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Abstract

Sleep monitoring is essential for health tracking and well-being assessment, but

the discomfort caused by body-attached devices during sleep highlights the need

for non-intrusive monitoring technologies. The aim of this thesis is to reconstruct

and enhance the model proposed by Li et al. for estimating heart rate (HR) and

respiratory rate (RR) from vibration signals in a non-intrusive manner. The model

employs Ensemble Empirical Mode Decomposition for signal decomposition, Prin-

cipal Component Analysis on selected Intrinsic Mode Functions, and Short-Time

Fourier Transform to extract time-resolved HR and RR functions. A grid search was

conducted to optimise the hyper-parameters. The model was evaluated using data

from a short-term controlled experiment. For HR estimation, the model achieved

a Mean Absolute Error of 5.78 bpm, a Mean Percentage Error of 1.18%, and a

Mean Squared Error of 53.64 bpm. Cross-correlation analysis showed a weak mean

correlation of 0.22 with baseline HR data. The statistical analysis indicated that

while the mean HR values estimated by the model closely aligned with baseline

measurements, the variance was significantly higher in the baseline data. Bland-

Altman analysis revealed a proportional bias, likely due to rounding effects, and

Quantile-Quantile plots suggested a distribution close to normal for the estimated

HR, contrasting with the baseline data. However, the model was unable to pro-

duce any RR estimates, highlighting areas for further improvement. In addition

to the model reconstruction, a review of related work identified traditional signal

processing techniques, such as the Hilbert Transform and Local Maxima Statistics,

alongside machine learning approaches like Bi-LSTM, U-Net, and K-means models,

as potential avenues for enhancement.
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Chapter 1

Introduction

Sleep monitoring plays a vital role in health tracking, significantly contributing to

the assessment of overall well-being and the identification of potential health risks.

Traditionally, this monitoring is accomplished by tracking respiration rate (RR)

using breathing apparatuses [1], and measuring heart rate (HR) through body-

contact wearables like chest straps and wrist sensors [2]. However, these methods

often cause discomfort or are neglected at bedtime due to their intrusive nature,

particularly among older adults or patients [3]. A variety of wearable healthcare

devices have been developed for continuous electrocardiogram (ECG) monitoring,

catering to both patients and health-conscious individuals [2]. Yet, the need for con-

stant body attachment makes these devices cumbersome, particularly during sleep,

highlighting the demand for less obtrusive, more user-friendly monitoring technolo-

gies [3]. There is, therefore, a need for non-intrusive solutions that continuously

monitor cardiac events during night periods.

Innovatively, biomedical vibration signals, such as seismocardiograms (SCG)

and ballistocardiograms (BCG), which measure the micro-vibrations produced by

heart beats, are analysed for human health assessment and monitoring [4]. How-

ever, BCG monitoring is limited by the necessity for constant patient contact, often

requiring specific equipment such as mattresses, pillows, or chairs to accurately

detect vital signs [5]. SCG monitoring similarly often relies on sensors, such as

accelerometers [6] or geophones [7], that need to maintain direct contact with the

patient. Geophones, while advantageous for their insensitivity to lower-frequency

movements, making them well-suited for heartbeat monitoring, are less responsive

to respiratory vibrations due to their lower frequency [7]. This limitation necessi-

tates the use of signal amplification and filtering for accurate detection of respiratory

signals.

To address this issue, geophone-based seismographs, such as the Raspberry

Shake 3D, which electronically extending the range of their geophones to detect
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low-frequency vibration signals [8], may be utilised. These devices are also highly

sensitive, allowing for the detection of faint seismic events from a greater distance [8].

Consequently, HR and RR vibration signals can be detected through a standard

mattress without the need for direct body contact or specialised equipment. This

non-invasive approach not only enhances patient comfort during sleep monitoring

but also has the potential to increase adherence in studies requiring continuous vital

sign monitoring.

Various approaches exist for the extraction of vital signs from vibration signals.

Traditional signal processing techniques, such as the Hilbert transform [9], and auto-

correlation functions [7], have been used due to their effectiveness in signal analysis.

In addition to these traditional methods, machine learning approaches have also

gained prominence. Techniques such as k-means clustering [6], bidirectional long

short-term memory networks (Bi-LSTM) [10–12], and U-Net architectures [13] have

proven to be valuable tools in the detection of heartbeats and respiratory activity

from vibration signals. These approaches offer advanced capabilities for accurately

identifying and monitoring vital signs in complex signal environments.

A common theme across many approaches for vital sign extraction is the focus

on event detection, such as identifying individual heartbeats [5]. However, these

techniques are limited by the quality of the vibration signal and therefore, sus-

ceptible to noise [6]. Additionally, machine learning algorithms, often regarded as

black-box models, can present challenges when used for medical diagnosis, as their

decision-making processes may lack transparency [14,15]. This underscores the ne-

cessity for methods that are either explainable machine learning models, in which

every component is transparent and justifiable, such as the selection of specific

hyper-parameters and the number of iterations required for convergence, or those

that rely exclusively on traditional machine learning models or signal processing

techniques. Such methods would reduce the uncertainty inherent in the reasoning

processes of machine learning algorithms.

In response to these challenges, the method proposed by Li et al. offers a promis-

ing alternative by utilising frequency analysis within a morphological model [3].

According to Li et al. [3], heartbeats and respiration generate vibrations within the

frequency ranges of 0.75 to 2.4 Hz and 0.13 to 0.75 Hz, respectively. To analyse

these signals, a Band-pass Filter (BPF) is applied, followed by Ensemble Empiri-

cal Mode Decomposition (EEMD) to extract the Intrinsic Mode Functions (IMFs)

that correspond to these frequency ranges [3]. Following this, Principal Component

Analysis (PCA) is applied to extract the First Principal Component (FPC) of the

relevant IMF groups, which represents the intrinsic frequencies of cardiac and res-

piratory activities [3]. The Fast Fourier Transform (FFT) is then utilised to extract
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the dominant frequency from the FPC, which is subsequently converted from Hertz

(Hz) to beats per minute (bpm).

