓ : V → Σ viewed as a function on the vertex set
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BG(v, r) ⊆ V . This generalises the notion of an r-neighbourhood as used by Winkler [15]
to vertex-labelled graphs.

A concrete example is shown in Figure 2.1, where the rooted radius-1 neighbourhood
HG(v, 1) around a vertex v in a small vertex-labelled graph G is highlighted.

v
a

b

c

d
e

f

g

Figure 2.1: Vertex-labelled graph G = (V,E, ℓ) drawn in grey, with the rooted radius-1
neighbourhood of v highlighted in colour. The centre v (orange), its neighbours NG(v) =
{a, b, c} (blue), and all edges of the induced subgraph G[{v} ∪ NG(v)] (highlighted in
orange and blue) form the rooted neighbourhood. The dashed circle visualises the ball
BG(v, 1). By definitions 2.1.6 and 2.1.7, the rooted neighbourhood HG(v, 1) is the rooted,
vertex-labelled graph obtained by restricting G to this ball and distinguishing v as the
root.

Now that the theory for extracting finite rooted, vertex-labelled neighbourhoods from
a larger graph has been established, the next step is to compare such structures: two
rooted neighbourhoods should be regarded as identical if there exists a graph isomorphism
between their underlying induced subgraphs. In detail, this means that there exists a
bijection between the vertex sets that preserves adjacency and vertex labels and maps the
root of one neighbourhood to the root of the other. As a first step, the standard notion
of graph isomorphism is recalled.

Definition 2.1.8 (Graph isomorphism). Let G = (V,E) and G′ = (V ′, E′) be graphs.
An isomorphism φ : V → V ′ is a bijection such that

{x, y} ∈ E ⇐⇒ {φ(x), φ(y)} ∈ E′ for all x, y ∈ V.

The notation G ∼= G′ indicates the existence of such an isomorphism. For vertex-labelled
graphs G = (V,E, ℓ) and G′ = (V ′, E′, ℓ′), an isomorphism must also preserve labels, that
is, ℓ(x) = ℓ′(φ(x)) for all x ∈ V .

With rooted radius-r neighbourhoods defined in definition 2.1.7 and graph isomor-
phism defined, the next step is to adapt isomorphism to the rooted setting. In a rooted
radius-r neighbourhood, the centre vertex plays a distinguished role and must be pre-
served by any admissible isomorphism. This leads to the following notion of isomorphism
for rooted neighbourhoods.
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Definition 2.1.9 (Isomorphism of rooted radius-r neighbourhoods). Let G = (V,E, ℓ)

and G′ = (V ′, E′, ℓ′) be vertex-labelled graphs, let v ∈ V , v′ ∈ V ′, and r ∈ N0. Their
rooted radius-r neighbourhoods are

HG(v, r) =
(
G[BG(v, r)], v, ℓ|BG(v,r)

)
,

HG′(v′, r) =
(
G′[BG′(v′, r)], v′, ℓ′|BG′ (v′,r)

)
.

A root-preserving labelled isomorphism between HG(v, r) and HG′(v′, r) is a bijection

φ : BG(v, r) −→ BG′(v′, r)

such that
{x, y} ∈ E ⇐⇒ {φ(x), φ(y)} ∈ E′ for all x, y ∈ BG(v, r),

ℓ(x) = ℓ′
(
φ(x)

)
for all x ∈ BG(v, r),

φ(v) = v′.

If such a bijection exists, the two rooted neighbourhoods are said to be root-preserving
labelled isomorphic, and the notation HG(v, r) ∼=rℓ HG′(v′, r) is used.

In particular, this notion applies both to rooted neighbourhoods in different graphs
and to rooted neighbourhoods within a single graph. The relation of root-preserving
labelled isomorphism partitions rooted neighbourhoods into isomorphism classes. Two
rooted radius-r neighbourhoods HG(v, r) and HG′(v′, r) encode the same local structure
precisely when they are root-preserving labelled isomorphic in the sense of Definition 2.1.9.
This viewpoint coincides with the standard treatment of rooted neighbourhoods in the
theory of local graph limits. See, for example, Lovász [16, Sections 18.3 and 19.1].

In the context of Graph WFC, rooted radius-r neighbourhoods serve as the patterns,
in direct analogy to the overlapping variant of the WFC algorithm that inspired Graph
WFC (see Section 1.2 for the motivation, and Section 2.3 for an explicit formulation of
the overlapping variant). For a fixed radius r and a given training graph G, all rooted
neighbourhoods HG(v, r) with v ∈ V (G) are extracted, grouped into isomorphism classes
under root-preserving labelled isomorphism, and their empirical frequencies are computed.
These isomorphism classes form the pattern vocabulary, and the associated frequencies
provide local compatibility statistics used in the subsequent Graph WFC constructions.
Thus, the constructions in this section provide the theoretical basis for handling rooted
radius-r neighbourhoods in the implementation. Their algorithmic application as patterns
is developed in Sections 3.1 and 3.2.
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2.2 Graph Convolutional Network

To address the research question and goals stated in Section 1.5, a standard graph-
classification model is used as a simple baseline. More precisely, a graph convolutional
network (GCN) based on the propagation rule of Kipf and Welling [6] is employed as
the baseline classifier, using the GCNConv and global_mean_pool operators provided by
PyTorch Geometric [17]. This section provides a compact description of the employed
architecture and notation to document the baseline used in all experiments.

Graph neural networks (GNNs) are neural models that operate on graph-structured
data by iteratively propagating and transforming vertex features along edges [18]. GCNs
constitute a widely used architecture within the GNN family and combine neighbourhood
aggregation with shared linear transformations [6]. In the experiments, a standard GCN
without any architectural or algorithmic modifications is employed as the classifier.

Using the notation introduced in Section 2.1, let G = (V,E) be a graph with |V | = N

vertices. Fix an arbitrary ordering of V and identify V = {1, . . . , N}, so that G admits an
adjacency matrix A ∈ {0, 1}N×N . The vertex features are collected in a matrix X ∈ RN×F ,
where the i-th row x⊤i represents the feature vector of vertex i. Following the formulation
of Kipf and Welling [6], self-loops are added by defining Â = A+IN , and the corresponding
degree matrix D̂ is diagonal with entries D̂ii =

∑N
j=1 Âij . The symmetrically normalised

adjacency matrix used in the GCN layer is then given by

Ã = D̂−1/2ÂD̂−1/2.

The initial vertex-feature matrix is defined by H(0) := X. A single GCN layer maps
input vertex features H(ℓ) ∈ RN×Fℓ to output features H(ℓ+1) ∈ RN×Fℓ+1 via

H(ℓ+1) = σ
(
ÃH(ℓ)W (ℓ)

)
, (2.1)

where W (ℓ) ∈ RFℓ×Fℓ+1 is a trainable weight matrix and σ(·) denotes an element-wise
nonlinearity. Throughout the experiments, the rectified linear unit (ReLU), defined by
σ(t) = max{0, t}, is used. Bias terms are omitted for readability. This propagation rule
corresponds to the GCNConv operator from PyTorch Geometric [17], which serves as the
basic building block of the baseline classifier.

A graph-level representation is obtained by stacking several layers of the form (2.1)
and then applying a pooling operation to the final vertex embeddings. The pooling is
chosen to be permutation-invariant, so that the resulting representation does not depend
on the arbitrary ordering of vertices. Let H(L) ∈ RN×FL denote the vertex-feature matrix
after L GCN layers. Its i-th row h

(L)
i can be interpreted as an embedding of vertex i that

summarises information from its L-hop neighbourhood. Because Ã only mixes features
of adjacent vertices, repeated application of (2.1) implies that h

(L)
i depends only on the

L-hop neighbourhood of i. A global pooling operator aggregates all vertex embeddings
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into a single vector

hG = READOUT
(
{h(L)i : i ∈ V }

)
∈ RFL . (2.2)

In this thesis, READOUT is implemented as global mean pooling, which computes hG as
the average of the final vertex embeddings over all vertices of the graph. The vector hG

is then passed through a linear layer

zG = WouthG + bout,

which produces C logits zG ∈ RC , that is, one real-valued score for each class before
normalisation. These logits are converted into class probabilities by the standard softmax
function. The parameters θ, denoting the collection of all trainable weights of the network,
are learned by minimising the usual cross-entropy loss on graph labels. With this formu-
lation, both binary and multi-class graph-classification problems are covered through the
choice of the number of classes C.

In summary, the classifier employed in the experiments is a conventional GCN imple-
mented with PyTorch Geometric GCNConv layers, followed by global mean pooling and a
linear output layer, and trained using the usual cross-entropy loss on graph labels. Thus,
the contributions of this thesis lie entirely in the Graph WFC implementation and the
resulting synthetic training graphs, while the classifier architecture itself is deliberately
kept standard.

2.3 Overlapping WFC Model

This section reviews the overlapping Wave Function Collapse (WFC) model as imple-
mented by Gumin [8], with emphasis on pattern extraction, overlap-based adjacency con-
straints, and grid-based generation. Unless stated otherwise, the algorithmic details in this
section follow Gumin’s implementation [8]. For an accessible, informal explanation and
illustrative example of overlapping WFC are given by Sherratt [19], which also inspired
the schematic figures in this section.

2.3.1 Overlapping WFC Algorithm

Pattern extraction and adjacency constraints The algorithm operates on a regular
grid and derives its pattern set directly from an input image. Let the size of the input grid
be H ×W , and let k ∈ N denote a chosen pattern size (typically k ∈ {2, 3, 4}). A window
of size k× k is anchored with its upper-left corner at grid position (1, 1) of the image. For
each anchor position (h,w) with 1 ≤ h ≤ H, 1 ≤ w ≤W , the algorithm records the k× k

values under the window as one pattern. Conceptually, the window starts at (1, 1) and is
moved along the first row through (1, 2), . . . , (1,W ), then continues with the second row
(2, 1), . . . , (2,W ), and so on until all rows h = 1, . . . ,H have been visited. Whenever part
of the window would extend beyond the right or bottom edge of the image, the missing
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values are taken from the opposite side in the corresponding direction, so that the image
behaves as if it wraps around horizontally and vertically. In this way, a k × k pattern
is associated with every grid position (h,w) in the input image. An illustration of this
pattern extraction procedure is shown in Figure 2.2.

Input image First four 3× 3 patterns

Figure 2.2: Pattern extraction in the overlapping WFC model for pattern size k = 3 on a
4× 4 input image. The input image is scanned by a 3× 3 window from left to right along
the top row, producing the first four patterns shown on the right. The same sliding and
wrapping procedure is applied at every grid position (h,w) with 1 ≤ h ≤ H, 1 ≤ w ≤W ,
yielding here 16 patterns in total. The layout of this illustration is inspired by the informal
example of overlapping WFC in Sherratt [19].

Each distinct k×k configuration is assigned a pattern index in {0, . . . , |P |− 1}, where
P denotes the resulting finite pattern set. During pattern extraction, every newly observed
pattern is optionally rotated and reflected, and all resulting variants are compared against
the existing pattern set P . If none of these variants is present in P , each is inserted as a
new pattern with its own index. If a match is found, the corresponding pattern’s empirical
frequency counter is increased instead of storing a duplicate.

Adjacency constraints between patterns are obtained by testing every ordered pair
of patterns for overlap compatibility. For each direction d̂ ∈ {±êx,±êy} and each pair
pi, pj ∈ P , the algorithm shifts pj by one cell in direction d̂ and compares the overlapping
region of size (k− 1)×k or k× (k− 1) in the two patterns. If all values in this overlap are
identical, pi and pj are marked as compatible in direction d̂. Otherwise, the pair is marked
as incompatible. Formally, this yields for each direction d̂ a binary adjacency matrix
A(d̂) ∈ {0, 1}|P |×|P | with entries A

(d̂)
ij = 1 if and only if pi and pj are compatible when

pj is placed one step in direction d̂ relative to pi. An illustration of the pattern overlap
compatibility is shown in Figure 2.3. The pattern set P together with the adjacency
matrices {A(d̂)} define the constraints that WFC must enforce during generation.

Pattern 1 Pattern 2 Overlap

Figure 2.3: Horizontal overlap compatibility between two patterns in the overlapping
WFC model. Pattern 1 and Pattern 2 correspond to the first two extracted patterns in
Figure 2.2. Pattern 2 is shifted one cell to the right over Pattern 1, and the red rectangles
indicate the k×(k−1) overlap region (here 3×2) that must be identical in both patterns for
them to be compatible in this direction. The schematic design of this overlap illustration
is likewise inspired by the example in Sherratt [19].
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Generation on the output grid Generation is performed on a target grid with a
chosen output size. At the start of the algorithm, each grid cell (h,w) is associated with
a domain Dh,w ⊆ P of admissible patterns. All domains are initialised as Dh,w = P for
all (h,w), so that every cell initially contains the full pattern set. The algorithm then
iteratively selects a cell and collapses its domain by choosing a single pattern from its
current domain Dh,w. To choose which cell to collapse next, WFC uses a Shannon-entropy
heuristic based on the empirical pattern frequencies. Let wp > 0 denote the empirical
frequency (weight) of pattern p ∈ P obtained during pattern extraction. For any domain
D ⊆ P , these weights are restricted to D and renormalised to obtain probabilities

qp =
wp∑
r∈D wr

for p ∈ D,

and the Shannon entropy of D is defined as

H(D) = −
∑
p∈D

qp log qp.

At each step, the algorithm considers all cells with |Dh,w| > 1, computes H(Dh,w) for
each, and picks one whose domain has the lowest entropy, breaking ties at random. At the
very beginning, all domains are identical, so the first cell is effectively selected uniformly
at random. Once a cell (h,w) has been chosen, one pattern p∗ ∈ Dh,w is drawn at random
with probabilities {qp}p∈Dh,w

, and the domain is replaced by the singleton {p∗}. In this
way, more frequent patterns are more likely to be chosen, but the choice remains stochastic.

Collapsing a cell with chosen pattern p∗ imposes additional constraints on its neigh-
bours. Let i∗ denote the index of p∗ in P . For each of the four directions d̂ ∈ {±êx,±êy},
consider the adjacent cell in direction d̂ (if it lies inside the output grid) and denote its
current domain by Dnbr ⊆ P . This domain is intersected with the set of patterns that are
compatible with p∗ according to the adjacency matrices A(d̂) defined above:

Dnbr ← { pj ∈ Dnbr | A
(d̂)
i∗j = 1 }.

In other words, every neighbour of the collapsed cell loses all patterns that would violate
the overlap constraints in the corresponding direction. Whenever a neighbour’s domain
changes, that neighbour is treated as a new source of constraints, and the same update
is applied to its own neighbours. This propagation continues until no domain changes
any more. If, during this propagation, any domain Dh,w becomes empty, implying a
contradiction, the run is aborted and the generation restarts. If no errors occur and
propagation terminates successfully, the algorithm recomputes the entropies H(Dh,w) and
again selects a cell of lowest entropy to collapse. This collapse and propagation cycle is
repeated until all domains have collapsed to singletons, at which point each output cell
(h,w) contains exactly one pattern index, yielding a complete pattern assignment on the
target grid.

To render the final image, a fixed pixel position within each k× k pattern is chosen as
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an anchor (commonly the top-left pixel). The algorithm outputs a grid of pattern indices,
and each output cell is rendered by drawing only the anchor pixel colour of its assigned
pattern [19]. Because the adjacency constraints have been enforced consistently across
the grid, selecting the same anchor pixel for every pattern yields a coherent image whose
local statistics reflect those of the exemplar, while the underlying k × k patterns remain
implicit.

