
Curling Strategy Analysis
Comparing different methods to enhance decision-making and

ranking calls in simulated curling

Master Thesis

Michael Brunner

University of Bern
Faculty of Science, Pattern Recognition Group

PD Dr. Kaspar Riesen

May 2024

Abstract

This thesis investigates the development of strategic decision-making in simulated curling
using advanced computational methods. A simulated solution could revolutionize tactical
discussions in curling and enhance the strategy of professional curlers.

By focusing on position analysis and the integration of supervised learning and search
algorithms, the study aims to enhance the accuracy and effectiveness of strategic calls in
curling simulations. The research explores the strengths and limitations of self-learned
and supervised learning mechanisms, revealing that supervised neural networks and graph
neural networks outperform heuristic approaches and exhibit high accuracy in complex game
scenarios. Additionally, the thesis evaluates the performance of search algorithms, combining
Monte Carlo Tree Search and minimax, to refine call rankings.

The study underscores the necessity of a substantial and well-curated dataset to improve
the robustness and adaptability of these learning models. However, the current datasets are
insufficient within the realm of machine learning to enable the bot to consistently outperform
professional curlers, particularly in complex mid-end positions. The findings also indicate a
hybrid approach, combining different methods to analyze a position, might better address the
challenges of a continuous space.

Overall, this thesis provides a comprehensive framework for improving strategic decision-
making in simulated curling through advanced computational techniques, offering valuable
insights and practical methodologies for future developments in sports analytics and artificial
intelligence.

1

Contents

1 Introduction 3

2 Theory 6
2.1 Curling . 6
2.2 Machine Learning . 8

2.2.1 Neural Networks . 8
2.2.2 Graph Neural Networks . 10
2.2.3 Pattern Recognition . 12

2.3 Search Algorithms . 13
2.3.1 Minimax Algorithm . 13
2.3.2 Monte Carlo Tree Search . 16

2.4 Key Takeaways . 18

3 Solution 19
3.1 Simulation . 19
3.2 Bot . 22
3.3 Position Analysis . 25

3.3.1 Naive Bot . 25
3.3.2 Bot with Heuristics . 25
3.3.3 Self-Learned Neural Network Bot . 27
3.3.4 Supervised Neural Network Bot . 29
3.3.5 Graph Neural Network Bot . 30
3.3.6 Database Bot . 32

3.4 Test Setup . 34
3.5 Analysis . 36

4 Results 37
4.1 Position Analysis of Learning Bots . 37
4.2 Search Algorithm Parameters . 40
4.3 Position Classification . 41
4.4 Bot Comparison . 43

5 Conclusion and Future Work 46
5.1 Future Work . 48

2

1
Introduction

In recent years, advancements in artificial intelligence (AI) and machine learning (ML) have provided new
opportunities to enhance strategic decision-making in sports. Curling, with its intricate blend of strategy
and precision, presents a unique challenge and a fertile ground for applying these technologies. This
thesis explores the development and application of advanced computational methods to improve strategic
decision-making in curling, focusing on position analysis, supervised learning, and search algorithms.
Significant contributions in related work [1–3] have explored similar computational approaches, yet there
is still no tool that can be used in professional curling to analyze and optimize decision-making processes.

To develop a bot capable of making strategic decisions in curling, several challenges must be addressed.
Firstly, curling operates in a continuous space where the position and trajectory of each stone can vary
infinitely, making it difficult for a bot to predict and evaluate outcomes precisely. Secondly, categorizing
possible calls is inherently complex due to the vast number of potential strategies and moves available in
any given situation. This complexity is compounded by the difficulty a computer faces in understanding
the nuanced impact of specific shots on the overall game strategy. Overcoming these obstacles is essential
for developing a bot that can respond adequately to dynamic game conditions and make informed, strategic
decisions.