The aim of this thesis is to reconstruct the algorithm proposed by Li et al. [3]

for estimating HR and RR from vibration signals collected by a seismograph and

to extend upon it by utilising Short-Time Fourier Transform (STFT) to extract a

function over time for HR and RR estimations. Following the reconstruction, the

algorithm is tested on vibration data collected from volunteers during an experiment

while being measured by seismographs. This vibration data is supplemented by

ground-truth information collected using a commercially available ECG monitor to

ensure accuracy and reliability. Lastly, the thesis includes a review of current signal

processing techniques and machine learning methods for non-invasive monitoring

solutions via vibration signals, examining their benefits and drawbacks.
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Chapter 2

Materials and Methods

This chapter outlines the complete processing workflow for the collected vibration

data, as illustrated in Figure 2.1, encompassing the key stages of measurement,

pre-processing, and feature extraction. The measurement stage involves acquiring

raw vibration data, as well as ground-truth data. During pre-processing, the raw

data is normalised, aligned by resampling to synchronise timestamps, and filtered

by applying a Butterworth BPF (BBPF) to isolate relevant frequency ranges. Fol-

lowing this, feature extraction is performed, where specific characteristics such as

HR and RR are derived using techniques such as EEMD, PCA, and STFT [3]. All

procedures are implemented using Python 3.11.9.

Figure 2.1: Data Processing Pipeline

2.1 Data Collection

A short-term controlled experiment was conducted with the primary aim of col-

lecting vibration data of a participant’s HR and RR using a geophone-based seis-

mograph. Simultaneously, the heartbeat of the participants was recorded with a

commercially used ECG monitor to establish a ground truth. The experiment in-

volved 10 participants, out of which 4 were female and 6 were male and were between

22 and 35 years old. The experiment was conducted at the Neurotec Loft at the

SITEM Center for Biomedical Engineering Research in Bern.
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2.1.1 Data Collection Systems

Figure 2.2: Experimental setup showing a volunteer on a bed with a seismograph
positioned to the east, one third south from the top of the bead. An ECG monitor
is connected to the volunteer via chest patches. Note. The pictogram used in this
image was sourced from svgsilh.com [16].

As illustrated in Figure 2.2 a seismograph (RS-3D, Raspberry Shake S.A, Alto

Boquete, Panama) was placed on a mattress and was used to record vibrations

along three axes. The upwards-, north-, and east-axis, are referred to as EHZ, EHN,

and EHE, respectively. During data processing, only the data from the EHZ-axis

is ultimately considered as it contains information about the transverse motion. In

the arrangement of the experimental setup, the head of the mattress was considered

as the north direction. The seismograph was placed on the east side, one third south

from top of the mattress. Furthermore, the EHZ-axis of the device was deliberately

aligned to point upwards. This orientation ensured that the seismograph recorded

the relevant vertical movements, thereby optimizing the accuracy and reliability of

the data collected. For the recording of the vital sign ground-truth, a multimodal

polygraph (SOMNOtouchTM NIBP, Randersacker, Germany) was used. This device

was attached to the participants via four patches on the chest and lower stomach

area, to record the participant’s ECG.

2.1.2 Experimental Procedure

During the experiment, participants were instructed to lie on a bed in a supine

position with their arms positioned at their sides. The data collection was organized

into four stages to capture different variations in movement and respiration rate:
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1. The participant maintains immobility while breathing at a respiratory rate

between 8 to 45 bpm [3] for a duration of two minutes.

2. The participant is permitted to engage in slight movement for a duration of

two minutes, encompassing actions such as rotating their head and executing

random patterns of movement with their limbs.

3. The participant maintains supine immobility for two minutes and executed

five consecutive deep inhalations, interspersed with ten-second intervals of

normal respiration, until the prescribed duration elapses, or the last breath-

set is completed.

4. The participant is instructed to synchronize their breathing artificially with

a metronome set to a value between 8 to 45 bpm [3], according to the partic-

ipant’s comfortable range for a duration of two minutes.

A measurement of a participant took 15 to 20 minutes to complete. This in-

cluded the introduction of the participants to the experiment process, the setup

of the heartbeat monitor, and the collection of the vibration data. The heartbeat

monitor was calibrated separately. During this process, the timestamps at both the

initiation and conclusion of each stage were recorded. This ensured a comprehensive

temporal record of the progression through the separate phases of the procedure.

Furthermore, the quantity of inhalation sets in stage three and the respiratory rate

in bpm in stage four were documented.

2.2 Data Pre-processing

The data pre-processing phase involves signal normalisation, alignment, and filter-

ing to ensure consistency, comparability, and accuracy in the analysis. The raw

data from both the seismograph and ECG monitor are first normalised to establish

a uniform structure, allowing for coherent processing across different signal types.

Then the vibration signal is filtered via the BBPF [3, 17], and resampled to avoid

temporal gaps in the data. To assure accurate comparison, the vibration and base-

line data are aligned based on their timestamps. Lastly, both signals are segmented

to isolate the relevant time frames.
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Figure 2.3: Signal Filtering Using a 5th Order Butterworth Band-pass Filter

2.2.1 Normalisation, Resampling and Filtering of Vibration

Signals

The collected vibration data was normalised from raw data into a structured format,

where each data point was assigned a timestamp. To ensure the continuity and

integrity of the vibration data, the signal was resampled at a fixed interval of 10

milliseconds, wherein any missing values were forward-filled. This procedure was

followed by the removal of any remaining null values. The implementation of this

resampling process is detailed in Algorithm 1, where the resampling functionalities

of Python library Pandas version 2.0.3 [18] were used. Following resampling, the

vibration signal undergoes filtering using a 5th order BBPF (Figure 2.3). This choice

is based on the methodology outlined by Shafiq et al. [17]. The filter is configured

with a low cut-off frequency of 0.1 Hz and a high cut-off frequency of 8.0 Hz, as

recommended by Li et al. [3]. This filtering process is implemented as shown in

Algorithm 1, making use of the BBPF and filtering implementation of the Python

library SciPy [19] version 1.13.1.

Algorithm 1 Resampling and filtering of vibration data
from scipy.signal import butter, filtfilt

# formatted_df is the formatted data as a pandas DataFrame

resampled_df = formatted_df.resample('10ms').ffill()

resampled_df.dropna(inplace=True)

resampled_df = resampled_df.reset_index(drop=False)

ba = butter(N=5, Wn=[0.1,8.0], btype='band', output='ba', fs=100)

filtered_signal = filtfilt(ba[0], ba[1], resampled_df)
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2.2.2 Alignment and Segmentation of Vibration and Base-

line Signals

To ensure accurate comparison and analysis, the alignment of signals was achieved

by resampling the baseline signal’s timestamps to match those of the vibration

signals. The process began by identifying the overlapping time spans of both signals,

followed by cropping to retain only these common segments. Subsequently, the

baseline signals were linearly interpolated to match the timestamps of the vibration

signals, thereby aligning the datasets. This is demonstrated in Algorithm 2. Finally,

the aligned vibration and baseline signals were segmented based on the time spans of

the specific experiment stages, recorded during each measurement. These segments

were then concatenated for subsequent analysis. The segmentation process was

implemented as detailed in Algorithm 3.