2.3.2 WFC for Graph Generation

Viewed abstractly, WFC greedily solves a constraint satisfaction problem on a grid: each
cell chooses a pattern so that all local adjacency constraints, learned from an exemplar,
are satisfied [9]. At the same time, sampling patterns according to their empirical fre-
quencies makes the generated output locally resemble the exemplar in terms of pattern
statistics, while still allowing globally different configurations [8, 9]. This combination of
strict local compatibility and flexible global structure is appealing for graph generation,
because message-passing GNNs such as GCNs can be viewed as updating vertex repre-
sentations by aggregating information from their local neighbourhoods over successive
layers [18]. Moreover, in supervised graph learning, data augmentation is attractive when
it preserves label-relevant local structures while still generating globally diverse graphs [5,
7]. Generative models such as NetGAN empirically demonstrate that it is possible to
sample synthetic graphs that approximate the structural statistics of an observed graph
while still producing new global graph instances [20].

Taken together, these observations suggest that the overlapping WFC model may be
a suitable candidate for graph generation, provided it can be reformulated to operate
on graphs rather than grids. The next chapter presents Graph WFC, one approach to
applying the overlapping WFC model to graphs.
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Chapter 3

Implementation

3.1 Graph Patterns and Data I/O

This section specifies the data input and output (data I/O) formats and introduces the
Graph WFC model, which represents patterns as rooted radius-r neighbourhoods, as de-
fined in definition 2.1.7. A later subsection describes how compatibility constraints be-
tween patterns are extracted. These components are inspired by the overlapping WFC
model (Section 2.3) and together form the first stage of the graph generation pipeline.

3.1.1 Data I/O

The Graph WFC generator takes as input a finite family of undirected, vertex-labelled
training graphs as in definition 2.1.1 and produces synthetic graphs over the same vertex-
label alphabet. Formally, the input is

Gtrain =
{
Gk = (Vk, Ek, ℓk) | k = 1, . . . ,M

}
, (3.1)

where each Gk is a vertex-labelled graph in the sense of definition 2.1.3, with labelling
function ℓk : Vk → L for a fixed finite label alphabet L. The corresponding outputs are

Gsyn =
{
G̃k = (Ṽk, Ẽk, ℓ̃k) | k = 1, . . . ,M

}
, (3.2)

which are vertex-labelled graphs over L. Thus, the generator attempts to produce one
synthetic graph G̃k for each input graph Gk. Unsuccessful synthesis attempts may yield
no output graph, so the number of outputs may be smaller than the number of inputs.

For each input Gk = (Vk, Ek, ℓk) with k = 1, . . . ,M , the generator extracts a pattern
vocabulary and associated compatibility tables from Gk, and then synthesises the corre-
sponding synthetic graph G̃k using only quantities learned from this training graph. After
the synthesis step, all pattern data and summary statistics from iteration k are discarded,
and the internal state of the generator is reinitialised before the next training graph is
processed. For the remainder of this section, the mathematical and algorithmic procedure
is described for a fixed but arbitrary iteration k, since each iteration is self-contained.
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3.1.2 Pattern Extraction

Given a training graph Gk from Equation (3.1) and a fixed radius r ∈ N with r ≥
1, the first stage of the algorithm is pattern extraction. The algorithm iterates once
over all vertices v ∈ Vk and, for each vertex, forms the rooted radius-r neighbourhood
HGk

(v, r) as defined in definition 2.1.7. Thus, for a training graph with vertex set Vk, the
pattern-extraction step yields |Vk| rooted neighbourhoods. For notational convenience,
the following shorthand is introduced for these neighbourhoods:

H
(r)
k (v) := HGk

(v, r), (3.3)

so that H
(r)
k (v) denotes the rooted radius-r neighbourhood around v in Gk. To identify

duplicates among radius-r neighbourhoods, these rooted graphs are compared up to root-
preserving vertex-labelled isomorphism, as defined in definition 2.1.9. Two vertices v, v′ ∈
Vk therefore give rise to the same local structure at radius r precisely when

H
(r)
k (v) ∼=rℓ H

(r)
k (v′).

The corresponding set of patterns at radius r is the set of ∼=rℓ-equivalence classes of rooted
neighbourhoods in Gk and is defined as

P(r)
k :=

{
[H

(r)
k (v)]∼=rℓ

: v ∈ Vk

}
, (3.4)

where [H
(r)
k (v)]∼=rℓ

denotes the ∼=rℓ-equivalence class of H(r)
k (v). Each class π ∈ P(r)

k is
called a pattern at radius r.

To quantify how often each pattern occurs at radius r, the multiplicity m
(r)
k (π) of a

pattern π ∈ P(r)
k is defined as the number of vertices whose rooted neighbourhood lies in

that class:
m

(r)
k (π) :=

∣∣{ v ∈ Vk : H
(r)
k (v) ∈ π }

∣∣. (3.5)

Since every vertex contributes its neighbourhood to exactly one pattern class, the multi-
plicities satisfy ∑

π∈P(r)
k

m
(r)
k (π) = |Vk|. (3.6)

The associated empirical distribution of radius-r patterns can then be defined by

p̂
(r)
k (π) :=

m
(r)
k (π)

|Vk|
, π ∈ P(r)

k . (3.7)

By construction, this is a probability mass function on P(r)
k , and in particular∑

π∈P(r)
k

p̂
(r)
k (π) = 1. (3.8)
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Equivalently, p̂(r)k (π) is the probability that a uniformly chosen vertex v ∈ Vk has rooted
neighbourhood H

(r)
k (v) in the pattern class π. This choice of normalisation (uniform root

and radius-r neighbourhoods) is consistent with the Benjamini–Schramm framework for
local limits of finite graphs [21, §1.2].

So far, patterns have been defined for a single radius r. In practice, however, the
implementation considers a finite set of radii. Let

R := {1, . . . , rmax} ⊆ N (3.9)

denote the set of radii of interest, where rmax ≥ 1 is a chosen maximal radius. For each
radius r ∈ {1, . . . , rmax}, the corresponding pattern set P(r)

k is constructed as in (3.4).
For the generation stage, only patterns at the maximal radius rmax are used as domain

values. As in the overlapping WFC algorithm (Section 2.3.1), each cell in the Graph
WFC maintains a domain of admissible patterns of a single size (see Section 3.2.1). In the
Graph WFC this common size is fixed to radius-rmax neighbourhoods. Hence the pattern
vocabulary presented in the cell domains during synthesis is

Πk := P(rmax)
k , (3.10)

and each cell ultimately selects one element of Πk as its pattern when it collapses to
a singleton. The general definition (3.7) yields, for r = rmax, an empirical distribution
p̂
(rmax)
k on P(rmax)

k . Restricting this to the vocabulary Πk ⊆ P
(rmax)
k gives

p̂k(π) := p̂
(rmax)
k (π) =

m
(rmax)
k (π)

|Vk|
, π ∈ Πk, (3.11)

so that p̂k is simply the radius-rmax empirical distribution from (3.7), restricted to those
patterns that are actually used as domain values.

For later use in generation, pattern weights are introduced by

wk(π) := m
(rmax)
k (π), π ∈ Πk, (3.12)

so that wk(π) coincides with the multiplicity m
(rmax)
k (π) from (3.5). Only the relative

magnitudes of these weights are used during synthesis, for example to bias pattern selection
in the entropy-based collapse step (Section 3.2.2).

3.1.3 Pattern Compatibility

Let Gk be a training graph from Equation (3.1) and r ∈ R. Denote P(r)
k as the correspond-

ing set of radius-r patterns from Section 3.1.2. This subsection defines a compatibility
relation on P(r)

k that encodes which patterns may occur consistently adjacent for all radii
r. Informally, two patterns are declared compatible if they share at least one vertex-label
sequence along a simple root-to-radius-r path in one pattern and the reversed sequence
along a radius-r-to-root path in the other. The construction therefore first specifies how
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these label sequences are extracted from a single pattern, and then defines compatibility
by comparing the resulting sets.

Root-to-radius paths of a pattern. Let π ∈ P(r)
k be a pattern at radius r. By the

definition of P(r)
k in (3.4), there exists a vertex v ∈ Vk such that the rooted radius-r

neighbourhood H
(r)
k (v) belongs to the pattern class π (see definitions 2.1.7 and 2.1.9).

In the following, such a rooted neighbourhood H
(r)
k (v) is called a representative of π.

A root-to-radius-r path in a representative H
(r)
k (v) is a path (v0, . . . , vr) in the sense of

definition 2.1.5 that satisfies

v0 = v and distGk
(vi, v) = i for all i = 0, . . . , r.

Such a path starts at the root v and moves strictly outwards in graph distance, increasing
the distance to the root by exactly one at each step until distance r is reached. The
associated label sequence is defined by

λ(v0, . . . , vr) :=
(
ℓk(v0), . . . , ℓk(vr)

)
∈ Lr+1,

where ℓk : Vk → L is the vertex-labelling from Equation (3.1). Root-preserving labelled
isomorphisms preserve distances from the root and vertex labels (see definition 2.1.9).
Consequently, the collection of label sequences λ(v0, . . . , vr) arising from all root-to-radius-
r paths in a representative H

(r)
k (v) depends only on the pattern π, not on the chosen

representative. Hence the set of label sequences extracted from a pattern is well defined,
which allows the following construction.

Definition 3.1.1 (Outward label-path set of a pattern). The outward label-path set of a
pattern π ∈ P(r)

k is

Lr(π) :=
{
λ(v0, . . . , vr)

∣∣ (v0, . . . , vr) is a root-to-radius-r path of π
}
⊆ Lr+1.

Thus Lr(π) collects all label sequences of the pattern π that occur along simple paths
starting at the root of π and moving strictly outwards layer by layer up to radius r. For a
given pattern π and radius r, it may happen that π contains no root-to-radius-r path (for
example, when no vertex lies at distance exactly r from the root), therefore Lr(π) = ∅.

Reversed path sets and compatibility. To express that two patterns can be aligned
along at least one path as mentioned at the beginning of this subsection, a reversal oper-
ation on label sequences is introduced. For a sequence

a = (a0, . . . , ar) ∈ Lr+1,

its reversal is defined as
rev(a) := (ar, . . . , a0).
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For a subset S ⊆ Lr+1, the pointwise reversal is written

rev(S) := { rev(a) | a ∈ S }.

Definition 3.1.2 (Reversed label-path set of a pattern). The reversed label-path set of a
pattern π ∈ P(r)

k is

Lrevr (π) := rev
(
Lr(π)

)
= { rev(a) | a ∈ Lr(π) } ⊆ Lr+1.

Thus the compatibility of two patterns can now be expressed in terms of intersections
of outward and reversed path sets:

Definition 3.1.3 (Pattern compatibility). Let π, π′ ∈ P(r)
k . The patterns π and π′ are

compatible at radius r if
Lr(π) ∩ Lrevr (π′) ̸= ∅.

If Lr(π) = ∅, then the pattern π contains no root-to-radius-r label sequence and
therefore provides no compatibility evidence at radius r. Under the stated compatibility
criterion, π is incompatible with every radius-r pattern.

Compatibility matrix. For a fixed training graph Gk and a fixed radius r ∈ R, the
compatibility relation from definition 3.1.3 induces a symmetric {0, 1}-valued matrix over
the pattern set P(r)

k . Let n := |P(r)
k | denote the number of radius-r patterns in Gk, and

fix an enumeration
P(r)
k = {π(r)

1 , . . . , π(r)
n }.

The compatibility matrix at radius r for the training graph Gk is defined as

C
(r)
k ∈ {0, 1}n×n,

with entries

C
(r)
k (i, j) :=

1, π
(r)
i and π

(r)
j are compatible at radius r,

0, otherwise,
i, j ∈ {1, . . . , n},

where compatibility is understood in the sense of definition 3.1.3. Since the compatibility
relation is symmetric, the matrix C

(r)
k is symmetric. For the given radius r, C(r)

k therefore
provides a complete description of which patterns may occur adjacent to one another along
root-to-radius-r paths in the Graph WFC generation process.

For later use in Section 3.2.4 it is convenient to read C
(r)
k row-wise as compatibility

neighbourhoods on P(r)
k . For ρ ∈ P(r)

k , let i ∈ {1, . . . , n} be such that ρ = π
(r)
i and define

N (r)
k (ρ) :=

{
π
(r)
j ∈ P

(r)
k

∣∣ C(r)
k (i, j) = 1

}
. (3.13)

Thus N (r)
k (ρ) is the set of all radius-r patterns that are compatible with ρ.
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Recall that in Section 3.1.2, patterns were extracted separately for each radius r ∈ R,
see (3.9). Applying the construction above to every such radius yields, for each training
graph Gk, the family of compatibility matrices

Ck :=
{
C

(r)
k

∣∣ r ∈ R}
. (3.14)

Equivalently, one may collect the associated neighbourhood maps as

Nk :=
{
N (r)

k

∣∣ r ∈ R}
. (3.15)

The families Ck and Nk describe the same multi-radius compatibility structure: Ck stores
it as {0, 1}-valued matrices, whereas Nk stores it as set-valued maps ρ 7→ N (r)

k (ρ) on the
pattern sets P(r)

k .

3.2 Graph Generation

The constructions in Sections 3.1.2 and 3.1.3 associate to each training graph Gk a family of
compatibility matrices Ck (see (3.14)) and the corresponding compatibility neighbourhood
maps Nk (see (3.15)) on the pattern sets P(r)

k (see (3.13)). These structures encode, for all
radii r ∈ R, which patterns may occur adjacent along root-to-radius-r paths in Gk. This
section explains how a new graph G̃k is synthesised from these compatibility constraints.
The core design follows the overlapping WFC model introduced in Section 2.3.

At a high level, the generator maintains an evolving cell graph: a finite simple graph
whose vertices are abstract cells, not the actual vertices of the synthetic graph. Each cell is
a placeholder for a future vertex of G̃k and is equipped with a domain of admissible patterns
from the global vocabulary Πk = P(rmax)

k at the reference radius rmax (see Equation (3.10)).
During generation, this cell graph is grown and rewired, while the domains of its cells are
progressively reduced until each cell has collapsed to a single pattern. The algorithm
proceeds roughly as follows.

Generation is initialised with a single seed cell whose domain equals the full pattern
vocabulary Πk. The following steps from a single iteration, which is repeated until the
cell graph reaches the prescribed target size:

• a cell is selected via a minimum-entropy heuristic and its domain is collapsed to a
single pattern;

• the cell graph is expanded by adding new neighbouring cells with initial domain Πk

and inserting edges;

• constraints are propagated by pruning the domains of adjacent cells using the multi-
radius compatibility neighbourhood maps Nk;

• collapsed cells are reconnected by inserting additional edges, subject to the same
compatibility structure encoded by Nk.
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Once the cell graph reaches the prescribed target size, a final clean-up phase is applied.
At this point, each cell has a singleton domain. The readout step then replaces each cell
by the centre vertex (root) of its assigned pattern together with the corresponding label,
yielding the synthetic graph G̃k. This centre vertex is directly analogous to the anchor
pixel in the overlapping WFC model (Section 2.3). This completes the informal outline
of the algorithm. The next subsection formalises the initialisation of the Graph WFC
state. Subsequent subsections cover the expansion, propagation, reconnection and clean-
up phases, followed by the readout of the synthetic graph G̃k from the fully collapsed cell
configuration.

3.2.1 Initialisation

The initialisation phase configures the global hyperparameters of the Graph WFC model
and sets up the initial state from which the iterative process starts. For a fixed training
graph Gk = (Vk, Ek, ℓk), the pattern vocabularies

(
P(r)
k

)
r∈R and the compatibility struc-

ture (Ck,Nk) introduced in Sections 3.1.2 and 3.1.3 are treated as precomputed inputs. A
maximal pattern radius rmax ∈ R is regarded as a global hyperparameter and induces the
reference-radius pattern set Πk = P(rmax)

k via Equations (3.9) and (3.10). This subsection
first introduces the global parameters that control target size and expansion behaviour,
and then formalises the cell-level state (cells, domains, and adjacency) together with its
initial configuration.