The primary goal of this thesis is to establish a baseline for further research into the application of
machine learning and search algorithms in curling strategy and performance. In curling, decision-making
is pivotal, often determining the outcome of a game. Traditional approaches rely heavily on the experience
and intuition of players and coaches. While effective, these methods have limitations, particularly in their
ability to process and analyze vast amounts of game data in real-time.

This thesis will thereby focus on position analysis in the context of curling, specifically the task of
determining possible calls from a given position. This task is inherently challenging due to the continuous
nature of the game space, where an almost infinite number of possible positions and trajectories must be
considered. This paper will develop multiple methods for ranking these calls, in an attempt to identify the
ones that maximize strategic advantage.

3

CHAPTER 1. INTRODUCTION 4

Figure 1.1: Key methods in a broader context.

Curling, often referred to as “chess on ice,” is a strategic sport that combines physical precision with
complex tactical decision-making. Each game involves two teams throwing rocks on a sheet of ice towards
a target area, with the objective of positioning their stones closer to the center than the opponent’s. The sport
is not only physically demanding but also requires players to make strategic decisions under varying con-
ditions, considering factors such as the state of the ice, the positioning of the stones and the score dynamics.

The motivation for this study stems from the potential of AI and ML to transform sports strategy and
performance. In curling, decision-making is pivotal, often determining the outcome of a game. Traditional
approaches rely heavily on the experience and intuition of players and coaches. While effective, these
methods have limitations, particularly in their ability to process and analyze vast amounts of game data in
real-time.

Figure 1.1 illustrates the diverse fields of AI explored and utilized in this thesis. The diagram is divided
into three branches: Machine learning, natural language processing, and decision-making algorithms,
each encompassing various techniques and methods relevant to AI. The specific approaches and their
overarching categories used in this paper are shaded in dark grey; other concepts, although providing
useful tools, were not employed in this study.

The main focus of this work is position analysis in the context of curling, specifically the task of
determining possible calls from a given position. This task is inherently challenging due to the continuous
nature of the game space, where an almost infinite number of possible positions and trajectories must be
considered. The goal of this research is to develop multiple methods for ranking these calls, ultimately
identifying the best call that maximizes strategic advantage.

The primary task is to analyze the current position on the ice and generate potential calls. Supervised
learning methods, including neural networks and graph neural networks, are trained to evaluate game
positions and propose strategic moves based on learned patterns from expert opinions and simulated
gameplay. An investigation into which methods achieve the best results in extracting calls provides the
core of this thesis. By focusing on generating and evaluating possible calls from any given position, this
study aims to enhance decision-making in curling through precise and effective position analysis.

CHAPTER 1. INTRODUCTION 5

In addition to this primary focus, the research aims to evaluate the effectiveness and efficiency of
different search algorithms, specifically Monte Carlo Tree Search and minimax, in various game situations.
Both of these algorithms play a major role in evaluating candidate moves in chess bots, providing a
foundation for evaluating different options in the context of curling due to the similar turn-based gameplay.
These algorithms will be analyzed and compared based on their performance in identifying optimal calls
under different conditions, providing insights into their strengths and limitations in the dynamic and
strategic environment of curling.

Another key objective is to develop a position classification system capable of matching game positions
to similar scenarios. This system could enable the direct calculation of win probabilities or the transfer of
strategic calls from one position to another, thereby improving the accuracy and efficiency of strategic
decision-making. By leveraging historical data and advanced classification techniques, the research seeks
to create a robust framework for understanding and exploiting positional similarities in curling, ultimately
enhancing the predictive and strategic capabilities of the simulation model.

The long-term goal is to develop a bot that not only competes against but potentially beats professional
players. Additionally, this bot should be able to calculate win probabilities for specific calls in given
positions, offering a strategic tool that professional curlers can utilize to refine their gameplay.

The thesis is structured into several key sections, each addressing different aspects of the research and
development process. Chapter 2 lays the theoretical foundation for the thesis. It begins with an overview
of curling rules and basic strategic principles, highlighting the importance of accurate decision-making in
the sport. The chapter then delves into various AI and ML concepts, focusing on supervised learning and
pattern recognition, neural networks, graph neural networks, and search algorithms such as minimax and
Monte Carlo Tree Search. These theoretical insights form the basis for the methodologies developed in
subsequent chapters.