Algorithm 2 Alignment of vibration and baseline ecg signals
# Find overlapping period

start_overlap = max(vibration.index.min(), ecg.index.min())

end_overlap = min(vibration.index.max(), ecg.index.max())

# Truncate data to overlap

vibration = vibration[start_overlap:end_overlap]

ecg = ecg[start_overlap:end_overlap]

vibration.index = pd.to_numeric(vibration.index, errors='coerce')

ecg.index = pd.to_numeric(ecg.index, errors='coerce')

# Drop any NaN values that might have resulted

vibration = vibration.dropna()

ecg = ecg.dropna()

# Convert to numpy arrays and ensure they are 1-dimensional

x = np.asarray(vibration.index, dtype=np.float64).flatten()

xp = np.asarray(ecg.index, dtype=np.float64).flatten()

fp = np.asarray(ecg.values, dtype=np.float64).flatten()

interpolated_ecg = np.interp(x, xp, fp)

return pd.DataFrame(interpolated_ecg, index = vibration.index)
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Algorithm 3 Segmentation of a given vibration or baseline signal
# timeframes contains the timestamps of the start and end of

# the experiment stages.

stages = []

idx = []

# Find the timestamps closest to the start and

# end time of the experiment stages

for tf in timeframes:

differences = abs(np.subtract(timestamps, tf))

idx.append(np.argmin(differences))

# Identify the indices of the relevant sections

for i in range(0, len(idx), 2):

ts = timestamps[idx[i]:idx[i + 1]]

trunc_signal = signal[idx[i]:idx[i + 1]]

# Calculate the duration in seconds

dur = ts - ts[0]

in_sec = dur.astype('timedelta64[ms]').astype(float) / 1000

stage = pd.DataFrame({'timestamps' : in_sec,

'signal': trunc_signal})

stages.append(stage)
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2.3 Heart Rate and Respiration Rate Estimation

Figure 2.4: The HR extraction process, including EEMD application to the filtered
vibration signal, PCA on IMFs 5 and 6, and STFT on the resulting FPC.

Figure 2.4 demonstrates the process of HR extraction. The RR extraction process

is analogous. As recommended by Li et al. [3], the process began by identify IMFs

5 to 11 using EEMD. Then PCA was applied to the groups of IMFs 5 to 6 for

HR and IMFs 7 to 11 for RR, extracting the First Principal Component (FPC)

from each group [3]. The FPC was analysed using STFT to determine its dominant

frequencies. By converting the dominant frequencies from Hz to bpm [3], a function

over time for the HR and RR was obtained. Finally, a grid search, based on the

Scikit-learn Python library [20], was used to determine the best hyper-parameters.
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2.3.1 Intrinsic Frequency Extraction of Cardiac and Respi-

ratory Activities Using EEMD and PCA

As suggested by Li et al. [3] the relevant frequencies were extracted from the vibra-

tion signals by identifying IMFs 5 to 11, using EEMD. The EEMD was computed

using the implementation from the Python library PyEMD [21] version 0.2.13. To

ensure repeatability, the number of trials per IMF candidate was set to 100, and the

random noise seed was set to 131. Furthermore, to decrease computation time, the

maximum number of calculated IMFs was limited to 11. The Python implemen-

tation can be seen in algorithm 4. Lastly, to validate, if the IMF groups covered

the correct frequency ranges, spectrograms were generated for each IMF, using the

STFT implementation from the Python library Scipy [19].

Algorithm 4 Implementation of EEMD
from PyEMD import EEMD

eemd = EEMD(trials=100)

eemd.noise_seed(131)

eemd.eemd(S=signal, max_imf=11)

eIMFs, res = eemd.get_imfs_and_residue()

To extract intrinsic cardiac and respiratory information from the IMFs, PCA

was applied to the HR and RR groups [3]. According to Li et al. [3], the FPCs

present the intrinsic frequencies of cardiac and respiratory activities as they retain

most of the variation in the selected IMFs. To extract the FPCs, as demonstrated

in the presented code 5, the input array, comprised of the IMFs as column vectors,

was first standardised using StandardScaler from the Python library Scikit-learn [20]

version 1.5.0. The PCA implementation from the same library [20] was then applied

to the standardised array, and the FPC was extracted.

Algorithm 5 PCA implementation for extracting the FPC from IMFs 5 and 6
import numpy as np

import sklearn

# Format and standardise the IMF group

X = np.vstack((imf5, imf6)).T

scaler = sklearn.preprocessing.StandardScaler()

X_std = scaler.fit_transform(X)

pca = sklearn.decomposition.PCA(n_components=1)

principal_components = pca.fit_transform(X_std)

first_principal_component = principal_components[:, 0]
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2.3.2 Extraction of Heart Rate and Respiration Rate Using

STFT

To analyse the FPCs and extract a function over time for HR and RR, STFT

was used. For this purpose, the STFT implementation from the Python library

SciPy [19] version 1.5.0 was applied to the FPCs. To ensure that only the rel-

evant frequencies were considered, the frequency array obtained from the STFT

was truncated to specific ranges. For HR calculation, the frequency range was set

to 0.75 to 2.4 Hz, while for RR, the range was restricted to 0.1 to 0.75 Hz. The

dominant frequencies within these ranges were then extracted by calculating the

maximum magnitudes of the truncated frequencies. The found dominant frequen-

cies, expressed in Hz, were then converted to bpm by multiplying by 60. The Python

implementation can be seen in Algorithm 6. To improve the models accuracy, the

parameters for STFT were optimised using a custom grid search as seen in Algo-

rithms 7, 8, and 9. The custom grid search is based on the Scikit-learn Python

library [20] implementation.