Global parameters. For the training graph Gk, let nk := |Vk| denote its number of
vertices. The target size of the synthetic graph G̃k is controlled by a user-specified size
factor csize > 0, yielding the nominal target vertex count

N tar
k :=

⌊
csize nk

⌋
, (3.16)

which serves as the reference scale for generation. As outlined at the start of this section,
synthesis consists of a generation phase (the iterative collapse, expand, propagate, and
connect loop) followed by a clean-up phase that completes the process. To define the
size-based transition between these phases, a fixed tolerance constant δsize := 0.1 is used.
The size-based transition from the generation phase to the clean-up phase is triggered
once the following lower threshold is reached:

N low
k :=

⌊
(csize − δsize)nk

⌋
. (3.17)

Afterwards, the clean-up phase begins and expansion is constrained by the hard upper
cap

Nmax
k :=

⌈
(csize + δsize)nk

⌉
. (3.18)

A second global parameter, the expansion cap,

Bexp
k ∈ N, (3.19)
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which bounds the number of new cells that may be introduced in a single expansion step.
This cap helps to avoid tree-like blow-up, especially when several cells are expanded in
one step (see Section 3.2.3 for the allocation rule). In the implementation, Bexp

k is chosen
from the degree distribution of Gk as a fixed high-percentile value. Let dGk

(v) denote
the degree of a vertex v ∈ Vk in Gk (cf. definition 2.1.4). Let d

(k)
(1) ≤ · · · ≤ d

(k)
(nk)

be the
non-decreasing ordering of the multiset { dGk

(v) : v ∈ Vk }, and set

ik := max
{
1,

⌈
0.9nk

⌉}
, Bexp

k := d
(k)
(ik)

. (3.20)

Bexp
k is the empirical 90th percentile of the vertex degrees in Gk. This deliberately

simple, hand-crafted heuristic keeps local branching under control by ensuring that no
expansion step introduces more new cells than the degree of a typical high-degree vertex.

In summary, the adjustable hyperparameters in the initialisation step are the maximal
pattern radius rmax (which determines the vocabulary Πk via Equations (3.9) and (3.10))
and the size factor csize controlling the nominal target count N tar

k . A fixed design constant
δsize = 0.1 defines the size band used to derive the lower threshold N low

k and the hard
upper cap Nmax

k . The choice of using the empirical 90th percentile for the expansion cap
Bexp

k is treated as part of the fixed model design in this work.

Cells and domains. From Equation (3.10), the global pattern vocabulary at the refer-
ence radius is given by

Πk = P(rmax)
k .

During the synthesis of G̃k, the generator maintains a finite set Xk of abstract vertex
placeholders, called cells, and a domain map

D : Xk → 2Πk , x 7→ D(x), (3.21)

where each value D(x) is finite and non-empty. At any time, the set D(x) ⊆ Πk contains
exactly those patterns that are still considered admissible, given the multi-radius com-
patibility constraints encoded by the compatibility structure (Ck,Nk). A cell x ∈ Xk is
called uncollapsed if |D(x)| > 1 and collapsed if |D(x)| = 1. Accordingly, the cell set Xk

is partitioned into

Fk :=
{
x ∈ Xk : |D(x)| > 1

}
, (3.22)

Sk :=
{
x ∈ Xk : |D(x)| = 1

}
, (3.23)

referred to as the frontier (uncollapsed) and settled (collapsed) cell sets, respectively. Thus

Fk ∩ Sk = ∅, Fk ∪ Sk = Xk.

Subsequent subsections specify how Xk, D, and the sets Fk and Sk are updated by ex-
pansion, propagation, and collapse operations.
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Adjacency structure. Each cell x ∈ Xk is equipped with an adjacency list

Adjk(x) ⊆ Xk, (3.24)

which stores the neighbours of x in the evolving cell graph. The lists are maintained to
be loop-free and symmetric,

x /∈ Adjk(x) and y ∈ Adjk(x) ⇐⇒ x ∈ Adjk(y),

so that the family
(
Adjk(x)

)
x∈Xk

induces a simple undirected graph on vertex set Xk.
This graph represents the connectivity of the partially constructed graph throughout the
synthesis process. In the readout phase, each cell is replaced by the centre vertex along
with its label of its unique pattern, and this cell graph is carried over to G̃k as its edge
set (see Section 3.2.6).

Initial seed. At the start of generation, a single seed cell xseed is created with domain

D(xseed) = Πk, (3.25)

and empty adjacency list Adjk(xseed) = ∅. Thus initially

Xk = {xseed}, Fk = {xseed}, Sk = ∅.

This configuration serves as the initial Graph WFC state for graph synthesis. The sub-
sequent expansion, propagation, collapse, and connection steps operate on this state, as
described in the following subsections.

3.2.2 Entropy and Collapse

At a high level, each call of the collapse mechanism proceeds as follows. The frontier cells
x ∈ Fk (3.22) are inspected and assigned a Shannon-entropy score Hk(x) based on a cell-
wise pattern distribution induced by the global pattern weights wk from Equation (3.12),
and a cell of minimal entropy is selected for collapse. When the collapse stage is called
directly after initialisation, the frontier consists only of the seed cell, Fk = {xseed}, so the
entropy-based selection degenerates to collapsing xseed.

More precisely, for a frontier cell x ∈ Fk with domain D(x) ⊆ Πk, the pattern weights
wk from Equation (3.12) induce a discrete distribution over the admissible patterns:

px(π) :=
wk(π)∑

π′∈D(x)

wk(π
′)
, π ∈ D(x). (3.26)

Here the denominator sums only over the current domain D(x), so px is a probability
distribution on D(x): each currently admissible pattern π ∈ D(x) receives probability
px(π), while patterns π /∈ D(x) are ignored. On this basis, the uncertainty associated

22



with a cell x is quantified by the Shannon entropy of its distribution (3.26),

Hk(x) := −
∑

π∈D(x)

px(π) log px(π), (3.27)

where the logarithm is taken in the natural base. Note that cells are moved from the fron-
tier set Fk to the settled set Sk as soon as their domain becomes a singleton. Consequently,
the entropy Hk(x) is evaluated only for frontier cells x ∈ Fk.

In each collapse phase, the entropy Hk(x) is evaluated for all frontier cells x ∈ Fk, and
a cell of minimum entropy is selected:

x⋆ ∈ argmin{Hk(x) : x ∈ Fk }. (3.28)

When several cells attain the same minimum entropy, ties are resolved by selecting one
of them uniformly at random. If Fk = ∅ (that is, if all cells have collapsed), no further
collapse is possible and the collapse step signals termination. This minimum-entropy
selection rule follows the standard WFC heuristic: it prefers cells that are already tightly
constrained (low entropy) but not yet forced, thereby greedily resolving first those positions
whose pattern choice is most constrained and therefore certain.

Once a target cell x⋆ has been selected via (3.28), the next step is to commit to
a specific pattern inside its domain. Rather than choosing uniformly from D(x⋆), the
generator uses the empirical frequencies encoded in the weights wk from Equation (3.12).
For the domain D(x⋆), consider the following conceptual construction: each admissible
pattern π ∈ D(x⋆) is replicated wk(π) times, and one copy is chosen uniformly at random
from the resulting multiset. The probability of selecting a particular pattern π ∈ D(x⋆)

is then
P
[
π⋆ = π

]
=

wk(π)∑
π′∈D(x⋆)

wk(π
′)

= px⋆(π),

which coincides with the distribution px⋆ defined in (3.26). The collapse step reduces the
domain of x⋆ to the singleton

D(x⋆)← {π⋆}, (3.29)

that is, x⋆ is assigned the unique remaining admissible pattern π⋆. After this update, x⋆

is moved from the frontier to the settled set,

Fk ← Fk \ {x⋆}, Sk ← Sk ∪ {x⋆}.

For subsequent subsections, it is convenient to single out, in each iteration, the cells
that have just collapsed. Recall that one iteration refers to one full update cycle of the
generator, consisting of the calls collapse, expand, propagate, and reconnect. In a given
iteration, collapsing the entropy-selected cell x⋆ may trigger further domain reductions via
constraint propagation (see Section 3.2.4), so that additional neighbouring frontier cells
lose all but one admissible pattern and collapse as well. To capture this batch of newly
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collapsed cells, let
Snewk ⊆ Sk (3.30)

denote the set of cells whose domains became singletons during the current iteration.
Thus, Snewk always contains the entropy-chosen cell x⋆ and may contain additional cells
that were forced to collapse by propagation. After the iteration completes, Snewk is reset
to ∅. In the following subsections, the set Snewk serves both as the parent set for local
expansion steps (Section 3.2.3) and as the active source set for constraint propagation
(Section 3.2.4).

3.2.3 Graph Expansion

In each iteration, the collapse phase produces a set of newly collapsed cells Snewk as defined
in Equation (3.30). These cells act as parents for the subsequent expansion step. Expan-
sion grows the cell graph by creating new, uncollapsed neighbour cells around the parents
and by inserting the corresponding edges. The number of new neighbours assigned to each
parent is determined from three ingredients: a per-parent degree demand derived from the
centre vertex of the chosen pattern, a global expansion budget limiting how many new cells
may be introduced in the current iteration, and a per-parent capacity that bounds how
much of the demand is realised through newly created neighbours. After the allocation is
fixed, the new cells are added to the frontier set Fk and connected to their parents in the
cell graph.

This subsection first defines the degree demand and the global budget, then specifies
the allocation rule b(x) of new neighbours per parent, and finally describes how the new
cells and adjacencies are created.

Degree-based demand. Each pattern π ∈ Πk is a rooted radius-rmax neighbourhood
with a distinguished centre vertex in the sense of definition 2.1.7. Whenever a cell x ∈ Sk
is collapsed to a pattern π with D(x) = {π}, it is assigned the centre degree

d(x) := dGk

(
vcentre(π)

)
, (3.31)

where vcentre(π) denotes the centre (root) vertex of the pattern π. The value d(x) is used
as the degree demand of x. The total degree demand of all parents newly collapsed in the
current iteration is

dtot :=
∑

x∈Snew
k

d(x). (3.32)

If Snewk = ∅ or dtot = 0, no expansion is performed in the current iteration.

Expansion budget. During the generation phase, expansion is performed only up to
the size-based transition threshold N low

k defined in Equation (3.17). Given the current cell
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set Xk, the remaining quota with respect to this threshold is

qk := max
{
0, N low

k − |Xk|
}
. (3.33)

The expansion budget for the current step is then defined as

B := min
{
Bexp

k , qk
}
∈ N0. (3.34)

Thus at most Bexp
k new cells are introduced in a single expansion step, and the expansion

step cannot increase the cell count beyond N low
k . If B = 0, the expansion step is skipped.

In the remainder of this subsection, it is assumed that Snewk ̸= ∅, dtot > 0, and B > 0.

Allocation of new neighbours. For each parent x ∈ Snewk , the expansion step assigns
a non-negative integer b(x) ∈ N0, specifying how many new uncollapsed cells are created
as neighbours of x. To avoid tree-like growth of the synthetic graph, only a limited fraction
of the degree demand d(x) is realised by new neighbours in a single expansion step. The
expansion capacity of each parent is defined as

c(x) :=

⌈
d(x)

2

⌉
, x ∈ Snewk , (3.35)

which is a simple choice that restricts the number of newly created neighbours per expan-
sion step and leaves the remaining demand to be realised via connections between already
existing collapsed cells in the connection step (Section 3.2.5). The total capacity of the
current parent batch is thus given by

ctot :=
∑

x∈Snew
k

c(x), x ∈ Snewk (3.36)

which is the maximum number of new cells this batch could introduce in the absence of
the global budget constraint. The expansion budget B limits how many new cells may be
created in this iteration. The assignment (b(x))x∈Snew

k
is defined by two cases:

• Abundant budget. If the global budget is at least as large as the total local capacity
(B ≥ ctot), then the budget does not bind in this iteration. Each parent thus realises
its full local capacity of new neighbours and

b(x) = c(x) for all x ∈ Snewk . (3.37)

In particular,
∑

x∈Snew
k

b(x) = ctot ≤ B.

• Scarce budget. If B < ctot, the global budget is insufficient to realise all local
capacities. The distribution of new neighbours is then guided by the degree demands
d(x). The total degree demand dtot of the batch is given by (3.32), and each parent
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is assigned a degree-based weight

p(x) :=
d(x)

dtot
, x ∈ Snewk , (3.38)

forming a probability distribution on Snewk that reflects the relative degree demands
of each parent. The ideal number of new neighbours for parent x in this expansion
step is

b̃(x) := B p(x), x ∈ Snewk .

Based on these targets, a non-negative assignment is constructed. First, a prelimi-
nary number of new neighbours is set to

b(x) := min
{
c(x), ⌊b̃(x)⌋

}
,

so that each parent receives no more than its capacity and at most its floored ideal
share. Let

B0 :=
∑

x∈Snew
k

b(x)

denote the total number of new cells after this preliminary step, and let

R := B −B0 ∈ N0

denote the remaining budget. If R > 0, the remaining budget is distributed by a
largest-remainder-style correction. For each parent define the discrepancy

δ(x) := b̃(x)− b(x), x ∈ Snewk .

The parents are ordered in decreasing order of δ(x), with ties broken by increasing
cell index. While R > 0 and there exists a parent with b(x) < c(x), this order is
traversed from first to last: for each parent x in the list, if R > 0 and b(x) < c(x),
then b(x) ← b(x) + 1 and R ← R − 1. The traversal is repeated until R = 0 or
b(x) = c(x) for all x ∈ Snewk . The resulting assignment satisfies 0 ≤ b(x) ≤ c(x) for
all x ∈ Snewk and

∑
x∈Snew

k
b(x) ≤ B.

Creation of new cells. Once all b(x) have been determined, the cell graph is expanded
by introducing new uncollapsed cells. For each parent x ∈ Snewk with b(x) > 0, new child
cells

yx,1, . . . , yx,b(x)

are created. Each child starts with the full global pattern vocabulary as its domain,

D(yx,i) = Πk for i = 1, . . . , b(x). (3.39)
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The new cells are added to the frontier cell set,

Fk ← Fk ∪ {yx,1, . . . , yx,b(x)}.

Since the invariant Xk = Fk ∪ Sk is maintained, this update also extends the cell set Xk.
The adjacency list Adjk from Equation (3.24) is then updated symmetrically,

yx,i ∈ Adjk(x), x ∈ Adjk(yx,i), for i = 1, . . . , b(x), (3.40)

so that each new child cell is connected to its parent by a single undirected edge in the cell
graph, and no other adjacencies involving the new cells are introduced at this stage. Since
the new cells are now adjacent to existing cells in the cell graph, the constraint propagation
procedure from Section 3.2.4 has to be applied next to prune their domains D(yx,i) using
Nk from Equation (3.15) in response to the newly induced adjacency constraints.

3.2.4 Constraint Propagation

After each local expansion described in Section 3.2.3, the domains of frontier cells must
be pruned so that all remaining patterns are locally compatible with the patterns already
fixed in the settled set Sk. Collapsed cells induce compatibility constraints for nearby cells,
where the relevant constraints depend on the cell-graph distance in the evolving cell graph
defined below. The constraint-propagation step uses the compatibility neighbourhood
maps Nk from Section 3.1.3 and Equation (3.15) to intersect the domains D(x) along this
cell graph. Within a single propagation call, only a subset of collapsed cells is treated as
sources: the newly collapsed batch Snewk from Equation (3.30) in the first pass, and the
cells that become forced during propagation in subsequent passes.

Constraint propagation consists of three components. First, the adjacency lists Adjk

induce a cell graph on Xk together with a graph-distance dcellk that measures how far cells lie
from one another. Second, the multi-radius compatibility maps N (r)

k on the radius-r pat-
tern sets P(r)

k are lifted to maps on the radius-rmax pattern vocabulary Πk via restriction
maps, so that all pruning operations can be carried out directly on domains D(·) ⊆ Πk.
Third, a single-source breadth-first propagation mechanism is defined: given a source cell
x with D(x) = {πx}, the procedure traverses the cell graph up to distance rmax from
x and prunes the domains of reached frontier cells according to the lifted compatibility
neighbourhoods. A propagation call applies this mechanism iteratively, intertwined with
graph-expansion steps, starting from the initial source batch Snewk and repeatedly expand-
ing and propagating from newly forced cells until no additional cells are forced. This
nested procedure forms the propagation phase within a single iteration of the generation
loop.