Chapter 3 describes the methodologies and approaches developed for the curling bot. It covers the
simulation environment, including the game logic, physics engine, and player accuracy. The chapter details
the bot’s decision-making process, from position analysis and curl calculation to free path checking and
the application of search algorithms. Various mechanisms are explored and implemented, providing a
comprehensive overview of the bot’s capabilities.

Chapter 4 presents the findings from the evaluation of different components within the curling game
simulation. It includes an analysis of the learning bots’ accuracy, a comparison of search algorithm
parameters and the impact of database expansion on position classification. The chapter also compares
the performance of NN and GNN configurations, as well as examines the bots’ effectiveness in gameplay
scenarios.

The concluding chapter summarizes the key findings of the research, discussing the strengths and
limitations of the developed methodologies. It outlines potential improvements and future research
directions, emphasizing the importance of continuous data collection, feature representation, and algorithm
optimization. The chapter also reflects on the broader implications of the study for the field of sports
analytics and AI.

2
Theory

This chapter provides an overview of the theoretical foundations essential for this thesis. It begins with
Section 2.1, which offers an introduction to the sport of curling, setting the stage for the subsequent
technical discussions. Section 2.2 explores the realm of machine learning, with an emphasis on two
key strategies: supervised learning and pattern recognition. Following this, Section 2.3 delves into
search algorithms, specifically focusing on minimax and Monte Carlo Tree Search, which are pivotal
to the methodologies employed in this research. Finally, Section 2.4 integrates these diverse theoretical
components, highlighting their interconnections and relevance to the overall research objectives.

2.1 Curling
Curling is a strategic and highly competitive sport that originated in Scotland. This subsection briefly ex-
plains the rules and strategic basics of curling relevant to gameplay and tactics, as well as win probabilities
from historical data. Technical aspects are omitted as they are not relevant to the thesis.

The game is played between two teams, each consisting of four players, with the objective of scoring
more points than the opponent. A typical game consists of eight to ten ends, depending on the competi-
tion [4]. In each end, teams alternate turns until each has thrown eight rocks. Each player has a specific
role during their turn: one player throws the rock, two sweep and the last, called the Skip, holds the broom
and calls the shots from the opposite end of the sheet. According to the World Curling Federation, ”at
the completion of an end (when all stones have been played), a team scores one point for each of its own
stones located in or touching the house that are closer to the tee [also referred to as pin] than any stone of
the opposition. [4] R12.b)” The last stone advantage in curling is known as the ”hammer”. If a team scores
in an end, they must start the next end without the advantage of the last stone. In the event of a blank end,
where no team scores, the team with the hammer retains it for the next end. Understanding the rules of
curling is essential for effective game analysis and strategy development. This foundational knowledge
sets the stage for exploring advanced topics, such as search algorithms and machine learning strategies in
the following sections.

The basic strategy in curling involves several critical factors. One key element is assessing the win
probability after each end, considering the score and possession of the hammer. Win probability is

6

CHAPTER 2. THEORY 7

Figure 2.1: Win probability with hammer and six ends remaining [5].

crucial as it provides insights into which end scores are advantageous or disadvantageous. Data from
doubletakeout.com [5], which includes matches from the World Curling Tour, illustrates the win probability
between ends. This probability varies based on factors such as the number of ends remaining, the score,
and possession of the hammer.