Algorithm 6 STFT implementation for the extraction of HR and RR
import numpy as np

from scipy.signal import stft

# Apply STFT

f, t, Zxx = stft(first_principal_component,

fs=100,

nperseg=win_len,

nfft=nfft,

noverlap= noverlap)

# Calculate the magnitude of all frequencies

magnitude = np.abs(Zxx)

# Truncate the frequencies to the frequency ranges for HR

min_freq, max_freq = 0.75, 2.4

frequency_mask = (f >= min_freq) & (f <= max_freq)

filtered_magnitude = magnitude[frequency_mask, :]

# Find the dominant frequencies

filt_peak_indx = np.argmax(filtered_magnitude, axis=0)

og_peak_idx = np.where(frequency_mask)[0][filt_peak_indx]

dominant_frequencies = f[og_peak_idx]

# Convert to BPM

HR = np.round(dominant_frequencies * 60)
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Algorithm 7 Grid search implementation
from sklearn.metrics import mean_squared_error

if is_HR:

param_grid = {'win_len': list(range(10, 200, 2)),

'hop_size': list(range(0, 100, 2)),

'nfft': [256, 512, 1024, 2048, 4096, 8192],

'min_freq': 0.8, 'max_freq': 2.0}

else:

param_grid = {'win_len': list(range(10, 75, 2)),

'hop_size': list(range(0, 45, 2)),

'nfft': [256, 512, 1024, 2048, 4096, 8192],

'min_freq': 0.1, 'max_freq': 0.75}

vse = VitalSignExtractor() # The created model

predictions, tested_params = [], []

averaged_predictions, mean_squared_errors = [], []

for win_len, noverlap, nfft, min_freq, max_freq in product(

param_grid['win_len'],

param_grid['noverlap'],

param_grid['nfft']):

if noverlap > win_len : continue

if nfft <= win_len : continue

params = { 'fs': 100, 'win_len': win_len,

'noverlap': noverlap, 'nfft': nfft,

'min_freq': param_grid['min_freq']

'max_freq': param_grid['max_freq']

}

y_pred, avg_y_pred, mse = test_parameters(X, y, vse, params)

if y_pred : # If the tested parameters were valid

tested_params.append(params)

predictions.append(y_pred)

averaged_predictions.append(avg_y_pred)

mean_squared_errors.append(mse)

# Find index of parameters with lowest MSE

idx = np.argmin(mean_squared_errors)

best_params = tested_params[idx]

best_score = mean_squared_errors[idx]

best_pred = predictions[idx]

best_averaged_prediction = averaged_predictions[idx]

vse.set_params(**best_params)
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Algorithm 8 Parameter test for the grid search implementation

vse.set_params(**params_to_test)

vse.fit(X, y)

y_pred = vse.predict(X)

y_pred = np.array(y_pred)

formatted_y_pred = format_for_comparison(y_pred, y)

# To avoid false constant HR estimation

if not all(x == formatted_y_pred[0] for x in formatted_y_pred):

mse = mean_squared_error(y, formatted_y_pred)

return y_pred, formatted_y_pred, mse

else :

return None, None, None

Algorithm 9 Averaging the Estimated Vital Sign Results
import numpy as np

ratio = len(predicted_pulse) / len(recorded_pulse_per_second)

return np.array([np.round(\

np.mean(\

predicted_pulse[\

int(i * ratio):int((i + 1) * ratio)]))\

for i in range(len(recorded_pulse_per_second))])

2.4 Data Analysis

This section provides a comprehensive overview of the model’s analysis pipeline.

The process begins with model validation, followed by a qualitative evaluation of

the model’s performance, and concludes with a descriptive statistical analysis of

the results’ characteristics. The evaluation approach is multifaceted, incorporat-

ing both quantitative and qualitative metrics to ensure a thorough assessment of

the model’s accuracy and reliability. Various statistical techniques are applied to

measure the agreement between estimated and observed data, complemented by

detailed visualisations to enhance the interpretability of the findings.
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Algorithm 10 Cross-validation implementation
import numpy as np

training_sets, test_sets = k_split(X, y, k)

mse_train_scores = []

mse_test_scores = []

best_models = []

best_params_list = []

for (X_train, y_train), (X_test, y_test) in zip(

training_sets, test_sets):

(model,

pred_train,

avg_pred_train,

best_params_train,

best_score_train) = custom_grid_search(X_train,

y_train,

param_grid)

assert model.is_fitted_

pred_test = model.predict(X_test)

avg_pred_test = format_for_comparison(pred_test, y_test)

mse_train = mean_squared_error(y_train, avg_pred_train)

mse_test = mean_squared_error(y_test, avg_pred_test)

mse_train_scores.append(mse_train)

mse_test_scores.append(mse_test)

best_models.append(model)

best_params_list.append(best_params_train)

avg_mse_train = np.mean(mse_train_scores)

avg_mse_test = np.mean(mse_test_scores)

best_index = np.argmin(mse_test_scores)

best_params = best_params_list[best_index]

The model validation was conducted using techniques such as cross-validation,

cross-correlation, mean absolute errors (MAE), mean percentage errors (MPE), and

mean squared error (MSE). Cross-validation was employed to assess the model’s

ability to generalise to new data by dividing the dataset into multiple subsets and

evaluating the model’s performance on each subset. The python implementation

can be seen in Algorithm 10. From the Python library Numpy [22] version 1.26.0,
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the cross-correlation implementation was utilised to measure the similarity between

the estimation and actual signals, providing insight into the temporal alignment

and overall accuracy of the model. To assess the models accuracy, MAE and MPE

were implemented using the before mentioned Numpy [22] Library, while the MSE

implementation from the Scikit-learn [20] library was used.

The qualitative evaluation of the model’s performance was carried out using

several statistical metrics, including mean, standard deviation, variance, kurtosis,

and skewness. The mean provides a measure of central tendency, while the standard

deviation and variance quantify the dispersion of the data. Kurtosis and skewness

were used to assess the shape and asymmetry of the distribution, offering deeper

insights of the model’s behaviour. To calculate these values, the implementations

from the Python library Numpy [22] version 1.26.0 were used.

Descriptive statistical measures were employed to further analyse the model’s

performance and the characteristics of the data. Bland-Altman plots were used to

visualise the agreement between the model’s estimations and the actual measure-

ments, while Quantile-Quantile (QQ) plots assess the normality of the data distri-

bution. For both Bland-Altman- and QQ-Plots, the Python library Pingouin [23]

version 0.5.4 was used. General signal visualisation techniques using the Python

library Matplotlib [24] version 3.7.1 were also applied to provide an intuitive un-

derstanding of the data patterns and any discrepancies between the modelled and

observed signals.
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Chapter 3

Related Works

Recent advancements in monitoring technologies that utilise vibration signals have

significantly expanded their application across various domains, including at-home,

clinical, and vehicular environments. Traditional signal processing techniques have

been extensively employed in this field, providing valuable insights into non-invasive

monitoring methods. Additionally, several studies have introduced machine learn-

ing models for the extraction and analysis of cardiovascular signals, with a partic-

ular emphasis on non-invasive approaches. This chapter offers an overview of the

methods used for extracting vital signs from vibration signals, encompassing both

traditional signal processing techniques and machine learning approaches.