Cell graph and distance. The adjacency lists Adjk from Equation (3.24) induce a
finite simple undirected graph on Xk in the sense of definition 2.1.1. Let dcellk (x, y) denote
the graph-distance between x, y ∈ Xk in this induced graph, as defined in definition 2.1.5.
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Thus dcellk (x, y) is the length of a shortest path between x and y, and dcellk (x, y) =∞ if no
such path exists.

Restriction and lifted compatibility neighbourhoods. Domains of cells are defined
over the radius-rmax pattern vocabulary Πk = P(rmax)

k from (3.10), whereas the compati-
bility neighbourhoods N (r)

k from (3.13) live on the radius-r pattern sets P(r)
k . If two cells

x, y ∈ Xk satisfy 1 ≤ dcellk (x, y) ≤ rmax, set r := dcellk (x, y). Then the radius-r neighbour-
hood map N (r)

k selects the compatibility constraints relevant for local consistency.
Each radius-rmax pattern π ∈ Πk implicitly determines a family of concentric subpat-

terns at smaller radii: these arise by restricting the same rooted neighbourhood around
the same centre vertex to radii 1, . . . , rmax and then identifying the result up to rooted
labelled isomorphism. The smaller-radius patterns encode the same local structure as π,
restricted to smaller balls, and allow the corresponding compatibility constraints to be
enforced at their respective radii. This association is provided by restriction maps. For
every r ∈ R, a restriction map

T
(r)
k : Πk → P

(r)
k (3.41)

is defined by restricting a representative rooted neighbourhood of a radius-rmax pattern
to radius r. More precisely, if π ∈ Πk is represented by H

(rmax)
k (v) in the sense of (3.3)

and (3.4), then
T
(r)
k (π) :=

[
H

(r)
k (v)

]
∼=rℓ
∈ P(r)

k .

Root-preserving labelled isomorphisms (definition 2.1.9) preserve distances from the root
and vertex labels, so the radius-r class on the right-hand side does not depend on the
chosen representative of π. A radius-rmax pattern π ∈ Πk therefore represents an entire
family

(
T
(r)
k (π)

)
r∈R of consistent smaller-radius views.

The radius-r compatibility neighbourhoods N (r)
k (ρ) ⊆ P(r)

k from (3.13) are lifted to
the radius-rmax pattern vocabulary via the restriction maps. For every π ∈ Πk and r ∈ R,
define its lifted compatibility neighbourhood at distance r by

N̂ (r)
k (π) :=

{
π′ ∈ Πk

∣∣ T (r)
k (π′) ∈ N (r)

k

(
T
(r)
k (π)

) }
⊆ Πk. (3.42)

Thus two radius-rmax patterns π, π′ ∈ Πk are regarded as compatible at cell distance
r ∈ R if their radius-r restrictions T (r)

k (π) and T
(r)
k (π′) are compatible. Here N (r)

k denotes
the original neighbourhood map on P(r)

k , while N̂ (r)
k is its lifted counterpart on Πk used

during constraint propagation.

Compatibility constraints and propagation from sources. In a propagation pass,
the active sources are the newly collapsed cells Snewk . For each source x ∈ Snewk with
D(x) = {πx}, a breadth-first traversal of the induced cell graph on Xk rooted at x is
performed up to depth rmax. The update below is applied only to frontier cells. Whenever
a frontier cell y ∈ Fk is first reached at distance r := dcellk (x, y) ∈ {1, . . . , rmax}, local
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consistency with respect to x requires

D(y) ⊆ N̂ (r)
k (πx). (3.43)

This constraint is enforced by the update

D(y) ← D(y) ∩ N̂ (r)
k (πx). (3.44)

Equivalently, a pattern π′ ∈ D(y) is retained only if T
(r)
k (π′) ∈ N (r)

k

(
T
(r)
k (πx)

)
. Since

breadth-first search reaches y first at its minimal cell-graph distance from x, this minimal
r is used for the update. Thus the pruning removes exactly those radius-rmax pattern
candidates whose radius-r restrictions are incompatible with the radius-r restriction of
the source pattern. Each frontier cell is visited at most once at its minimal distance from
the fixed source x, so its domain is pruned at most once with respect to x. If any update
produces D(y) = ∅, a contradiction is detected and the current generation run is aborted
and restarted for the same training graph.

After all sources x ∈ Snewk have been processed, any frontier cell y ∈ Fk satisfies

D(y) ⊆
⋂

x∈Snew
k :

1≤dcellk (x,y)≤rmax

N̂
(
dcellk (x,y)

)
k (πx). (3.45)

If no source x ∈ Snewk satisfies 1 ≤ dcellk (x, y) ≤ rmax, then this pass induces no pruning
for y and its domain remains unchanged.

Forced cells and nested propagation–expansion loop. In a single propagation pass
from a given source batch, some frontier cells may become fully determined purely due
to the compatibility constraints. For that pass, let F start

k ⊆ Fk denote the frontier at
the beginning of the pass. By construction of the generation loop, all cells in F start

k are
uncollapsed at this point and satisfy |D(y)| > 1. The set of forced cells created during the
pass is then

Fforced :=
{
y ∈ F start

k : |D(y)| = 1
}
. (3.46)

These are exactly the cells that were uncollapsed at the start of the pass and have become
singleton-domain cells by the end of the pass. After the pass, the frontier and settled sets
are updated accordingly,

Fk ← Fk \ Fforced, Sk ← Sk ∪ Fforced, (3.47)

which formally records the collapse of all forced cells. By design, a single propagation call
(as invoked by the outer generation loop) is organised as a nested loop:

• Outer initial step. The call starts from the given batch of sources Snewk (containing
the entropy-selected cell from Section 3.2.2 and any other cells that have collapsed
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during the current iteration). A propagation pass is run once from this source batch
using the update rule (3.44), and the resulting set Fforced is computed as in (3.46)

• Inner loop. As long as Fforced ̸= ∅, the following two steps are repeated:

1. a graph-expansion step is performed with parent set Fforced, as described in
Section 3.2.3, thereby adding new uncollapsed neighbours and updating the
adjacency lists Adjk;

2. a new propagation pass is run with the source batch updated to Snewk ← Fforced.
Let F start

k denote the frontier at the beginning of this pass (that is, after the
preceding expansion step). Domains of reached frontier cells are then pruned
by repeatedly applying the update rule (3.44) with respect to all sources in
Snewk . After the pass, the set of newly forced cells is recomputed as in (3.46)
using this F start

k , and Fk and Sk are updated according to (3.47).

The propagation call terminates as soon as an iteration of the inner loop produces no
forced cells, that is, when

Fforced = ∅. (3.48)

At this point, all compatibility constraints implied by the original source batch Snewk and
by the edges created in the intermediate expansion steps have been enforced for the current
partial assignment. The constraint-propagation phase of the iteration is then complete,
and the generation loop proceeds to the connection step in Section 3.2.5.

3.2.5 Graph Connection

After the expansion and propagation steps in a given iteration, the cell set Xk contains
a subset of collapsed cells forming the settled set Sk from (3.23). Each collapsed cell
x ∈ Sk carries a unique pattern πx ∈ Πk and an associated degree demand d(x), defined
in (3.31) as the degree of the centre vertex of πx. The current connectivity between
cells is described by the adjacency relation Adjk. The graph connection step tries to add
new edges between collapsed cells so that their degrees in the cell graph come as close
as possible to the degree demands d(x), while respecting the multi-radius compatibility
constraints given by the lifted neighbourhood maps N̂ (r)

k from (3.42). This step operates
purely on the adjacency structure of Sk and does not modify the domains D(x).

Degree deficits and stubs. For each collapsed cell x ∈ Sk, define its current cell-graph
degree by

degcellk (x) :=
∣∣Adjk(x)∣∣. (3.49)

The remaining stub count of x is then

s(x) := max
{
0, d(x)− degcellk (x)

}
∈ N0, (3.50)
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which measures how many additional incident edges x needs in order to realise its degree
demand d(x) derived from the centre vertex of πx. Define the set of cells with positive
stub count by

Sstubk :=
{
x ∈ Sk : s(x) > 0

}
⊆ Sk. (3.51)

Locally compatible candidate pairs. A new edge can only be introduced between
cells x, y ∈ Sstubk if they are locally compatible and not already adjacent. Let πx, πy ∈ Πk

denote the patterns chosen for x and y, respectively. The implementation first restricts
attention to unordered pairs

{x, y} ∈
(
Sstubk

2

)
such that y /∈ Adjk(x),

and then enforces radius-1 compatibility at the level of radius-rmax patterns by requiring

πy ∈ N̂ (1)
k (πx), (3.52)

where N̂ (1)
k is the lifted radius-1 neighbourhood map on Πk defined in (3.42). Condition

(3.52) ensures that the two radius-rmax patterns have been observed as direct neighbours
in the training graph and therefore may plausibly be linked in G̃k. Pairs that fail (3.52), or
that already share an edge, are discarded and never considered for wiring. Since the train-
ing graphs are undirected, the underlying compatibility relation at radius 1 is symmetric,
so the one-sided check in (3.52) suffices.

Multi-radius path validation. Direct radius-1 compatibility is not sufficient, since
adding a new edge {x, y} can shorten cell-graph distances between y and other already
collapsed cells reachable from x. Any such distance decrease can make additional radius-r
constraints (with r ≥ 2) newly relevant. To avoid violating the precomputed compatibility
tables at larger radii, each candidate pair {x, y} that passes (3.52) is subjected to a multi-
radius validation step.

Fix such a pair and consider the direction from x to y. Let πy be the pattern at the
prospective neighbour y. A breadth-first search is run from x in the current cell graph,
using only existing edges in Adjk (that is, the candidate edge {x, y} is not yet present)
and exploring only collapsed cells. For each depth t ∈ {1, . . . , rmax − 1}, every collapsed
cell z discovered at distance t from x carries a fixed pattern πz, and the algorithm checks
that

πy ∈ N̂ (t+1)
k (πz). (3.53)

If the edge {x, y} were to be added, then y would be connected to z by a path of length t+1

via x. Whenever this new path shortens the existing z to y distance, the newly relevant
compatibility level is exactly radius t+ 1, and (3.53) enforces it. The breadth-first search
maintains a visited set rooted at x, so that no cell is revisited at a larger distance after
having been seen at a smaller one, and each collapsed cell z is checked at its minimal
distance from x.
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The same validation is then performed in the opposite direction: a breadth-first search
is run from y, and for each collapsed cell z at distance t from y the condition

πx ∈ N̂ (t+1)
k (πz) (3.54)

is required. If the edge {x, y} were to be added, then x would be connected to z by a
path of length t+ 1 via y. Whenever this new path shortens the existing z to x distance,
the newly relevant compatibility level is exactly radius t + 1. A candidate pair {x, y} is
retained only if all checks of the form (3.53) and (3.54) succeed. Otherwise, the pair is
discarded. Uncollapsed cells are ignored during this validation, since their patterns are
not yet fixed and therefore cannot give rise to deterministic violations of the compatibility
tables.

Scoring candidate pairs by resource allocation. Among the surviving candidate
pairs {x, y}, the implementation assigns a numerical score that favours cells whose patterns
share a rich, overlapping radius-1 neighbourhood in the compatibility tables. For patterns
πx, πy ∈ Πk, the resource-allocation (RA) score is defined as

RA(πx, πy) :=
∑

πm∈N̂ (1)
k (πx) ∩ N̂ (1)

k (πy)

1∣∣N̂ (1)
k (πm)

∣∣ . (3.55)

This quantity is a weighted common-neighbour measure on the compatibility graph: each
common neighbour πm contributes more when it has relatively few admissible radius-1
neighbours and less when it has a large radius-1 neighbourhood. Consequently, a high
RA score indicates that πx and πy tend to appear near the same specific, low-degree
patterns in the training data, whereas a low RA score arises either when they share few
common neighbours or when these neighbours are predominantly generic, high-degree
patterns. Connecting πx and πy is therefore favoured when they share a strong, specific
local context in the learned compatibility structure.

Greedy stub wiring. Once each admissible candidate pair {x, y} has been assigned a
score RA(πx, πy), the connection step proceeds greedily. All candidate pairs are sorted
in descending order of (3.55), and then processed one by one. Ties are broken determin-
istically by lexicographic order of the cell creation indices. For a pair {x, y}, an edge is
added between x and y if and only if both cells still have outstanding stubs (s(x) > 0 and
s(y) > 0), and no edge between x and y exists yet. When an edge is added, the adjacency
relation is updated symmetrically,

y ∈ Adjk(x), x ∈ Adjk(y),

and the stub counts s(x) and s(y) are decremented by one. The greedy process terminates
when either all stubs have been exhausted, s(x) = 0 for all x ∈ Sstubk , or no further
admissible candidate pairs remain. In the latter case, some cells may retain positive stub
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counts, and the realised degrees degcellk (x) then fall short of the targets d(x).
From a graph-theoretic perspective, the connection step takes the current partially

wired cell graph and incrementally fills the remaining edge slots of collapsed cells using
only those links that are supported by the empirical multi-radius compatibility tables on
Πk. Together with the expansion and propagation mechanisms described in Sections 3.2.3
and 3.2.4, this stub-wiring procedure drives the evolving cell graph towards a configuration
in which vertex degrees and local neighbourhood patterns resemble those of the training
graph Gk, while keeping all edges consistent with the learned pattern statistics. The
particular combination of RA-based scoring and greedy stub selection used here is an
implementation choice adopted for clarity and simplicity.

3.2.6 Termination

Termination policy. For a fixed training graph Gk, synthesis proceeds in two phases,
a generation phase and a clean-up phase, governed by the frontier Fk, the settled set Sk
from Equations (3.22) and (3.23), and the nominal target size N tar

k from Equation (3.16).
The size-based transition threshold N low

k and the hard upper cap Nmax
k are defined in the

initialisation step (Equations (3.17) and (3.18)).
During the generation phase, the algorithm alternates between entropy-based col-

lapse of frontier cells (Section 3.2.2), graph expansion around newly collapsed cells (Sec-
tion 3.2.3), constraint propagation (Section 3.2.4), and the connection step (Section 3.2.5).
This phase terminates as soon as one of the following conditions holds:

• the current cell count reaches the transition threshold, |Xk| ≥ N low
k ;

• no further entropy-based collapse is possible because Fk = ∅.

In addition, if at any point a propagation step produces an empty domain D(x) = ∅
for some cell x, a hard contradiction has been detected and the current generation run is
aborted and restarted for the same training graph.

The clean-up phase starts once the generation phase has stopped. It continues to
apply the same four primitives as in the generation phase: entropy-based collapse, local
expansion, constraint propagation, and connection, but under a progressively stricter ex-
pansion policy and under the hard size cap Nmax

k . Let Bexp
k be the base expansion cap

from Equation (3.19). A size-dependent decay factor αk ∈ [0, 1] is defined by

αk :=


1, |Xk| ≤ N tar

k ,

0, |Xk| ≥ Nmax
k ,

1−
|Xk| −N tar

k

Nmax
k −N tar

k

, N tar
k < |Xk| < Nmax

k ,

(3.56)

so that the real-valued product αkB
exp
k decreases linearly from Bexp

k (at |Xk| = N tar
k ) to 0
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(at |Xk| = Nmax
k ). The effective integer cap is then

Blin
k :=

⌈
αk B

exp
k

⌉
, (3.57)

which follows this linear schedule up to integer rounding. In addition, let

sopen :=
∑
x∈Sk

s(x) (3.58)

be the total number of open stubs Equation (3.50) across all settled cells. Since the
current frontier Fk already offers |Fk| potential attachment sites, and since expansion
cannot exceed the remaining size quota

qmax
k := max{0, Nmax

k − |Xk|}, (3.59)

the expansion allowance used in this iteration is

Ballow
k := min

{
Blin

k , max{0, sopen − |Fk|}, qmax
k

}
. (3.60)

Thus no more new cells are created than are needed to serve outstanding stubs, and this
allowance decreases to 0 as the hard size cap is approached.