Figure 2.1 presents the win probability data for a team holding the hammer with six ends remaining,
based on games played by the top 25 teams in the men’s world curling ranking. The first row in each table
displays the relative score to the opponent at the start of the end, while the second row shows the win
probability at the beginning of that end in percentage. Subsequent rows detail the win probability after
the next end based on the scores achieved during the current end. The data illustrates that any score for
the opponent is never beneficial when holding the hammer. Generally, the higher the team’s own score,
the better the win probability, with the exception of scoring a single point. Indeed, this results in the
loss of the hammer and can be strategically disadvantageous. These probabilities are crucial for the bot,
as they provide a basis for making informed choices that enhance winning chances. Understanding and
leveraging win probability is fundamental to strategic decision-making in curling. By analyzing end scores
and possession of the hammer, players and bots can make informed choices that enhance their chances of
winning.

Another important aspect is making strategic calls based on the specific situation on the ice. A ”call”
in curling refers to the strategic decision for the next shot. This decision-making process considers several
critical factor [6]:

• Score: The current game score influences strategic decisions; teams behind in score may take greater
risks.

• End: The stage of the game, or how many ends are left, slightly influences strategy but emphasizes
scoring regardless.

• Hammer: Possession of the hammer significantly impacts strategy; teams with the hammer prefer
an open field to maximize scoring potential.

• Shot: The specific shot being played; early shots set up positioning, while later shots aim to secure
points or limit the opponent’s score.

CHAPTER 2. THEORY 8

• Position: The arrangement of stones on the ice, which dictates immediate tactical choices.

Understanding the factors that influence specific calls in curling is crucial for optimizing strategy
during a match. While the overall goal is to secure a win by the end of the game, each specific call
made during play aims to improve the immediate tactical situation on the ice. To illustrate effective call
evaluation to achieve these short-term goals, insights can be drawn from the expertise of Howard, Olympic
gold medallist and two time world champion. His strategies provide a framework for understanding how to
assess and execute specific calls based on various in-game factors. Both human players and the simulation
bot utilize these strategic principles to optimize gameplay decisions. The strategy [6] adjusts based on
whether a team is leading or trailing, with riskier calls becoming more common as the game progresses or
as a team finds itself at a score disadvantage. The hammer’s possession dictates tactical preferences; teams
with the hammer aim to keep the playfield open to ensure scoring opportunities, while their opponents
strive to congest the house, increasing the likelihood of a steal, a score for the team without the hammer.

In summary, the decision-making process for each call in curling is multifaceted, involving the
assessment of various dynamic factors. By understanding and strategically evaluating elements such as the
score, end, hammer possession, shot type, and stone positions, players as well as bots can make informed
decisions that optimize their gameplay. These principles form the foundation for effective in-game strategy
and are crucial for the decision-making process of the different bots developed for this thesis. Other factors
such as player accuracy and ice conditions also play roles in strategic planning, but will be neglected as it
is programmed for one specific ice and player strength.

2.2 Machine Learning
This section delves into the basics of machine learning [7], focusing on supervised learning implemented
with neural networks and graph neural networks, as well as pattern recognition, specifically on matching
with a feature vector. Understanding these concepts is essential for developing a bot that is able to analyze
and respond to specific positions on the curling sheet with appropriate calls. By leveraging supervised
learning, the bot can be trained to recognize patterns and make predictions, while pattern recognition
techniques enable the bot to optimally match current game states to historical ones in a database.

2.2.1 Neural Networks
Neural networks have become pivotal in solving complex classification tasks such as image classifica-
tion [8, 9]. This subsection introduces neural networks and supervised learning, setting the stage for a
deeper exploration of their structure and function.

Neural networks consist of interconnected layers of artificial neurons that process data through dynamic
network architectures. Typically, these include input, hidden, and output layers:

• Input Layer: Receives raw data or features in form of a vector.

• Hidden Layers: Perform computations using weighted connections and activation functions to
transform input data.

• Output Layer: Produces predictions or classifications from the processed data.

Figure 2.2 illustrates a neural network with a fully connected hidden layer. In such networks, every
neuron in one layer connects to every neuron in the next, facilitating complex data transformations.

CHAPTER 2. THEORY 9

Figure 2.2: Structure of a neural network with a fully connected layer.