3.1 Traditional Signal Processing Approaches for

Vital Sign Extraction

This section discusses various methodologies, highlighting their respective benefits

and challenges. Jafari et al. [9] introduce a Hilbert adaptive beat identification

technique for detecting heartbeat timings and inter-beat intervals from SCG us-

ing a tri-axial microelectromechanical accelerometer. This method demonstrates

high correlation and accuracy across different body positions, making it suitable for

real-time continuous cardiac monitoring. Furthermore, since it is based on Hilbert

Transform, it is able to create a function over time for the HR. However, its per-

formance is notably impacted by noise, particularly in low-quality signals or during

dynamic movements, which presents a significant challenge in practical applications.

Similarly, Jia et al. [25] propose VitalMon, a geophone-based system designed

to monitor heart and respiratory rates even when two individuals share a bed.

Their system implements a combination techniques, such as amplitude modulation,

square-law amplitude demodulation, auto-correlation functions, FFT, and blind
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source Separation techniques. The system effectively separates and analyses mixed

heartbeat signals, achieving low estimation errors for both heart and respiratory

rates. Despite its accuracy and non-intrusiveness, VitalMon struggles with the de-

tection of low-frequency respiratory signals, as geophones are not optimally sensitive

to such vibrations. Moreover, monitoring heart rates in a shared bed environment

remains challenging due to overlapping signals.

Shafiq et al. [17] present an automated approach for annotating SCG peaks re-

quired for calculating systolic time intervals, using a template matching approach

combined with sliding templates and segmentation. This method is particularly

advantageous for long-term cardiac health monitoring in wearable configurations,

offering robust peak detection under various conditions. However, the method faces

difficulties in seated trials, where motion artifacts complicate accurate signal an-

notation, necessitating further development to enhance its robustness against such

disturbances.

Lastly, Clemente et al. [26] explore the use of a bed-mounted seismometer sys-

tem to monitor heart and respiratory rates, body movement, and posture during

sleep. Their approach combines local maxima statistics for HR detection and syn-

chrosqueezed wavelet packet transform for RR estimation in a non-intrusive manner.

Although the system is effective and cost-efficient, the commodity seismometer em-

ployed is insensitive to low-frequency measurements, limiting its ability to directly

observe respiratory rates, which poses a challenge for comprehensive sleep monitor-

ing.

3.2 Artificial Intelligence Approaches for Vital Sign

Extraction

Several studies have proposed machine learning models for extracting and analysing

cardiovascular signals, with a focus on non-invasive methods. For example, the sys-

tem ”HeartQuake” by Park et al. [10], explores the use of geophone-based systems

to capture cardiac activity patterns without direct body contact. HeartQuake em-

ploys a Bi-LSTM model to estimate ECG signals from vibration data collected

through a mattress. This method provides a low-cost, non-intrusive solution for

accurate ECG waveform estimation, demonstrating its utility in both clinical and

home settings. The system effectively captures key ECG components, proving its

potential for large-scale deployment in remote patient monitoring [10]. Despite its

low cost and non-invasiveness, the system faces challenges due to sensor noise and

external vibrations, which necessitate advanced filtering techniques. The need for a
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personalised model to mitigate errors under varying conditions also highlights the

complexity of real-world deployment [10].

Furthermore, Chen et al. [11] proposed a beat-to-beat heart rate detection

method also using a Bi-LSTM network, leveraging low-frequency SCG signals.

Their approach involved training a regression model to predict ECG signals from

SCG data, achieving high sensitivity and precision. This method facilitates con-

tinuous heart rate monitoring in a non-invasive manner, making it suitable for

integration into wearable devices and daily living environments [11]. The direct use

of raw SCG signals without feature extraction simplifies the process, but the vari-

ability of SCG waveforms across different subjects and activities poses significant

challenges [11]. Additionally, the limited dataset used for model training suggests

the need for further research on diverse signal directions [11].

Chan et al. [13] introduced a U-Net-based framework that estimates respiratory

rates from ECG- and SCG-derived respiratory signals. This approach transforms

the signals into the spectro-temporal domain, denoising them through a 2D U-Net

to reduce non-respiratory artifacts and fuses multi-modal inputs, resulting in a low

MAE of 0.82 bpm [13]. The generalisability of the model was validated with unseen

respiratory rates, making it a robust tool for real-world applications. However,

the requirement for resampling the demodulated respiratory signals for practicality

poses a challenge, especially for real-time implementation [13].

Alongside these deep learning-based methods, López-Rico and Ramı́rez-Chavarŕıa

[6] employed a K-Means clustering algorithm for SCG data processing. Their ap-

proach automatically labels waveform events, offering a cost-effective solution for

smart seismocardiography devices. Their study demonstrated the effectiveness of

this method in accurately grouping cardiovascular events, which could enhance the

development of home-made, smart health monitoring devices [6]. The clustering

technique demonstrates excellent performance in grouping cardiovascular events

with high accuracy [6]. However, the dependency on good-quality SCG signal mor-

phology and the limitation to breath-holding scenarios indicate areas for further

improvement and multivariable analysis to enhance the system’s robustness [6].
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Chapter 4

Results

4.1 Heart Rate and Respiratin Rate Estimation

4.1.1 Intrinsic Frequency Extraction of Cardiac and Respi-

ratory Activities Using EEMD and PCA

Figure 4.1: A spectrogram presenting the frequency spectrum of IMF 5 to 11. The
red dotted lines mark the epxeriment stages. Note. Only frequencies with a log
magnitude multiplied by ten between 32 and 36 dB are visualised.
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This section presents the frequency analysis of the IMFs found via EEMD. A spec-

trogram visualising the frequency ranges of of IMFs 5 to 11 is presented in Figure

4.1. The ranges of IMFs 5 to 7 for one participant achieved a maximum dominant

frequency of 23.05 Hz, 28.52 Hz, and 14.45 Hz due to a peak at the end of the signal,

and were considered outliers (Figure 4.2). The maximum dominant frequencies of

IMFs 5 to 11, with and without outliers, can be seen in Table 4.1.