The clean-up loop terminates either when the hard upper bound |Xk| = Nmax
k is

reached, or when Fk = ∅ and the subsequent connection attempt adds no further edges
(meaning, no admissible candidate pair remains in the sense of Section 3.2.5). In the
former case, a final pass collapses any remaining frontier cells without further expansion
and performs one last global connection attempt. At the end of this process, every cell in
Xk belongs to Sk and carries a singleton domain D(x).

Readout. Once synthesis has terminated, every cell x ∈ Xk is collapsed and carries a
singleton domain D(x) = {πx} with πx ∈ Πk. The synthetic graph G̃k is read out from
the final cell configuration and the cell-adjacency structure. Let

Xk = {x0, . . . , xn−1}

be the enumeration of cells in increasing order of their creation index, and define the vertex
set

Ṽk := {0, . . . , n− 1},

where index i corresponds to cell xi. For each i ∈ Ṽk, choose any vi ∈ Vk such that
πxi = [H

(rmax)
k (vi)]∼=rℓ

, and define the label of vertex i in G̃k by

ℓ̃k(i) := ℓk(vi).

This definition is well defined because root-preserving labelled isomorphisms preserve the
root label. The labelling map ℓ̃k : Ṽk → L is therefore a vertex labelling in the sense of
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definition 2.1.3. The edge set Ẽk is obtained from the symmetric adjacency relation Adjk

on cells by inserting, for each pair 0 ≤ i < j ≤ n− 1, an undirected edge {i, j} whenever
xj ∈ Adjk(xi). The result is a simple vertex-labelled graph G̃k = (Ṽk, Ẽk, ℓ̃k) in the sense
of definition 2.1.1.

3.3 Configuration and Reproducibility

The behaviour of Graph WFC is controlled by a small set of configuration parameters and
a single source of randomness. This section summarises the main choices and explains
under which conditions runs are reproducible.

Pattern radius and compatibility radii. The pattern vocabulary and compatibility
tables are determined by the maximal pattern radius rmax and the associated radius set
R from Equation (3.9) (see Sections 3.1.2 and 3.1.3). For fixed rmax and a training graph
Gk, the pattern-extraction and compatibility stages are deterministic: the radius-wise
pattern sets P(r)

k , the radius-rmax pattern vocabulary Πk = P(rmax)
k , the weights wk, and

the compatibility neighbourhoods N (r)
k are uniquely determined by Gk and do not involve

any random choices.

Target size and growth parameters. For each training graph Gk, the desired size
of the synthetic graph G̃k is specified via the target size N tar

k in Equation (3.16), which
is obtained from the vertex count nk = |Vk| and a constant size factor csize > 0. In
addition, the expansion cap Bexp

k from Equation (3.19) controls how many new cells may be
introduced per expansion step, and the lower and upper size fractions used by the growth
and clean-up phases (Sections 3.2.3 and 3.2.6) determine when expansion is throttled or
halted. Once (rmax, csize, B

exp
k ) and these phase thresholds have been fixed, the expansion,

connection, and propagation routines (Sections 3.2.3 to 3.2.5) are deterministic given the
current WFC state, provided that all internal tie-breaking and enumerations are performed
deterministically.

Seeding and randomness. In the presented implementation, the only stochastic choices
in Graph WFC occur during entropy-based collapse (Section 3.2.2). First, when the
minimum-entropy rule (3.28) admits multiple frontier cells, one of them is selected uni-
formly at random. Second, after a target cell has been selected, the collapsed pattern
is sampled from its domain according to the frequency-weighted distribution (3.26). All
remaining components (pattern extraction, compatibility computation, expansion, con-
straint propagation, connection, and readout) are deterministic given Gk, the configu-
ration parameters, and a fixed deterministic traversal order. In particular, whenever an
ordering is required (for example, when iterating over source batches, traversing adjacency
lists, enumerating candidate pairs, or sorting scored candidates), iteration is performed in
increasing cell creation index, and unordered pairs {x, y} are ordered lexicographically by
(min{i(x), i(y)},max{i(x), i(y)}), where i(·) denotes the cell creation index.
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In the implementation, a single pseudo-random number generator is used for the ran-
dom choices in collapse. Initialising this generator with a fixed seed yields reproducible
runs for a fixed implementation and configuration: with the same seed and the same
settings (rmax,R, csize, Bexp

k ) and growth/clean-up thresholds, the same sequence of col-
lapses is produced and the resulting synthetic graph G̃k is identical. If a generation run
is aborted and restarted after a contradiction, reproducibility of the full run additionally
requires that the pseudo-random number generator state be reset deterministically (by
re-initialising with the same seed).
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Chapter 4

Methods and Experimental
Evaluation

4.1 Overview

This chapter investigates whether dataset augmentation with Graph WFC affects the
supervised graph classification performance of a fixed GCN. In line with the goals defined
in Section 1.5, the benchmark datasets DD, MSRC_21, and PROTEINS are used to train
this fixed architecture, where the training set is augmented with graphs synthesised by
Graph WFC under varying augmentation configurations. The central question concerns
how the presence and amount of such augmentation affect test-set performance on these
datasets. Performance is measured using accuracy, macro-F1, and balanced accuracy
on held-out test data. Overall, the results indicate that Graph WFC augmentation can
improve performance for some datasets and configurations, while effects remain small for
others.

The remainder of this chapter is organised as follows. Section 4.2 introduces the
datasets and associated classification tasks. Section 4.3 specifies the GCN architecture,
the training procedure, and the repeated-seed evaluation protocol. Section 4.4 details
the Graph WFC data augmentation pipeline, from dataset splitting and feature encoding
through export, synthesis, and re-import of synthetic graphs to the construction of the
effective training sets. Section 4.5 defines the evaluation protocol and metrics and explains
how results are aggregated and compared across configurations. Section 4.6 presents the
quantitative results for baseline and augmented conditions.

4.2 Datasets and Tasks

The experiments are conducted on the graph-classification benchmarks DD, MSRC_21,
and PROTEINS from the TUDataset collection [1]. All three datasets are loaded via
PyTorch Geometric’s TUDataset interface [17]. Each sample is an undirected graph
G = (V,E) with a graph label y ∈ {0, . . . , C − 1} and an input node-feature matrix
X ∈ R|V |×d. DD and MSRC_21 provide discrete node labels but no continuous node at-
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tributes, whereas PROTEINS additionally provides continuous node attributes [1, 3]. The
underlying combinatorial graph G and the basic concepts of neighbourhoods, distances,
and induced subgraphs are defined in Section 2.1. Basic structural statistics (numbers
of graphs, classes, and average numbers of vertices and edges per graph) follow the TU-
Dataset documentation and are summarised in Table 4.1 [1, 3].

Table 4.1: Basic statistics of the three TUDataset graph-classification benchmarks used
in the experiments, following the TUDataset documentation [1, 3].

Dataset #G #C Avg. |V| Avg. |E| Node labels Node attributes

DD 1 178 2 284.32 715.66 yes no
MSRC_21 563 20 77.52 198.32 yes no
PROTEINS 1 113 2 39.06 72.82 yes yes

Edge counts in Table 4.1 follow the TUDataset documentation convention. In Py-
Torch Geometric, undirected graphs are commonly represented with bi-directional edges
in edge_index, so the stored number of edges can be twice the number of unique undi-
rected edges.

For the two binary datasets DD and PROTEINS, the overall class distributions are
moderately imbalanced: in DD, the majority class contains 691 of 1 178 graphs (approxi-
mately 0.59), and in PROTEINS it contains 663 of 1 113 graphs (approximately 0.60), as
shown in Table 4.2. These counts are used later to motivate the augmentation strategy in
Section 4.6, where the goal is to mitigate class imbalance by augmenting the smaller class
more heavily. For MSRC_21, only fractional augmentation levels are considered, and the
absolute per-class graph counts are not required for the subsequent analysis.

Table 4.2: Number of graphs per class for the binary TUDataset benchmarks DD and
PROTEINS, computed from the TUDataset versions used in the experiments.

Dataset Class #Graphs

DD 0 691
1 487

PROTEINS 0 663
1 450

The three datasets instantiate two types of supervised graph-classification tasks: bi-
nary classification in DD and PROTEINS, and multi-class classification in MSRC_21.
The following paragraphs describe the domain and label definitions of each dataset and
its associated prediction task.

DD The DD dataset contains protein structures represented as graphs. According to
Shervashidze et al. and the TUDataset documentation, each node represents an amino acid
residue [1, 22]. Edges connect residues that are close in the folded protein (that is, close
in 3D space) [1, 22]. The underlying enzyme-versus-non-enzyme prediction task originates
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from the benchmark of Dobson and Doig [23]. In the graph-classification setting adopted
by TUDataset, each graph is assigned a binary label indicating enzyme or non-enzyme [1].

PROTEINS The PROTEINS dataset models proteins as undirected graphs whose ver-
tices represent secondary-structure elements (helices, sheets, and turns). Edges connect
vertices if the corresponding elements are neighbours along the amino-acid sequence or
among nearest neighbours in 3D space [24]. The dataset is derived from the enzyme-
versus-non-enzyme benchmark of Dobson and Doig [1, 23]. In the TUDataset version,
PROTEINS provides discrete node labels and continuous node attributes, which are en-
coded into the input feature matrix used by the GNN [1, 3].

MSRC_21 The MSRC_21 dataset is derived from the Microsoft Research Cambridge
image database, which is commonly described as a 21-class image segmentation dataset
and provides dense ground-truth labels for each image (for example, sky, grass, or build-
ing) [25]. In the graph benchmark distributed via TUDataset, each image is represented
as a region-adjacency graph whose vertices correspond to image regions and whose edges
connect regions that touch in the image [1, 26]. Although the original dataset is associ-
ated with 21 semantic classes, the TUDataset version used in these experiments provides
C = 20 classes [3]. Accordingly, C = 20 is assumed for MSRC_21 throughout this thesis.

4.3 Model Architecture and Training Protocol

The experiments employ a single, fixed GCN classifier across all datasets and augmentation
settings. This section specifies the architecture of this classifier, the training objective,
and the protocol for repeating each configuration under multiple random seeds.

4.3.1 GCN Classifier Architecture

The classifier follows the GCN formulation introduced in Section 2.2, using the propaga-
tion rule of (2.1) and the permutation-invariant graph-level readout of (2.2). The network
is intentionally simple, with few layers and a moderate size, so that observed performance
differences can be attributed primarily to Graph WFC augmentation rather than to ar-
chitectural complexity. Across all datasets and configurations, the classifier is instantiated
as a standard, fully supervised GCN with the following structure:

• three graph-convolutional layers, each implementing the propagation rule of (2.1)
using the GCNConv operator from PyTorch Geometric [17];

• hidden node embeddings of fixed dimension 64 in all intermediate layers;

• rectified linear units (ReLU) applied after each graph-convolutional layer;

• dropout with rate 0.3 applied to the node embeddings after each nonlinearity during
training;
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• a global mean pooling operator that aggregates the final-layer node embeddings into
a graph-level representation hG as in (2.2);

• a final linear layer that maps hG to C real-valued class scores (logits).

For the binary classification tasks DD and PROTEINS, the output layer produces C = 2

logits corresponding to the two classes, and for the multi-class task on MSRC_21, the same
architecture is used with C = 20 output logits. No architectural modifications tailored
to specific datasets or configurations are introduced. The baseline and all Graph WFC
augmented training sets use exactly the same GCN architecture.

4.3.2 Training Objective

Training is performed at the graph level using the standard cross-entropy loss L(θ) on
the graph-level logits and labels. No label smoothing or class-weighting is applied. The
loss treats all classes symmetrically and reflects the natural class frequencies in the train-
ing data. Model parameters are optimised with the Adam optimiser, and the following
hyperparameters are used uniformly across datasets (DD, MSRC_21, PROTEINS) and
configurations (baseline and augmented):

• learning rate 10−3;

• ℓ2 weight decay 5 · 10−4;

• mini-batch size of 32 graphs.

Training proceeds for exactly 200 epochs and no training run is terminated early.
A ReduceLROnPlateau learning-rate scheduler monitors validation accuracy (mode=max)
and reduces the learning rate by a factor of 0.5 whenever validation accuracy has not
improved for 10 consecutive epochs. During training, the implementation logs training
loss and validation accuracy at each epoch. Model selection uses the checkpoint with the
highest validation accuracy, and this checkpoint is used for the final evaluation on the
held-out test graphs (or test fold in the cross-validation setting).

4.3.3 Random Seeds and Experimental Repetitions

To obtain robust performance estimates and quantify variability due to random initiali-
sation and stochastic training effects, each experimental configuration is evaluated under
multiple random seeds. A configuration is defined by several choices:

• the dataset;

• a Graph WFC augmentation setting, which covers the pattern radius and the size
of the synthesised graphs as described in Section 3.2.1;

• an export setting that specifies how many training graphs are synthesised and added
to the training set;

40



• all other hyperparameters that remain fixed throughout the experiments.

For each configuration with Graph WFC augmentation enabled, the synthetic training
graphs are generated once and the resulting augmented training set is then kept fixed
for all repetitions of that configuration. For a fixed dataset, configuration, and random
seed (and, for MSRC_21, a specific cross-validation fold), a training run consists of the
following steps:

• initialising the GCN parameters with the chosen seed;

• training for 200 epochs on the corresponding (possibly augmented) training set ac-
cording to the fixed training objective, optimiser, and optimisation setup described
above;

• selecting the checkpoint with the highest validation accuracy;

• evaluating this checkpoint on the associated held-out test graphs.

Each training run therefore produces one set of test metrics for a given configuration and
seed (and fold).

For the datasets DD and PROTEINS, each configuration is evaluated under 100 inde-
pendent random seeds, yielding 100 training runs per configuration. For these datasets,
a single train/validation/test split is chosen once per dataset and reused across all seeds
and configurations, so that only the random seed of the GCN training changes between
runs. For MSRC_21, each configuration is evaluated under 20 independent random seeds.
For each seed, a stratified 10-fold split is generated once and reused across baseline and
augmented conditions for that seed, yielding 200 training runs per configuration (one per
seed–fold combination).

For a fixed dataset and configuration, the full collection of its training runs is referred
to as the run ensemble of that configuration. All reported performance values for a
configuration are obtained by aggregating the test metrics over its run ensemble, where
the tables in Section 4.6 report the mean and standard deviation of these metrics.

4.4 GCN Training and Graph WFC Augmentation Pipeline

This section presents the experimental pipeline that integrates Graph WFC with a fixed
GCN classifier. The first step is to split the data into training, validation, and test sets,
as described in Section 4.4.1. Training graphs are then encoded using a discrete-feature
codec, enabling Graph WFC to operate on graphs with discrete vertex labels. Depending
on an export setting, a collection of training graphs is selected and exported to Graph
WFC in the required vertex-labelled format. Graph WFC is applied to this augmentation
set, generating additional class-conditional training graphs, as explained in Section 4.4.2.
These synthetic graphs are decoded back into graphs with vertex features and merged
with the original training graphs to create the effective training set for the GCN, while
the validation and test sets remain unchanged. The pipeline is visualised in Figure 4.1.
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4.4.1 Data Preparation and Export

For the DD and PROTEINS datasets, evaluation is performed using a single stratified
split, dividing the data into training (70%), validation (15%), and test (15%) sets. The
split is generated once per dataset using a fixed random seed and reused for all random
seeds and augmentation configurations. For MSRC_21, evaluation uses stratified 10-fold
cross-validation with a new shuffle for each evaluation seed. For a fixed evaluation seed,
the dataset is shuffled and partitioned into 10 stratified folds once, and this fold partition
is reused across baseline and augmented conditions for that seed. In each fold, 10% of the
graphs serve as test data. From the remaining graphs, 10% are held out as a stratified
validation set, and the rest form the training set.