In a fully connected layer, each neuron’s output hi is computed as follows [8]:

hi = f

0

@bi +
nX

j=1

(xj · wij)

1

A

where:

• hi: Output of the neuron after applying activation function f .

• f : Non-linear activation function.

• bi: Bias of the neuron hi.

• xj : Outputs from the previous layer’s neurons.

• wij : Weights connecting neuron hi to neurons in the previous layer.

• n: Number of neurons in the previous layer.

Neural networks often utilize supervised learning, where a model is trained to map input data to known
output labels using a labeled dataset [10]. The training process involves adjusting the network’s parameters,
which include weights and biases, to minimize prediction errors. To fine-tune a network, the following
optimization techniques are used:

• Cost Function: Measures the discrepancy between predicted outputs and true labels, with common
examples including mean squared error and cross-entropy loss.

• Gradient Descent: An optimization algorithm that iteratively adjusts parameters in the direction
that minimally reduces the error, guiding the network towards optimal performance.

As parameters are fine-tuned, the network learns to perform tasks such as mapping images to class
labels in image classification, a process detailed through the gradient descent mechanism that iteratively
reduces the cost function.

Neural networks, with their robust architecture and learning capabilities, are a fundamental component
of machine learning, particularly in classification tasks. Understanding their structure and training

CHAPTER 2. THEORY 10

methodologies is crucial for developing advanced algorithms. This foundational knowledge sets the stage
for discussing specific applications within curling simulations in subsequent chapters, illustrating how
these algorithms adapt and function within the complex environment of sports analytics. In this thesis, the
goal is to train neural networks where each training sample consists of an input representing the current
position of stones on the ice and an output indicating the optimal call. This approach leverages the neural
network’s ability to classify and predict outcomes, making them invaluable for creating effective curling
bots.

2.2.2 Graph Neural Networks
Unlike traditional neural networks that operate on data in euclidean spaces, graph neural networks [11, 12]
are designed for non-Euclidean domains. They excel in managing graph-structured data, enabling the
capturing of complex relational information through an innovative process known as message passing.
Graph neural networks represent a significant evolution in the realm of deep learning, particularly suited to
processing data structured as graphs. These networks are crucial in domains where data exhibits intrinsic
relational properties, such as social network analysis, molecular chemistry, and knowledge graphs. This
subsection explores the fundamental aspects of GNNs, specifically message passing and pooling, and their
relevance to this thesis.

Graphs are mathematical structures [13] defined as G = (V,E), where V is a set of vertices (nodes)
and E a set of edges connecting these nodes. Each vertex v 2 V possesses its own attributes Xv, and
edges may also have their own features and weights. With this definition of a graph, this thesis now delves
into the mechanisms of a GNN.

Message passing [11] is a fundamental mechanism in graph neural networks, enabling each node to
receive and combine information from its neighbors. This iterative process involves several steps:

1. Each node sends a ”message” based on its current state and edge features.

2. The node aggregates incoming messages, often using functions like sum, mean, or max, to capture
different aspects of neighborhood information.

3. The aggregated message is then combined with the node’s current state to update its features through
a transformation, typically a neural network layer.

4. This updated state can be used for further processing or making predictions.

Through multiple rounds of message passing, nodes effectively gather and integrate information from
larger neighborhoods, enhancing the GNN’s capacity to model complex relationships within the graph. As
illustrated in Figure 2.3, a node aggregates features from its neighbors, refining its representation based on
the aggregated information. The resulting graph has the same structure, with updated attributes.

This procedure is mathematically defined by the following formula [11]:

H
(l+1)
v = f

⇣
H

(l)
v , {H(l)

u : u 2 N(v)}
⌘

Here, H(l)
v denotes the representation of node v at layer l, N(v) represents the set of neighboring nodes,

and f is a differentiable function that aggregates and transforms these features.