Figure 4.2: A spectrogram presenting the dominant frequency spectrum of IMF 5 to
7 considered to be outliers due to their peak at the end. Note. The peak of IMF 5,
6 and 7 are found at a frequency of 17.56Hz, 21.48Hz, and 11.33Hz, respectively.

Table 4.1: The average maximum dominant frequencies in Hz of IMFs 5 to 11, with
and without outliers. Note. All IMFs reached a minimum dominant frequency of
0.0 Hz.

IMFs Maximum (With Outlier) Maximum (Without Outlier)

5 8.15 6.58
6 6.19 3.65
7 3.18 1.82
8 2.01 2.08
9 2.51 2.8
10 0.95 1.04
11 1.06 1.17
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4.1.2 Extraction of Heart Rate and Respiration Rate Using

STFT

Figure 4.3: A comparison of the model’s estimated HR (red), compared to their
baseline measurement HR (black) for each participant. Note. In each graph, the
data from all experiment stages are shown.

The estimations of the model, compared to their baseline measurements can be seen

in Figure 4.3. The model did not return any results for RR estimation. On average,

for HR estimation the algorithm demonstrated a MAE of 5.78 bpm, with a MPE

of 1.18%, and a MSE of 53.64. Additionally, cross-correlation analysis revealed an

average correlation of 0.22 in the range of -1 to +1. Three-fold cross-validation

of the model yielded an average MSE of 27.53 for the training sets and 86.18 for

the test sets. In Table 4.2, the MSE score for the training and test sets can be

seen for each individual participant. The hyper-parameter identified through the

grid search for STFT are presented in Table 4.3. The parameter grid of possible

parameters included the window length ranges from 10 to 200 with an overlap of

0 to 100 samples for HR, and 10 to 75 with an overlap of 0 to 45 samples for RR.

The number of samples per FFT group was set to be between 256 to 8192 in steps

of powers of 2.
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Table 4.3: A listing of participant-specific hyperparameters used to optimise the
STFT, identified via a grid search. Note. The window length ranged between 10
to 18 samples, the overlap was between 8 and 12 samples, and the FFT group size
varied between 512 and 4096 samples in powers of 2.

Participant Window Length Overlap FFT Group Size

1 10 8 512
2 10 8 512
3 18 16 256
4 12 10 512
5 12 10 512
6 10 8 1024
7 10 8 256
8 14 12 512
9 10 8 4096

Table 4.2: The highest MSE scores from three-fold cross-validation applied to the
model for each participant of the experiment. Note. Training MSE scores range
from 18.4 to 53.73, while the test MSE scores are between 37.38 and 194.09.

Participant MSE Train MSE Test

1 23.35 194.09
2 20.51 115.7
3 18.4 40.36
4 20.97 65.01
5 24.12 74.14
6 36.48 49.03
7 20.52 37.38
8 29.72 60.64
9 53.73 139.27

To qualitatively evaluate the model’s performance, statistical metrics including

the overall mean (M ), standard deviation (SD), variance (s2), kurtosis (g1), and

skewness (g2) for both the model and the corresponding baseline measurements are

provided in Table 4.4. The same statistical metrics can be seen in Tables 4.5 and

4.6 for each individual participant of the experiment.

Table 4.4: Overall statistical evaluation of the model’s estimated HR compared to
it’s baseline measured HR.

Statistic Mean Standard Deviation Variance Skewness Kurtosis

Model 68.56 bpm 2.81 bpm 8.09 bpm 0.04 -0.15
Baseline 67.83 bpm 5.7 bpm 35.65 bpm 0.5 -0.24
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Table 4.5: A complete statistical evaluation of the estimated HR for each participant.
Note. M ranges from 57.01 to 79.05 bpm, with SD between 3.85 and 12.28 bpm,
and s2 from 1.96 to 3.5 bpm. Furthermore, g2 values range from -0.32 to 0.69, and
g1 values range from -0.83 to 0.79.

Participant Mean Standard Deviation Variance Skewness Kurtosis

1 65.99 bpm 5.75 bpm 2.4 bpm -0.15 0.06
2 67.04 bpm 6.64 bpm 2.58 bpm -0.32 0.12
3 79.05 bpm 10.31 bpm 3.21 bpm 0.69 0.79
4 67.49 bpm 9.35 bpm 3.06 bpm 0.35 0.04
5 66.88 bpm 7.24 bpm 2.69 bpm 0.27 0.08
6 61.57 bpm 8.22 bpm 2.87 bpm -0.2 -0.62
7 76.52 bpm 3.85 bpm 1.96 bpm -0.32 -0.83
8 68.96 bpm 12.28 bpm 3.5 bpm 0.05 -0.54
9 57.01 bpm 9.16 bpm 3.03 bpm 0.03 -0.44

Table 4.6: A complete statistical evaluation of the measured baseline HR for each
participant. Note. M ranges from 56.2 to 80.45 bpm, with SD between 9.44 and
81.0 bpm, and s2 from 3.07 to 9.0 bpm. Furthermore,g2 values range from -0.04
to 1.12, and g1 values range from -1.09 to 0.76.

Participant Mean Standard Deviation Variance Skewness Kurtosis

1 66.19 bpm 81.0 bpm 9.0 bpm 0.0 -1.09
2 69.35 bpm 31.38 bpm 5.6 bpm 0.52 -0.68
3 80.45 bpm 9.44 bpm 3.07 bpm -0.04 -0.04
4 69.13 bpm 23.27 bpm 4.82 bpm 0.85 0.58
5 68.26 bpm 30.96 bpm 5.56 bpm 1.12 0.76
6 62.37 bpm 36.73 bpm 6.06 bpm 0.23 -0.84
7 74.17 bpm 18.13 bpm 4.26 bpm 0.23 -0.39
8 70.88 bpm 21.16 bpm 4.6 bpm 0.81 0.27
9 56.2 bpm 68.79 bpm 8.29 bpm 0.76 -0.72

Two QQ plots evaluating the normality of the distribution of the estimated

and baseline HR can be seen in Figure 4.4. The R2 values ranged between .935

to .980 for the estimated HR function, and between .771 to .785 for the baseline

measurements. The agreement between the estimated and baseline HR was assessed

using a Bland-Altman plot, as shown in Figure 4.5. In each Bland-Altman plot, an

upwards trend is visible where larger values tend to show a greater difference.
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Figure 4.4: QQ plots, showing the comparison between the distribution of estimated
(a) and baseline (b) HR with the normal distribution.