Given one such training set, all vertex-feature vectors from all training graphs are
collected into the finite set

Xtrain := {xv ∈ Rd | v ∈ V (G), G in the training set }.

A discrete codebook, referred to as the feature codec, is constructed as an injective mapping

c : Xtrain → L,

where L is a finite label alphabet. For each training graph G = (V,E,X, y), this mapping
induces a vertex labelling ℓG : V → L as in definition 2.1.3 via

ℓG(v) := c(xv),

where xv denotes the feature vector of vertex v. The resulting labelled graphs (V,E, ℓG, y)

are undirected and unweighted, with a single discrete label on each vertex and no edge
labels, matching the input requirements of Graph WFC. The codec is constructed from
training graphs only and is recomputed whenever the training set changes.

The labelled training graphs are then grouped by their class labels. Let C denote
the number of classes and let ntrain

k be the number of available training graphs in class
k ∈ {0, . . . , C−1}. An export setting specifies an augmentation level B, which determines
how many training graphs of each class are selected and copied for export to Graph WFC.
Two forms of B are used:

B ∈
{
Frac(λ) | λ ∈ R>0

}
(fractional level),

B ∈
{
Count(m0, . . . ,mC−1) | mk ∈ N0

}
(per-class level).

For each class k, define the requested export count as

mexp
k :=

round
(
λntrain

k

)
, if B = Frac(λ),

mk, if B = Count(m0, . . . ,mC−1).
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The exported multiset for class k is constructed from its ntrain
k labelled training graphs as

follows. If mexp
k ≤ ntrain

k , sample mexp
k graphs uniformly at random without replacement.

If mexp
k > ntrain

k , write

mexp
k = q ntrain

k + r, q :=

⌊
mexp

k

ntrain
k

⌋
, r ∈ {0, . . . , ntrain

k − 1}.

Then q full copies of the class-k training set are exported, and the remaining r graphs are
sampled uniformly at random without replacement. Consequently, each training graph is
exported either q or q+1 times. For the binary tasks, the shorthand B = Count(m0,m1)

is used.

4.4.2 Graph WFC Synthesis

On the augmentation set exported in Section 4.4.1, Graph WFC acts as a class-conditional
generator that synthesises additional vertex-labelled training graphs. For each exported
training graph in this set, Graph WFC attempts to generate one synthetic graph of the
same class, as described in Chapter 3. Let nexp denote the number of exported graphs
(counting duplicates) and let nsyn denote the number of decoded synthetic graphs produced
by Graph WFC. Since backtracking is not implemented, unsuccessful synthesis attempts
are handled by restarting the synthesis from scratch. For each exported graph, up to 100

restarts are performed. If no terminating synthesis is obtained after these restarts, the
corresponding attempt yields no output graph. Consequently, nsyn may be smaller than
nexp. To avoid evaluating unstable augmentation settings, a configuration is excluded from
evaluation if more than 5% of the exported graphs fail to yield a terminating synthetic
graph after 100 restarts, formally if

nexp − nsyn

nexp
> 0.05. (4.1)

Configurations that fail this exclusion process are omitted from the result tables in
Section 4.6. In the experimental pipeline, each configuration uses a fixed pair of synthesis
parameters

γ = (r, S),

which is shared by all runs of that configuration. The components r and S are defined as
follows.

• Pattern radius r. The parameter r is the pattern radius used in the pattern-
extraction stage of Section 3.1.2. In each configuration, r equals the maximal pattern
radius rmax in R (see (3.9)).

• Size range S. The interval S = [smin, smax] ⊂ R>0 summarises the size band induced
by the Graph WFC size parameters (csize, δsize) in Section 3.2.1, where smin :=

csize−δsize and smax := csize+δsize. For a training graph Gk with nk = |Vk|, the target
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is N tar
k = ⌊csize nk⌋ (3.16), the clean-up phase starts once |Xk| ≥ N low

k ≈ sminnk

(3.17), and expansion is capped at Nmax
k ≈ smaxnk (3.18).

The export setting of Section 4.4.1 fixes the augmentation level B and thereby the
augmentation set supplied to Graph WFC, while the pair γ = (r, S) specifies how Graph
WFC synthesises new graphs from that set in a given experimental configuration. In the
result tables of Section 4.6, each entry summarises the repeated runs of one configuration
(as defined in Section 4.3.3). The parameters B and γ there indicate the augmentation
level and Graph WFC setting used for that configuration.

4.4.3 Data Import and Training

After Graph WFC has finished generating synthetic graphs, the resulting outputs are re-
imported into the experimental pipeline. The Importer applies the inverse codec label
by label to reconstruct vertex-feature vectors, thereby turning each vertex-labelled graph
(V,E, ℓ, y) back into a sample (V,E,X, y) with vertex-feature matrix

X(v) := c−1
(
ℓ(v)

)
for all v ∈ V.

All decoded graphs are collected as synthetic training graphs and retain the class labels
produced by Graph WFC. The effective training set is then constructed by concatenating
these synthetic graphs with the original training set defined in Section 4.4.1. In the baseline
configuration, where no graphs are exported, and Graph WFC produces no synthetic
graphs, the synthetic set is empty, and the effective training set is just the original training
set. Finally, the GCN classifier of Section 4.3 is trained on this effective training set using
the datasets and training setup specified in Sections 3.1, 4.2 and 4.3.
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GCN training and Graph WFC augmentation pipeline

Stratified train/validation/test split
Builds feature codec on training graphs

Selects and encodes training copies for export

Exporter

Share feature codec

Effective training set

Validation and
test graphs

Encoded training copies

Synthetic vertex-labelled graphs
Imports synthetic vertex-labelled graphs

Uses feature codec to decode vertex features

Importer

Merges original and synthetic training graphs
Trains fixed GCN

Evaluates on held-out test graphs

GCN classifier

Receives encoded training copies (by class)
Synthesises one new graph per copy

Graph WFC

Figure 4.1: End-to-end experimental pipeline. The Exporter splits each dataset into
training, validation, and test portions and encodes the training graphs using a shared
feature codec. According to an export setting, a set of training graphs is passed to Graph
WFC, which synthesises vertex-labelled graphs for each exported graph. The Importer
decodes these graphs back into vertex-feature space and merges them with the original
training graphs to form the effective training set. A fixed GCN classifier is trained on this
set and evaluated on the held-out test graphs.

4.5 Evaluation and Aggregation

Given the trained GCN models obtained from the effective training sets of Section 4.4, this
section specifies how performance is measured on held-out graphs and how the resulting
scores are aggregated across random seeds and, for MSRC_21, cross-validation folds. The
goal is to quantify, for each configuration, whether Graph WFC augmentation improves
test performance relative to the baseline.

For a single training run in the sense of Section 4.3.3, the checkpoint corresponding
to the epoch with the highest validation accuracy is evaluated once on the held-out test
graphs (or on the test fold in the cross-validation setting). Let (Gi, yi)Ntest

i=1 denote the test
graphs and their labels, and let ŷi be the corresponding predicted labels produced by the
GCN. The primary metric is graph classification accuracy,

Acc =
1

Ntest

Ntest∑
i=1

1{ŷi = yi}, (4.2)

where 1{·} denotes the indicator function. In addition to accuracy, macro-F1 and balanced
accuracy are reported. To define them, each class c ∈ {0, . . . , C − 1} is, in turn, treated
as the positive class and all remaining classes as negative. This yields, for every class c,

• TPc: number of true positives,
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• FPc: number of false positives,

• FNc: number of false negatives,

• TNc: number of true negatives.

Per-class precision, recall, and F1 score are then given by

Precc =
TPc

TPc + FPc + ε
, (4.3)

Recc =
TPc

TPc + FNc + ε
, (4.4)

F1c =
2PreccRecc

Precc +Recc + ε
, (4.5)

where a small constant ε > 0 is added in the implementation to avoid division by zero in
degenerate cases. These per-class quantities are aggregated into macro-averaged F1 and
balanced accuracy:

Macro-F1 =
1

C

C−1∑
c=0

F1c, (4.6)

BalAcc =
1

C

C−1∑
c=0

Recc. (4.7)

Macro-F1 gives equal weight to all classes and highlights performance on minority classes,
while balanced accuracy compensates for class imbalance by averaging recall across classes.

To obtain robust performance estimates per configuration, the test metrics are aggre-
gated over all training runs in the corresponding run ensemble (see Section 4.3.3). For
a fixed dataset and configuration, let Nruns be the size of the run ensemble and let m(r)

denote the value of a given test metric in run r, for r = 1, . . . , Nruns. The sample mean
and standard deviation are

m̄ =
1

Nruns

Nruns∑
r=1

m(r), (4.8)

s =

√√√√ 1

Nruns − 1

Nruns∑
r=1

(
m(r) − m̄

)2
. (4.9)

To accompany these summary statistics, approximate 95% confidence intervals are re-
ported using the normal approximation

CI95% = m̄ ± 1.96
s√

Nruns
, (4.10)

where m̄ and s are the sample mean and standard deviation from Equations (4.8) and (4.9).
For each dataset and configuration, the tables in Section 4.6 report the mean and

standard deviation of the chosen test metrics over the corresponding run ensemble.
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4.6 Results

This section reports the empirical effect of Graph WFC augmentation on the supervised
graph-classification performance of the GCN classifier described in Section 4.3. For each
dataset, multiple augmentation configurations are evaluated, combining export settings B
from Section 4.4.1 with Graph WFC synthesis parameters γ = (r, S) from Section 4.4.2.
Each configuration is trained and evaluated under the repetition protocol of Section 4.3.3,
and all test metrics are computed and aggregated for the corresponding run ensemble as
described in Section 4.5.

For each dataset, the configuration grid is specified by listing the ranges of r, S, and
B used in the experiments. For each dataset and each evaluation metric, a separate table
reports the baseline configuration alongside the four augmented configurations with the
highest mean value for that metric. Within each table, the augmented configurations are
ordered by their corresponding means in descending order.

In each metric column, scores are reported in the format

m̄ ± s [CIlower95% , CIupper95% ],

where m̄ and s denote the sample mean and standard deviation of the corresponding
metric over the run ensemble, as defined in Equations (4.8) and (4.9). The bracketed
interval denotes the approximate 95% confidence interval CI95% from Equation (4.10),
reported by its numerical lower and upper bounds. All interval comparisons are interpreted
descriptively under the normal approximation in Equation (4.10), rather than as formal
hypothesis tests. The full result tables, covering all combinations from the configuration
grids, are presented in Appendix A.

4.6.1 MSRC_21

On MSRC_21, the following configuration grid is used:

r ∈ {1, 2, 3},

S ∈ {[0.9, 1.1]},

B ∈
{
Frac(λ)

∣∣ λ ∈ {0.5, 1.0, 1.5, 2.0, 2.5, 3.0}
}
.

Table 4.3: Macro-F1 on MSRC_21

Config. r S B Macro-F1

Augmented 1 [0.9, 1.1] Frac(2.0) 0.8512± 0.0120 [0.8459, 0.8564]
Augmented 1 [0.9, 1.1] Frac(2.5) 0.8507± 0.0097 [0.8465, 0.8550]
Augmented 2 [0.9, 1.1] Frac(3.0) 0.8487± 0.0090 [0.8448, 0.8527]
Augmented 2 [0.9, 1.1] Frac(2.5) 0.8485± 0.0090 [0.8446, 0.8525]
Baseline – – – 0.8302± 0.0133 [0.8244, 0.8361]
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Table 4.4: Balanced accuracy on MSRC_21

Config. r S B Balanced accuracy

Augmented 1 [0.9, 1.1] Frac(2.0) 0.8527± 0.0111 [0.8478, 0.8576]
Augmented 1 [0.9, 1.1] Frac(2.5) 0.8526± 0.0099 [0.8483, 0.8570]
Augmented 1 [0.9, 1.1] Frac(3.0) 0.8496± 0.0121 [0.8443, 0.8550]
Augmented 2 [0.9, 1.1] Frac(3.0) 0.8478± 0.0089 [0.8439, 0.8517]
Baseline – – – 0.8302± 0.0122 [0.8248, 0.8355]

Table 4.5: Test accuracy on MSRC_21

Config. r S B Test accuracy

Augmented 1 [0.9, 1.1] Frac(2.5) 0.8791± 0.0094 [0.8750, 0.8832]
Augmented 1 [0.9, 1.1] Frac(2.0) 0.8782± 0.0094 [0.8740, 0.8823]
Augmented 1 [0.9, 1.1] Frac(3.0) 0.8758± 0.0108 [0.8711, 0.8806]
Augmented 3 [0.9, 1.1] Frac(2.0) 0.8718± 0.0082 [0.8682, 0.8753]
Baseline – – – 0.8532± 0.0122 [0.8478, 0.8586]

On MSRC_21, Graph WFC augmentation improves test accuracy over the baseline
for all configurations reported in Table 4.5. The best result is obtained with r = 1

and B = Frac(2.5), reaching a mean test accuracy of 0.8791 compared to 0.8532 for the
baseline. This corresponds to an absolute improvement of 2.59 pp, where “pp” denotes
percentage points. The reported 95% intervals [0.8750, 0.8832] and [0.8478, 0.8586] are
disjoint under the normal approximation in Equation (4.10), which is consistent with
a positive shift relative to the baseline. The remaining reported settings (r = 1 with
B ∈ {Frac(2.0),Frac(3.0)}, and r = 3 with B = Frac(2.0)) also exceed the baseline mean,
although Frac(3.0) and r = 3 are slightly weaker than the best r = 1 configuration.

Macro-F1 and balanced accuracy in Tables 4.3 and 4.4 exhibit the same qualitative
behaviour. The highest macro-F1 is achieved with r = 1 and B = Frac(2.0), increasing
the mean from 0.8302 (baseline) to 0.8512 (an absolute improvement of 2.10 pp). Balanced
accuracy is similarly maximised with r = 1 and B = Frac(2.0), increasing the mean from
0.8302 to 0.8527 (an absolute improvement of 2.25 pp). For the top reported configurations
in both metrics, the corresponding 95% intervals are disjoint from the baseline intervals
under the normal approximation in Equation (4.10), which is consistent with a positive
shift relative to the baseline.

Beyond the summary tables, the complete test-accuracy table in Table A.3 shows a
clear dependence on the export level B. For each pattern radius r ∈ {1, 2, 3}, the smallest
level B = Frac(0.5) yields the lowest mean test accuracy among the augmented settings,
while larger export levels tend to yield higher mean accuracy up to B = Frac(2.0) or B =

Frac(2.5). The best mean test accuracy is attained at r = 1 with B = Frac(2.5). Increasing
to the maximum export level B = Frac(3.0) does not improve further and can be slightly
worse than the best intermediate settings (for example, for r = 1, 0.8758 at Frac(3.0)

vs. 0.8791 at Frac(2.5)), indicating diminishing returns and mild non-monotonicity at the
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upper end of the grid.
Across the full MSRC_21 tables for all three metrics, only one augmented configuration

falls below the baseline in any entry: for macro-F1 at r = 3 with B = Frac(0.5), the mean
is 0.8296 ± 0.0133 [0.8237, 0.8354] versus the baseline 0.8302 ± 0.0133 [0.8244, 0.8361],
which is 0.06 pp below the baseline. The reported intervals overlap under the normal
approximation in Equation (4.10), therefore the difference is not clearly separable from
run-to-run variability.

4.6.2 PROTEINS

On PROTEINS, the following configuration grid is used:

r ∈ {1, 2, 3},

S ∈ {[0.9, 1.1], [1.9, 2.1]},

B ∈
{
Frac(λ)

∣∣ λ ∈ {0.5, 1.0, 1.5}
}
∪

{
Count(166, 315)

}
.

Count-based export levels are included on PROTEINS to mitigate class imbalance by
directly controlling the class composition of the exported augmentation set. Since PRO-
TEINS is imbalanced (see Table 4.2), the count setting B = Count(166, 315) exports more
graphs from the minority class (class 1) than from the majority class (class 0).