Graph convolutional layers [14] extend the concept of message passing by incorporating trainable
parameters that allow for more complex transformations of node features. These layers are a cornerstone in
learning on graph-structured data, enabling the network to perform convolutions over graphs. Importantly,

CHAPTER 2. THEORY 11

Figure 2.3: Illustration of the message passing mechanism in graph neural networks.

graph convolutional layers are not constrained by the dimensions of the input graph. The fundamental
operation of a graph convolutional layer can be expressed by the following formula [14]:

x
0
i = W1xi +W2

X

j2N(i)

ei,jxj

where:

• x
0
i: Updated feature of node i, with xi being the original feature.

• N(i): The set of neighbors of node i.

• W1 and W2: Trainable weight matrices that transform node features.

• ei,j : Edge features between node i and its neighbor j.

This layer effectively captures both the features of the nodes themselves and the influence of their
neighborhoods, making it powerful for tasks that require an understanding of local graph structures.
By learning optimal values for W1 and W2, the graph convolutional network can adapt to the specific
characteristics of the graph data it processes, enhancing its predictive performance on tasks such as node
classification, link prediction, and graph classification.

Pooling [11] in GNNs is utilized to compress and summarize the features within a graph. Pooling
operations enhance the GNN’s ability to handle graphs of varying sizes and structures by providing a
summarized representation that maintains essential topological and feature-based information. There are
two main types of pooling [11]:

• Hierarchical Pooling: This progressively coarsens the graph by merging nodes in a hierarchical
manner, typically based on clustering or other criteria. It reduces the graph’s size while preserving
its structural and feature information.

• Flat Pooling: In this approach, a fixed-size subset of nodes is selected or aggregated in a single step.
Techniques such as global attention or ranking functions are used to identify the most representative
nodes, which are then pooled to form a summarized representation.

Figure 2.4 shows the hierarchical pooling process in action, where the graph is pooled to a single
node in two steps. In each step, neighborhoods of nodes are pooled into a single node, with the new node

CHAPTER 2. THEORY 12

Figure 2.4: Demonstration of pooling in a GNN.

encapsulating the feature information from its constituent nodes. The final step is to transform this single
node with many features into a vector that can be classified using different kinds of neural networks. These
pooling techniques are critical for tasks requiring a condensed graph-level output and play a significant
role in the performance and scalability of GNNs across various applications.

In summary, graph neural networks, with their advanced message passing, convolutional layers, and
pooling techniques, provide a robust framework for modeling complex relationships within graphstructured
data. These techniques enable GNNs to effectively model and analyze complex relationships within graph-
structured data, making them indispensable for advanced machine learning applications in various domains.
In this thesis, GNNs are employed to accurately represent curling positions, enabling the bot to make
precise and strategic calls. This capability is essential for enhancing the bot’s performance and achieving
effective gameplay in curling simulations.

2.2.3 Pattern Recognition
Pattern recognition is a fundamental aspect of machine learning, particularly in the field of classification.
This section delves into matching algorithms, with a special focus on matching using a feature vector. This
method is similar to the k-NN algorithm with k = 1, but differs in that each object is treated as its own
cluster rather than being part of a larger one. This approach is especially relevant for comparing different
positions and finding the most similar ones in a database.

Matching with a feature vector involves identifying and matching objects based on their vectorized
attributes [8, 15]. This technique is particularly effective in complex scenarios, such as analyzing curling
positions where each rock has additional attributes depending on its location. The first step in the matching
process is to extract features that capture the essential characteristics of the objects of interest. In the
context of curling, relevant features might include the location, angles, and the visibility from the hack;
attributes that are crucial for understanding rock placement and determining strategic calls. Once features
are extracted, they are transformed into a standardized vector format. This standardization ensures that
each vector is uniform in length, with each element accurately representing a predefined feature, thus
facilitating straightforward comparisons between vectors.

To calculate the pairwise distance between objects, a distance metric is needed. This metric is crucial
for matching new objects to similar ones in the database. A typical one is the Euclidean distance, which is
defined as follows [16]:

d(X,Y) =

vuut
nX

i=1

(xi � yi)2

CHAPTER 2. THEORY 13

This formula calculates the straight-line distance in an n-dimensional space between two vectors X and Y ,
with a smaller distance indicating greater similarity. For the matching process to be effective, the selected
distance metric must satisfy several mathematical properties [16]:

• Non-negativity: d(x, y) � 0 for all x, y.