Figure 4.5: Bland-Altman plots showing the agreement between the estimated and
baseline HR. Note. The black line shows the M ranging from -2.35 to 2.31, and
the limits of agreement are represented with blue lines, with a SD between -20.10
to 19.86.
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Chapter 5

Discussion

This thesis aimed to reconstruct and evaluate the model proposed by Li et al. [3].

The model’s algorithm incorporates EEMD for signal decomposition, PCA applied

to specific IMFs, and FFT for the extraction of HR and RR [3]. To extend upon

this, STFT was used instead of FFT, to extract time-resolved functions for HR

and RR. Hyper-parameter tuning was done using grid search [20]. The model was

evaluated using vibration and baseline data collected from a short-term controlled

experiment. Due to faulty timestamp measurements, data from only 9 out of the 10

participants was valid for analysis. Nevertheless, this did not limit the evaluation

of the model.

Overall, the model encountered significant challenges in processing noisy data

and handling abrupt changes. Particularly movement noise consistently posed dif-

ficulties, a recurrent issue observed in Stage 2 of the experiment and supported by

previous research [9]. The model’s average MAE, MPE, and MSE for HR estima-

tion indicated an acceptable error margin, with the mean values of the estimated

HR and baseline measurements being closely aligned, even when accounting for

standard deviation. Nevertheless, cross-correlation analysis reveals a weak aver-

age correlation, and the variance of the baseline is notably higher than that of the

model. This suggests that, despite the model appearing stable in comparison to the

baseline at first glance, a closer inspection reveals that the resulted estimated HR

function and the baseline measurements do not align well.

The model exhibits skewness close to zero (Table 4.4), suggesting a more or

less symmetrical distribution. In contrast, the baseline shows positive skewness,

indicating a longer right tail. The kurtosis values suggest that both distributions are

close to normal. Further analysis using QQ plots revealed that the HR estimations

are generally normally distributed. However, this distribution does not align with

the baseline measurements, as indicated by the S-shaped curve in the QQ plot and

the skewness values. In addition, the QQ plots highlight that the rounding and
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averaging per second of the estimated HR introduced a grouping effect in the data,

as evidenced by the step-like pattern in the left graph of Figure 4.4.

The Bland-Altman plots presented in Figure 4.5 reveal a gradual proportional

bias between the estimated and baseline values. Although despite the visible dis-

tribution of the dots, a recognisable trend is still apparent, suggesting that while

natural variability or noise may be present in the measurements, an overall sys-

tematic trend persists. The alignment of the dots into columns or clusters likely

resulted from discretisation or rounding effects, caused by the averaging per second.

Nonetheless, the overall trend appears to be upward.

A grid search, with parameter grids individually tailored for HR and RR estima-

tion, was conducted for the STFT. This approach generally increased the model’s

susceptibility to inconsistencies in the data. Particularly, because it seeks a general

solution assuming a constant HR and RR, which is unrealistic given their natural

variability. As visible in Plot (a) of Figure 4.3, the model struggled estimating the

correct HR, when confronted with sharp transitions, such as the jump from the first

to the second experimental stage. Additionally, the reliance on MSE as the primary

evaluation metric presented challenges. Although the average error may appeared

satisfactory, MSE did not adequately capture significant fluctuations in the data,

potentially resulting in misleading conclusions regarding the model’s performance.

An alternative approach could involve using other metrics such as the Root Mean

Squared Error [9–11].

The parameters for HR estimation, identified via grid search, spanned a range

of 10 to 18 samples per window, with an overlap of 8 to 16 samples. Thus,

each window effectively only covered 2 new samples, necessitating the averaging

of the extracted frequencies per second to accurately estimate HR. This approach

introduced a vulnerability to outliers and false peaks, making the model highly de-

pendent on the quality and characteristics of the vibration signal. The frequency

ranges for HR estimation were initially set based on the assumption that the maxi-

mum HR was 120 bpm, with a minimum HR of 48 bpm, restricting the analysis to

frequencies within 0.8 to 2.0 Hz. However, it was later discovered that the actual

minimum HR was below 48 bpm, leading to incorrect results in certain cases. For

instance, as shown in Plot (i) of Figure 4.3, the HR estimation in the first stage

was inaccurately high because the actual HR was below 48 bpm.

For RR estimation, the frequency range of 0.1 to 0.75 Hz was analysed, as

recommended by Li et al. [3]. Notably, no valid parameters were identified for

RR estimation using grid search, resulting in the model’s inability to produce any

results in this domain, highlighting another significant limitation in its performance.

While this issue may stem from an incorrect parameter range defined for the grid
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search, potential problems with geophone filtering, as suggested by Jia et al. [7],

are unlikely. This is due to the fact, that the extracted IMFs do contain frequencies

within the specified range, as evidenced by the spectrograms in Figure 4.1.

Compared to the results reported by Li et al., the accuracy of the reconstructed

model is notably lower. Furthermore, the review of related works identified various

approaches for extracting vital signs from vibration signals with superior perfor-

mance. For example, the signal processing system ”VitalMon” by Jia et al. [25]

achieves a low HR and RR estimation error, even when two individuals share a

bed. Similarly, the machine learning model ”HeartQuake” by Park et al. [10] ac-

curately detects all five ECG peaks with a low average error when participants are

stationary. Additionally, it estimates clinically significant ECG metrics, such as the

RR interval and QRS segment width, with low error rates. Looking towards future

research, there is still potential in refining this approach. While Li et al. employed

FFT to extract overall HR and RR from FPCs, our findings suggest that averaging

the complete HR estimation from the STFT time series achieves nearly comparable

accuracy. With further improvements in the extraction process, the STFT approach

could provide more detailed temporal information. Additionally, improving the in-

terval detection between beats or breaths, such as adaptive filtering [9], rather than

relying solely on grid search, and exploring a potential hybrid approach incorpo-

rating non-black-box machine learning techniques, such as k-means clustering [6],

could enhance the model’s effectiveness.