Table 4.6: Macro-F1 on PROTEINS

Config. r S B Macro-F1

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6502± 0.0201 [0.6463, 0.6542]
Augmented 1 [1.9, 2.1] Count(166, 315) 0.6448± 0.0153 [0.6418, 0.6478]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6426± 0.0252 [0.6377, 0.6476]
Augmented 2 [1.9, 2.1] Count(166, 315) 0.6421± 0.0160 [0.6389, 0.6452]
Baseline – – – 0.6364± 0.0189 [0.6327, 0.6401]

Table 4.7: Balanced accuracy on PROTEINS

Config. r S B Balanced accuracy

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6493± 0.0173 [0.6459, 0.6527]
Augmented 1 [1.9, 2.1] Count(166, 315) 0.6429± 0.0142 [0.6401, 0.6457]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6417± 0.0216 [0.6374, 0.6459]
Augmented 3 [1.9, 2.1] Frac(1.5) 0.6404± 0.0207 [0.6363, 0.6444]
Baseline – – – 0.6353± 0.0173 [0.6319, 0.6387]
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Table 4.8: Test accuracy on PROTEINS

Config. r S B Test accuracy

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6893± 0.0173 [0.6860, 0.6927]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6796± 0.0191 [0.6758, 0.6833]
Augmented 3 [1.9, 2.1] Frac(0.5) 0.6787± 0.0178 [0.6752, 0.6822]
Augmented 3 [1.9, 2.1] Frac(1.5) 0.6786± 0.0178 [0.6751, 0.6821]
Baseline – – – 0.6720± 0.0154 [0.6690, 0.6750]

On PROTEINS, Graph WFC augmentation yields modest improvements over the base-
line in the summary tables (Tables 4.6 to 4.8). For test accuracy (Table 4.8), the best
reported configuration uses r = 3, S = [0.9, 1.1], and B = Frac(1.5), attaining 0.6893 com-
pared to the baseline 0.6720. This corresponds to an absolute improvement of 1.73 pp.
The reported 95% intervals [0.6860, 0.6927] and [0.6690, 0.6750] are disjoint under the nor-
mal approximation in Equation (4.10), which is consistent with a positive shift relative
to the baseline. The next-best reported settings also exceed the baseline mean (r = 1,
S = [0.9, 1.1], B = Frac(1.0): 0.6796, corresponding to 0.76 pp above baseline).

Macro-F1 and balanced accuracy in Tables 4.6 and 4.7 exhibit the same qualitative
ranking at the top. The configuration r = 3, S = [0.9, 1.1], B = Frac(1.5) achieves
the highest reported macro-F1, increasing the mean from 0.6364 (baseline) to 0.6502 (an
absolute improvement of 1.38 pp), and the highest reported balanced accuracy, increasing
the mean from 0.6353 to 0.6493 (an absolute improvement of 1.40 pp). In both cases, the
reported intervals are disjoint from the baseline intervals under the normal approximation
in Equation (4.10), which is consistent with a positive shift relative to the baseline. The
count-based setting B = Count(166, 315) also ranks among the stronger configurations for
macro-F1 and balanced accuracy in the summary tables, but it does not match the best
fractional setting.

Beyond the summary tables, the full test-accuracy table in Table A.6 shows that the
effect of the fractional export level B = Frac(λ) is configuration-dependent and not strictly
monotone in λ: increasing λ does not consistently improve accuracy across the grid, and
the relative ranking of λ varies with r and the size range S.

For the count-based export level B = Count(166, 315), the full tables show a consistent
but small uplift in macro-F1 and balanced accuracy relative to the baseline across all
listed (r, S) combinations (see Tables A.4 and A.5). In test accuracy (Table A.6), only the
configuration r = 1, S = [1.9, 2.1], B = Count(166, 315) slightly exceeds the baseline mean
(0.6728 vs. 0.6720, an absolute difference of 0.08 pp), and the reported intervals overlap
([0.6696, 0.6759] vs. [0.6690, 0.6750]). Overall, Graph WFC augmentation on PROTEINS
can improve performance in selected configurations, but the gains are limited in magnitude
and depend on the interaction between r, S, and B.
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4.6.3 DD

On DD, the following configuration grid is used:

r ∈ {1},

S ∈ {[0.9, 1.1], [1.9, 2.1]},

B ∈
{
Frac(λ)

∣∣ λ ∈ {0.25, 0.5, 1.0}
}
∪

{
Count(0, 142),Count(199, 341)

}
.

Note that the pattern radius is fixed to r = 1, since configurations with r > 1 frequently
failed to terminate and thus exceeded the exclusion threshold in Equation (4.1).

Count-based export levels are included on DD to mitigate class imbalance by directly
controlling the class composition of the exported augmentation set. Since DD is imbal-
anced (see Table 4.2), the chosen count settings export more graphs from the minority
class (class 1) than from the majority class (class 0).

Table 4.9: Macro-F1 on DD

Config. r S B Macro-F1

Augmented 1 [0.9, 1.1] Count(199, 341) 0.6873± 0.0157 [0.6842, 0.6904]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.6714± 0.0120 [0.6691, 0.6738]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6713± 0.0156 [0.6683, 0.6744]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6621± 0.0180 [0.6586, 0.6656]
Baseline – – – 0.6411± 0.0152 [0.6381, 0.6441]

Table 4.10: Balanced accuracy on DD

Config. r S B Balanced accuracy

Augmented 1 [0.9, 1.1] Count(199, 341) 0.6850± 0.0141 [0.6822, 0.6877]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6712± 0.0140 [0.6685, 0.6740]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.6707± 0.0110 [0.6685, 0.6728]
Augmented 1 [0.9, 1.1] Frac(0.25) 0.6617± 0.0169 [0.6584, 0.6651]
Baseline – – – 0.6432± 0.0121 [0.6408, 0.6456]

Table 4.11: Test accuracy on DD

Config. r S B Test accuracy

Augmented 1 [0.9, 1.1] Count(199, 341) 0.7182± 0.0210 [0.7141, 0.7224]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.7124± 0.0135 [0.7098, 0.7151]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.7085± 0.0136 [0.7058, 0.7111]
Augmented 1 [0.9, 1.1] Frac(0.25) 0.6938± 0.0123 [0.6914, 0.6962]
Baseline – – – 0.6828± 0.0085 [0.6812, 0.6845]

On DD, Graph WFC augmentation improves test accuracy over the baseline for all
configurations reported in Table 4.11. The best-performing setting uses r = 1, the near
size-preserving range S = [0.9, 1.1], and the count-based export level B = Count(199, 341).

51



It achieves a mean test accuracy of 0.7182 compared to 0.6828 for the baseline (an absolute
improvement of 3.54 pp). The reported 95% intervals [0.7141, 0.7224] and [0.6812, 0.6845]

are disjoint under the normal approximation in Equation (4.10), which is consistent with
a positive shift relative to the baseline. A moderate fractional export level B = Frac(0.5)

with S = [0.9, 1.1] also improves test accuracy to 0.7124 (2.96 pp), whereas the weaker
setting B = Frac(0.25) yields 0.6938 (1.10 pp).

In the full test-accuracy Table A.9, the fractional setting is not monotone in λ even
when S = [0.9, 1.1] is fixed: B = Frac(1.0) attains 0.6911 (0.83 pp above baseline), which
is lower than B = Frac(0.25) (0.6938). For the count-based setting B = Count(199, 341),
increasing the size range to S = [1.9, 2.1] reduces accuracy from 0.7182 to 0.7085 (a
decrease of 0.97 pp), indicating that substantially larger synthetic graphs are less effective
in this setting.

Macro-F1 and balanced accuracy in Tables 4.9 and 4.10 identify the same best-performing
configuration. The configuration with r = 1, S = [0.9, 1.1], and B = Count(199, 341)

achieves the highest reported mean macro-F1 and balanced accuracy. It improves macro-
F1 from 0.6411 to 0.6873 (4.62 pp) and balanced accuracy from 0.6432 to 0.6850 (4.18 pp).
Under the normal approximation in Equation (4.10), the corresponding 95% intervals
[0.6842, 0.6904] (macro-F1) and [0.6822, 0.6877] (balanced accuracy) are disjoint from the
baseline intervals [0.6381, 0.6441] and [0.6408, 0.6456]. This is consistent with improve-
ments in both class-balanced metrics as well as test accuracy. Since the count-based export
levels Count(0, 142) and Count(199, 341) (see Table 4.2) explicitly control the class-wise
export counts, the strongest DD results combine per-class export control with structural
augmentation.

In the full DD tables (Tables A.7 to A.9), only the configuration r = 1, S = [1.9, 2.1],
and B = Frac(1.0) is below the baseline in all three metrics. For this configuration, the
reported intervals overlap with the baseline in all three metrics (see the corresponding
table entries), indicating that the differences are small relative to run-to-run variability
under the normal approximation in Equation (4.10).

Overall, the DD results suggest that Graph WFC augmentation is most effective when
combined with count-based export control and near size-preserving synthesis, while sub-
stantially increasing the size range S reduces the benefit in the reported configurations.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

This thesis addresses the research question (RQ) and goals G1–G2 in Section 1.5 by
developing and evaluating Graph WFC as a data augmentation mechanism for GCN-
based graph classification. The evaluation is conducted on three benchmark datasets,
MSRC_21, DD, and PROTEINS, where MSRC_21 is a multi-class classification task,
and DD and PROTEINS are moderately imbalanced binary classification tasks. With
respect to RQ, the results indicate that Graph WFC augmentation can improve test-set
performance, measured by accuracy, macro-F1, and balanced accuracy, relative to training
on the original graphs only. However, the effect is not uniform. Both the direction
and magnitude of the change depend on the dataset and on the chosen augmentation
configuration.

For goal G1, Graph WFC was implemented for undirected, vertex-labelled graphs (Sec-
tions 3.1.2 and 4.4.2) and integrated into the training and evaluation pipeline (Section 4.3).
The augmentation procedure is configured by the synthesis parameters γ = (r, S) and the
export setting B (Section 4.4.1), which jointly control pattern radius, synthetic graph
range, and augmentation amount (including class-wise export in the count-based case).

For goal G2, the experiments in Section 4.6 characterise when augmentation is ben-
eficial or detrimental relative to the baseline. On MSRC_21, multiple fractional export
settings yield gains over the baseline, with the best configuration improving test accuracy
by 2.59 pp (Section 4.6.1). Within the evaluated grid, test accuracy tends to be higher for
intermediate-to-high fractional exports (notably λ = 2.0 or λ = 2.5), while λ = 3.0 does
not improve further, indicating diminishing returns at the upper end. On DD, the greatest
improvements occur when synthesis is near size-preserving and the export setting biases
the augmentation set toward the minority class, with the best configuration improving test
accuracy by 3.54 pp. On PROTEINS, the best observed gains are modest (up to 1.73 pp in
test accuracy), and performance varies across the configuration grid without a consistent
monotone trend in r, S, or B. Overall, the results suggest that practical effectiveness de-
pends on the configuration as a whole. The relative impact of export strategy, target size
range, and pattern radius varies across datasets, and parameter changes do not translate
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into consistent improvements across the evaluated grids. Accordingly, settings that work
well in one benchmark cannot be assumed to remain effective in another, and reported
gains should be interpreted as configuration-specific rather than as evidence for a generally
optimal regime. This pattern supports treating Graph WFC as a sensitive augmentation
mechanism that requires empirical validation and tuning for each application, rather than
as a plug-in method with robust default parameters. This sensitivity also manifests in
synthesis stability: on DD, configurations with r > 1 were not evaluated because synthe-
sis frequently exceeded the termination threshold Equation (4.1). This restriction limits
conclusions about larger pattern radii and highlights that synthesis failures can constrain
the usable parameter range.

Beyond synthesis stability, the empirical evidence is restricted to a single GCN archi-
tecture trained with the fixed protocol of Section 4.3, so transfer to other GNN archi-
tectures, training regimes, or graph domains is not established. Moreover, the analysis
is limited to three standard classification metrics and does not characterise higher-order
structural properties of the synthetic graphs. Consequently, the structural factors that
drive improvements or degradations remain unresolved.

5.2 Future Work

The implementation and experiments in this thesis suggest several directions for extending
Graph WFC and for better characterising its suitability for graph data augmentation.

A first line of work concerns algorithmic extensions of the generator. The current
procedure in Section 3.2 relies on fixed heuristics for expansion, collapse, and connection,
together with a fixed pattern-extraction protocol and the compatibility notion from Sec-
tions 3.1.2 and 3.1.3. Future work could study adaptive variants of the expansion cap
Bexp

k from Equation (3.19), for instance by estimating suitable caps during generation
rather than fixing them upfront. On the constraint side, alternative definitions of compat-
ibility and multi-radius propagation (Section 3.2.4) could be explored, including weighted
or score-based compatibility that incorporates motif statistics or other higher-order struc-
ture to more strongly penalise long-range inconsistencies. A further extension is to support
richer attributed graphs, such as edge labels and continuous vertex features.

A second direction is to move beyond per-graph vocabularies. The current pipeline
(Section 3.1) extracts a separate pattern vocabulary P(r)

k and compatibility family Ck
for each input graph and attempts to synthesise one graph per exported graph, without
mixing information across different training graphs. Future work could construct shared
pattern vocabularies by mining patterns across multiple graphs and learning a unified
compatibility structure. This could enable synthesis that combines structural information
across graphs, potentially increasing diversity and enabling controlled mixing of patterns
from multiple training examples. Such a multi-graph variant may also provide auxiliary
diagnostics, for example, by relating graphs through shared patterns or compatibility
structure.
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A third direction is to broaden the augmentation protocol and evaluation. The exper-
iments in Section 4.6 consider a single GCN architecture (Sections 2.2 and 4.3) and three
benchmarks. Future work could evaluate stronger GNN architectures and additional TU-
Dataset benchmarks or other graph domains, and could extend the setting to other tasks
such as node classification or link prediction. This would clarify whether the improvements
observed on DD and MSRC_21 persist under different models and supervision signals,
and whether degradation cases such as those observed on PROTEINS can be reduced by
architectural or training changes.

A fourth direction is to study how the degree of structural fidelity induced by the gen-
eration constraints relates to performance. On MSRC_21, the strongest configurations in
the evaluated grid use small pattern radii (Section 4.6.1), which restrict synthesis primar-
ily through short-range constraints, whereas larger radii additionally enforce longer-range
consistency. On DD, only r = 1 was evaluated because larger radii frequently exceeded
the termination-based exclusion threshold (Equation (4.1)), so conclusions about larger
pattern sizes are limited. Future work could quantify fidelity via structural statistics and
systematically vary constraint strength, for example, by perturbing compatibility con-
straints or pattern statistics in a controlled manner.