In conclusion, the model did not deliver satisfactory results, achieving only par-

tial success in HR estimation and failing to produce RR estimates. Improved inter-

val detection methods, beyond the current grid search approach, are necessary to

enhance the accuracy of the model. Future work should therefore explore the poten-

tial of integrating this approach with more robust heartbeat interval and respiration

detection techniques, such as adaptive filtering, or machine learning approaches like

k-means clustering.
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Appendix A

Code

Algorithm 11 Model based on the BaseEstimator from Scikit-learn [20]
from sklearn.base import BaseEstimator

class VitalSignExtractor(BaseEstimator) :

def __init__(self, fs: int = 100,

win_len: int = None, noverlap: int = None,

nfft: int = None,

min_freq:float=0.8, max_freq:float=2.0):

self.fs = fs

self.min_freq = min_freq

self.max_freq = max_freq

self.win_len = win_len

self.noverlap = noverlap

self.nfft = nfft

def fit(self, X, y) :

self.is_fitted_ = True

self.X = X

self.y = y

if not self.win_len :

self.win_len = min(self.fs * 1/4, len(X))

if self.noverlap " self.win_len :

self.noverlap = self.win_len

if not self.noverlap :

self.noverlap = 0

if not self.nfft or self.nfft " self.win_len :

self.nfft = self.find_nfft(self.win_len)

return self

def predict(self, X) :

# Feature extraction as described in main text

31



The VitalSignExtractor class, shown in Algorithm 11, is a custom Python imple-

mentation designed for extracting HR and RR from input data. This class inherits

from the BaseEstimator class provided by the Scikit-learn [20] library, which facil-

itates integration with Scikit-learn’s machine learning framework.
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Appendix B

Graphs

In the main text, we presented a QQ plot from a single representative participant.

Below, additional QQ plots from a subset of participants to illustrate the variability

in the results are included (Figure B.1 - B.4). Additionally, to compare baseline

ECG and vibration data, 10 second excerpts are shown in Figures B.5 - B.8.

Figure B.1: QQ plots, showing the comparison between the distribution of estimated
(a) and baseline (b) HR with the normal distribution.
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Figure B.2: QQ plots, showing the comparison between the distribution of estimated
(a) and baseline (b) HR with the normal distribution.

Figure B.3: QQ plots, showing the comparison between the distribution of estimated
(a) and baseline (b) HR with the normal distribution.

Figure B.4: QQ plots, showing the comparison between the distribution of estimated
(a) and baseline (b) HR with the normal distribution.
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Figure B.5: A 10 second excerpt of the baseline ECG measurements (black) and the
unfiltered (blue) and filtered (red) vibration signal

Figure B.6: A 10 second excerpt of the baseline ECG measurements (black) and the
unfiltered (blue) and filtered (red) vibration signal
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Figure B.7: A 10 second excerpt of the baseline ECG measurements (black) and the
unfiltered (blue) and filtered (red) vibration signal

Figure B.8: A 10 second excerpt of the baseline ECG measurements (black) and the
unfiltered (blue) and filtered (red) vibration signal
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Appendix C

Statistical Results

Table C.1: The duration in seconds of the collected data from the conducted study.
Note. Average per person is taken over the used data, which only covers the stages
from the experiment.

Overall duration 7988.58

Used 4406.42
Average per person 489.6

Table C.2: The MAE and MPE for the HR estimation for each participant, including
an overall average.

Participant Mean Absolute Error Mean Percentage Error

1 8.42 1.76
2 5.52 1.14
3 3.74 0.78
4 5.13 1.01
5 4.78 0.94
6 6.57 1.32
7 4.48 0.93
8 4.92 1.03
9 8.43 1.75
avg 5.78 1.18
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Appendix D

Use of AI-based Tools

In this thesis, the Artificial Intelligence tool ”Chat GPT” was used. All prompts

used are listed below. The results from each prompt were used to get an intuitive

understanding of a specific topic, or to rewrite existing text or code, according to

specific criteria.

• Please rewrite the following into a paragraph in perfect formal British English

for the ”chapter name” chapter in a scientific paper. The paragraph should be

4 to 5 sentences with the first one as the introductory one. It must be clear,

what the core meaning of the paragraph is. Please adhere to the Vancouver

system citation style and use latex syntax: ”bullet points of contents here”

• Please rewrite the following into paragraphs in perfect formal British English

for the ”chapter name” chapter in a scientific paper. Each paragraph should

be 4 to 5 sentences with the first one as the introductory one. It must be clear,

what the core meaning of the paragraph is. Please adhere to the Vancouver

system citation style and use latex syntax: ”bullet points of contents here”

• Please restructure and/or rewrite the following to better fit into a scientific

paper written in formal British English in present tense. Please adhere to the

Vancouver system citation style and use latex syntax: ”text here”

• Please improve the flow and wording of the following paragraph. Use formal

British English for a scientific paper. The paragraph should be 4 to 5 sentences

with the first one as the introductory one. It must be clear, what the core

meaning of the paragraph is. Please adhere to the Vancouver system citation

style and use latex syntax: ”text here”

• Please rewrite the following paragraph, so it is suited for a scientific paper in

formal British English. The paragraph should be 4 to 5 sentences with the
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first one as the introductory one. It must be clear, what the core meaning

of the paragraph is. If it is better suited, you may split the paragraph into

multiple paragraphs, which both must adhere to the previously stated rules.

Please adhere to the Vancouver system citation style: ”text here”

• Please shorten the following paragraph so it better suits a scientific paper

in formal English. The paragraph should be 4 to 5 sentences with the first

one as the introductory one. It must be clear, what the core meaning of the

paragraph is. If it is better suited, you may split the paragraph into multiple

paragraphs, which both must adhere to the previously stated rules. Please

adhere to the Vancouver system citation style: ”text here”

• Please shorten the following paragraph into ”x” sentences in formal English

for the ”chapter name” chapter in a scientific paper. Please adhere to the

Vancouver system citation style: text here”

• Please correct the grammar of the following text. Please use British English

Vocabulary in present tense and adhere to the Vancouver system citation

style: ”text here”

• Restructure the following paragraphs to be coherent with each other. Each

paragraph should be 4 to 5 sentences with the first one as the introductory

one. Use British English vocabulary in present tense. It must be clear, what

the core meaning of each paragraph is. Please adhere to the Vancouver system

citation style. If it is better suited, you may split a paragraph into multiple

paragraphs, which all must adhere to the previously stated rules: ”paragraph

here”

• Give me a longer list of synonyms for ”word here”, used in scientific papers.

• Rewriting method comments according to NumPy format: ”Comment here”

• Give me an intuitive understanding of ”topic here” and present some exam-

ples.

• Please write a method in python which does ”xyz”
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