Finally, additional diagnostics of the synthetic graphs would strengthen the empirical
analysis. The current evaluation focuses on three standard classification metrics (Sec-
tion 4.5) and does not quantify how synthetic graphs differ from the original data distri-
bution. Future work could compare real and synthetic graphs via motif statistics, degree
and distance distributions, spectral summaries, or graph kernels, and could analyse fail-
ure modes where augmentation degrades performance, particularly on PROTEINS. Such
diagnostics would help identify parameter settings that balance fidelity and diversity and
would relate structural deviations to observed performance changes.
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Appendix A

Full Results

A.1 MSRC_21

Configuration grid as in Section 4.6.1:

Table A.1: Macro-F1 on MSRC_21

Config. r S B Macro-F1

Augmented 1 [0.9, 1.1] Frac(2.0) 0.8512± 0.0120 [0.8459, 0.8564]
Augmented 1 [0.9, 1.1] Frac(2.5) 0.8507± 0.0097 [0.8465, 0.8550]
Augmented 2 [0.9, 1.1] Frac(3.0) 0.8487± 0.0090 [0.8448, 0.8527]
Augmented 2 [0.9, 1.1] Frac(2.5) 0.8485± 0.0090 [0.8446, 0.8525]
Augmented 1 [0.9, 1.1] Frac(3.0) 0.8475± 0.0127 [0.8419, 0.8530]
Augmented 2 [0.9, 1.1] Frac(2.0) 0.8469± 0.0137 [0.8409, 0.8529]
Augmented 3 [0.9, 1.1] Frac(2.0) 0.8463± 0.0131 [0.8405, 0.8520]
Augmented 3 [0.9, 1.1] Frac(3.0) 0.8442± 0.0114 [0.8392, 0.8492]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.8440± 0.0098 [0.8397, 0.8483]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.8440± 0.0128 [0.8384, 0.8496]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.8430± 0.0139 [0.8369, 0.8491]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.8416± 0.0136 [0.8357, 0.8476]
Augmented 3 [0.9, 1.1] Frac(1.5) 0.8408± 0.0142 [0.8346, 0.8471]
Augmented 3 [0.9, 1.1] Frac(2.5) 0.8380± 0.0109 [0.8332, 0.8428]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.8371± 0.0119 [0.8319, 0.8423]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.8366± 0.0090 [0.8327, 0.8405]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.8354± 0.0156 [0.8285, 0.8422]
Baseline – – – 0.8302± 0.0133 [0.8244, 0.8361]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.8296± 0.0133 [0.8237, 0.8354]
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Table A.2: Balanced accuracy on MSRC_21

Config. r S B Balanced accuracy

Augmented 1 [0.9, 1.1] Frac(2.0) 0.8527± 0.0111 [0.8478, 0.8576]
Augmented 1 [0.9, 1.1] Frac(2.5) 0.8526± 0.0099 [0.8483, 0.8570]
Augmented 1 [0.9, 1.1] Frac(3.0) 0.8496± 0.0121 [0.8443, 0.8550]
Augmented 2 [0.9, 1.1] Frac(3.0) 0.8478± 0.0089 [0.8439, 0.8517]
Augmented 2 [0.9, 1.1] Frac(2.5) 0.8478± 0.0090 [0.8439, 0.8518]
Augmented 2 [0.9, 1.1] Frac(2.0) 0.8465± 0.0116 [0.8414, 0.8515]
Augmented 3 [0.9, 1.1] Frac(2.0) 0.8461± 0.0107 [0.8414, 0.8508]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.8451± 0.0135 [0.8391, 0.8510]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.8439± 0.0128 [0.8382, 0.8495]
Augmented 3 [0.9, 1.1] Frac(3.0) 0.8438± 0.0106 [0.8392, 0.8484]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.8437± 0.0116 [0.8386, 0.8488]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.8434± 0.0090 [0.8395, 0.8474]
Augmented 3 [0.9, 1.1] Frac(1.5) 0.8410± 0.0124 [0.8355, 0.8464]
Augmented 3 [0.9, 1.1] Frac(2.5) 0.8383± 0.0094 [0.8342, 0.8424]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.8376± 0.0114 [0.8326, 0.8426]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.8374± 0.0096 [0.8332, 0.8415]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.8356± 0.0147 [0.8292, 0.8421]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.8307± 0.0115 [0.8256, 0.8357]
Baseline – – – 0.8302± 0.0122 [0.8248, 0.8355]

Table A.3: Test accuracy on MSRC_21

Config. r S B Test accuracy

Augmented 1 [0.9, 1.1] Frac(2.5) 0.8791± 0.0094 [0.8750, 0.8832]
Augmented 1 [0.9, 1.1] Frac(2.0) 0.8782± 0.0094 [0.8740, 0.8823]
Augmented 1 [0.9, 1.1] Frac(3.0) 0.8758± 0.0108 [0.8711, 0.8806]
Augmented 3 [0.9, 1.1] Frac(2.0) 0.8718± 0.0082 [0.8682, 0.8753]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.8717± 0.0121 [0.8664, 0.8770]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.8712± 0.0120 [0.8660, 0.8765]
Augmented 2 [0.9, 1.1] Frac(2.5) 0.8709± 0.0080 [0.8674, 0.8744]
Augmented 3 [0.9, 1.1] Frac(3.0) 0.8701± 0.0100 [0.8657, 0.8745]
Augmented 2 [0.9, 1.1] Frac(3.0) 0.8700± 0.0069 [0.8669, 0.8730]
Augmented 2 [0.9, 1.1] Frac(2.0) 0.8696± 0.0080 [0.8661, 0.8731]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.8687± 0.0103 [0.8641, 0.8732]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.8679± 0.0090 [0.8639, 0.8718]
Augmented 3 [0.9, 1.1] Frac(1.5) 0.8673± 0.0103 [0.8628, 0.8718]
Augmented 3 [0.9, 1.1] Frac(2.5) 0.8654± 0.0078 [0.8620, 0.8688]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.8647± 0.0106 [0.8601, 0.8694]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.8624± 0.0106 [0.8578, 0.8671]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.8605± 0.0128 [0.8549, 0.8661]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.8576± 0.0096 [0.8534, 0.8619]
Baseline – – – 0.8532± 0.0122 [0.8478, 0.8586]
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A.2 PROTEINS

Configuration grid as in Section 4.6.2:

Table A.4: Macro-F1 on PROTEINS

Config. r S B Macro-F1

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6502± 0.0201 [0.6463, 0.6542]
Augmented 1 [1.9, 2.1] Count(166, 315) 0.6448± 0.0153 [0.6418, 0.6478]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6426± 0.0252 [0.6377, 0.6476]
Augmented 2 [1.9, 2.1] Count(166, 315) 0.6421± 0.0160 [0.6389, 0.6452]
Augmented 3 [1.9, 2.1] Count(166, 315) 0.6414± 0.0141 [0.6386, 0.6441]
Augmented 3 [1.9, 2.1] Frac(1.5) 0.6410± 0.0242 [0.6362, 0.6457]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.6405± 0.0253 [0.6356, 0.6455]
Augmented 2 [0.9, 1.1] Count(166, 315) 0.6390± 0.0208 [0.6349, 0.6430]
Augmented 3 [1.9, 2.1] Frac(1.0) 0.6386± 0.0217 [0.6344, 0.6429]
Augmented 3 [1.9, 2.1] Frac(0.5) 0.6379± 0.0179 [0.6344, 0.6414]
Augmented 3 [0.9, 1.1] Count(166, 315) 0.6376± 0.0176 [0.6342, 0.6411]
Augmented 1 [0.9, 1.1] Count(166, 315) 0.6371± 0.0173 [0.6337, 0.6405]
Baseline – – – 0.6364± 0.0189 [0.6327, 0.6401]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6351± 0.0243 [0.6304, 0.6399]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.6350± 0.0184 [0.6314, 0.6386]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6345± 0.0201 [0.6306, 0.6385]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.6332± 0.0264 [0.6280, 0.6383]
Augmented 2 [1.9, 2.1] Frac(1.0) 0.6331± 0.0270 [0.6278, 0.6383]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.6325± 0.0213 [0.6283, 0.6366]
Augmented 2 [1.9, 2.1] Frac(0.5) 0.6310± 0.0218 [0.6268, 0.6353]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.6291± 0.0208 [0.6250, 0.6332]
Augmented 1 [1.9, 2.1] Frac(1.5) 0.6254± 0.0216 [0.6212, 0.6297]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6250± 0.0183 [0.6214, 0.6286]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.6184± 0.0195 [0.6146, 0.6222]
Augmented 2 [1.9, 2.1] Frac(1.5) 0.6148± 0.0229 [0.6103, 0.6192]

58



Table A.5: Balanced accuracy on PROTEINS

Config. r S B Balanced accuracy

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6493± 0.0173 [0.6459, 0.6527]
Augmented 1 [1.9, 2.1] Count(166, 315) 0.6429± 0.0142 [0.6401, 0.6457]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6417± 0.0216 [0.6374, 0.6459]
Augmented 3 [1.9, 2.1] Frac(1.5) 0.6404± 0.0207 [0.6363, 0.6444]
Augmented 2 [1.9, 2.1] Count(166, 315) 0.6402± 0.0148 [0.6373, 0.6431]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.6397± 0.0220 [0.6354, 0.6440]
Augmented 3 [1.9, 2.1] Count(166, 315) 0.6395± 0.0133 [0.6369, 0.6421]
Augmented 3 [1.9, 2.1] Frac(1.0) 0.6383± 0.0191 [0.6346, 0.6420]
Augmented 3 [1.9, 2.1] Frac(0.5) 0.6376± 0.0166 [0.6344, 0.6409]
Augmented 2 [0.9, 1.1] Count(166, 315) 0.6375± 0.0192 [0.6337, 0.6413]
Augmented 3 [0.9, 1.1] Count(166, 315) 0.6361± 0.0158 [0.6330, 0.6392]
Augmented 1 [0.9, 1.1] Count(166, 315) 0.6356± 0.0160 [0.6324, 0.6387]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6354± 0.0210 [0.6313, 0.6395]
Baseline – – – 0.6353± 0.0173 [0.6319, 0.6387]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.6348± 0.0167 [0.6316, 0.6381]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6338± 0.0178 [0.6303, 0.6373]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.6335± 0.0223 [0.6291, 0.6379]
Augmented 2 [1.9, 2.1] Frac(1.0) 0.6329± 0.0237 [0.6283, 0.6376]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.6323± 0.0187 [0.6286, 0.6359]
Augmented 2 [1.9, 2.1] Frac(0.5) 0.6309± 0.0194 [0.6271, 0.6347]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.6305± 0.0181 [0.6270, 0.6341]
Augmented 1 [1.9, 2.1] Frac(1.5) 0.6276± 0.0182 [0.6241, 0.6312]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6253± 0.0165 [0.6221, 0.6285]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.6232± 0.0162 [0.6201, 0.6264]
Augmented 2 [1.9, 2.1] Frac(1.5) 0.6182± 0.0196 [0.6144, 0.6221]
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Table A.6: Test accuracy on PROTEINS

Config. r S B Test accuracy

Augmented 3 [0.9, 1.1] Frac(1.5) 0.6893± 0.0173 [0.6860, 0.6927]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6796± 0.0191 [0.6758, 0.6833]
Augmented 3 [1.9, 2.1] Frac(0.5) 0.6787± 0.0178 [0.6752, 0.6822]
Augmented 3 [1.9, 2.1] Frac(1.5) 0.6786± 0.0178 [0.6751, 0.6821]
Augmented 3 [1.9, 2.1] Frac(1.0) 0.6771± 0.0205 [0.6731, 0.6811]
Augmented 2 [0.9, 1.1] Frac(1.0) 0.6757± 0.0177 [0.6722, 0.6792]
Augmented 3 [0.9, 1.1] Frac(0.5) 0.6753± 0.0158 [0.6722, 0.6784]
Augmented 1 [0.9, 1.1] Frac(1.5) 0.6749± 0.0158 [0.6718, 0.6779]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6748± 0.0178 [0.6713, 0.6783]
Augmented 3 [0.9, 1.1] Frac(1.0) 0.6734± 0.0176 [0.6700, 0.6769]
Augmented 1 [1.9, 2.1] Count(166, 315) 0.6728± 0.0160 [0.6696, 0.6759]
Augmented 2 [0.9, 1.1] Frac(1.5) 0.6728± 0.0142 [0.6700, 0.6755]
Baseline – – – 0.6720± 0.0154 [0.6690, 0.6750]
Augmented 1 [1.9, 2.1] Frac(1.5) 0.6710± 0.0153 [0.6680, 0.6740]
Augmented 2 [1.9, 2.1] Frac(1.0) 0.6710± 0.0195 [0.6671, 0.6748]
Augmented 2 [0.9, 1.1] Frac(0.5) 0.6709± 0.0156 [0.6678, 0.6739]
Augmented 2 [1.9, 2.1] Count(166, 315) 0.6706± 0.0134 [0.6680, 0.6732]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6696± 0.0156 [0.6666, 0.6727]
Augmented 3 [0.9, 1.1] Count(166, 315) 0.6693± 0.0128 [0.6668, 0.6718]
Augmented 2 [1.9, 2.1] Frac(0.5) 0.6690± 0.0158 [0.6659, 0.6721]
Augmented 3 [1.9, 2.1] Count(166, 315) 0.6690± 0.0138 [0.6663, 0.6717]
Augmented 2 [0.9, 1.1] Count(166, 315) 0.6682± 0.0173 [0.6648, 0.6716]
Augmented 1 [0.9, 1.1] Count(166, 315) 0.6654± 0.0164 [0.6622, 0.6686]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6649± 0.0143 [0.6621, 0.6677]
Augmented 2 [1.9, 2.1] Frac(1.5) 0.6640± 0.0162 [0.6608, 0.6671]

A.3 DD

Configuration grid as in Section 4.6.3:

Table A.7: Macro-F1 on DD

Config. r S B Macro-F1

Augmented 1 [0.9, 1.1] Count(199, 341) 0.6873± 0.0157 [0.6842, 0.6904]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.6714± 0.0120 [0.6691, 0.6738]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6713± 0.0156 [0.6683, 0.6744]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6621± 0.0180 [0.6586, 0.6656]
Augmented 1 [0.9, 1.1] Frac(0.25) 0.6617± 0.0210 [0.6576, 0.6658]
Augmented 1 [0.9, 1.1] Count(0, 142) 0.6614± 0.0153 [0.6584, 0.6644]
Augmented 1 [1.9, 2.1] Count(0, 142) 0.6609± 0.0238 [0.6563, 0.6656]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6532± 0.0152 [0.6511, 0.6553]
Augmented 1 [1.9, 2.1] Frac(0.25) 0.6518± 0.0120 [0.6494, 0.6541]
Baseline – – – 0.6411± 0.0152 [0.6381, 0.6441]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6381± 0.0210 [0.6340, 0.6422]
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Table A.8: Balanced accuracy on DD

Config. r S B Balanced accuracy

Augmented 1 [0.9, 1.1] Count(199, 341) 0.6850± 0.0141 [0.6822, 0.6877]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.6712± 0.0140 [0.6685, 0.6740]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.6707± 0.0110 [0.6685, 0.6728]
Augmented 1 [0.9, 1.1] Frac(0.25) 0.6617± 0.0169 [0.6584, 0.6651]
Augmented 1 [0.9, 1.1] Count(0, 142) 0.6613± 0.0142 [0.6585, 0.6640]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6607± 0.0162 [0.6575, 0.6638]
Augmented 1 [1.9, 2.1] Count(0, 142) 0.6605± 0.0214 [0.6563, 0.6647]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6529± 0.0137 [0.6510, 0.6548]
Augmented 1 [1.9, 2.1] Frac(0.25) 0.6509± 0.0106 [0.6488, 0.6529]
Baseline – – – 0.6432± 0.0121 [0.6408, 0.6456]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6412± 0.0162 [0.6380, 0.6444]

Table A.9: Test accuracy on DD

Config. r S B Test accuracy

Augmented 1 [0.9, 1.1] Count(199, 341) 0.7182± 0.0210 [0.7141, 0.7224]
Augmented 1 [0.9, 1.1] Frac(0.5) 0.7124± 0.0135 [0.7098, 0.7151]
Augmented 1 [1.9, 2.1] Count(199, 341) 0.7085± 0.0136 [0.7058, 0.7111]
Augmented 1 [0.9, 1.1] Frac(0.25) 0.6938± 0.0123 [0.6914, 0.6962]
Augmented 1 [0.9, 1.1] Frac(1.0) 0.6911± 0.0136 [0.6885, 0.6938]
Augmented 1 [1.9, 2.1] Count(0, 142) 0.6897± 0.0306 [0.6837, 0.6957]
Augmented 1 [1.9, 2.1] Frac(0.5) 0.6886± 0.0133 [0.6868, 0.6905]
Augmented 1 [0.9, 1.1] Count(0, 142) 0.6852± 0.0217 [0.6809, 0.6895]
Augmented 1 [1.9, 2.1] Frac(0.25) 0.6842± 0.0086 [0.6825, 0.6859]
Baseline – – – 0.6828± 0.0085 [0.6812, 0.6845]
Augmented 1 [1.9, 2.1] Frac(1.0) 0.6812± 0.0137 [0.6785, 0.6839]
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