• Identity of Indiscernibles: d(x, y) = 0 if and only if x = y.

• Symmetry: d(x, y) = d(y, x) for all x, y.

• Triangle Inequality: d(x, z)  d(x, y) + d(y, z) for all x, y, z.

In this thesis, a weighted distance metric is used to account for the varying importance of different
features. This approach ensures that more important features have a greater influence on the distance
calculation, thereby improving the accuracy of the matching process.

In practical applications [15], each new object, represented as a feature vector, is compared pairwise
with every vector in a database using the distance metric. The object is matched to the database object
with the smallest computed distance, optimizing for the highest similarity. This process enables the
comparison of win probabilities of new positions with historical data, facilitating strategic decisions.
Attributes such as optimal or candidate calls can also be associated with each position in the database, and
these recommendations can be transferred to new positions based on matching results.

In summary, pattern recognition using feature vectors is a powerful technique for classifying and
analyzing positional data in curling. By extracting relevant features, representing them as standardized
vectors, and using distance metrics for matching, we can effectively compare new game states with
historical data. This method enables the bot to make accurate and strategic calls, significantly enhancing
its decision-making capabilities in curling simulations.

2.3 Search Algorithms
Search algorithms are essential tools in evaluating and comparing strategic decisions in curling. This
section focuses on two prominent algorithms: Minimax and Monte Carlo Tree Search. These algorithms
are highly effective in exploring possible game states and determining optimal calls, thereby enhancing
decision-making processes in curling simulations. By systematically analyzing potential moves, search
algorithms provide a robust framework for strategic planning and optimization.

2.3.1 Minimax Algorithm
The minimax algorithm [17, 18] is a recursive decision-making tool essential in zero-sum games, such as
chess [19], where two rational opponents aim to minimize their potential losses under worst-case scenarios.
This makes it an excellent algorithm to assist in the decision-making process for the curling bot. The
game is modeled as a tree, with nodes representing game states and edges representing possible moves.
Additionally, the explanation will also delve into the application of alpha-beta pruning, an optimization
technique that enhances the efficiency of the minimax algorithm by eliminating branches that do not
influence the final decision.

Figure 2.5 serves as an illustrative example of a minimax decision tree, where each node represents a
game state and edges represent possible moves, with the root node being the current state. The goal is to
evaluate which of the first two possible moves is the best response. Starting from the terminal nodes, the

CHAPTER 2. THEORY 14

Figure 2.5: Example of a minimax decision tree.

algorithm backtracks, with Maximizer nodes (white) selecting the maximum value from their children
and Minimizer nodes (black) picking the minimum value. For example, the leftmost Minimizer node
selects 8 as the minimum between 8 and 9, while its Maximizer parent picks 5 as the maximum between 8
and 2. This process continues until the root node, representing the current player’s optimal decision. In
this example, the optimal move for the Maximizer leads to a final score of 5, by choosing the left move.
The minimax algorithm thereby provides a systematic approach to decision-making in zero-sum games
by evaluating all possible moves and counter-moves to identify the optimal strategy. By backtracking
from the terminal nodes and selecting optimal values at each decision point, the algorithm ensures that the
chosen move maximizes the player’s advantage while minimizing potential losses. This robust method is
particularly useful for the curling bot to make informed strategic decisions.

Alpha-beta pruning [18, 20] is an optimization technique for the minimax algorithm that significantly
enhances its efficiency by pruning branches in the game tree that cannot influence the final decision. By
eliminating these branches, the computational complexity is reduced, and the decision-making process is
accelerated as unnecessary evaluations are avoided.

The alpha-beta pruning algorithm [20], detailed in Algorithm 1, maintains two key values: alpha and
beta. Alpha represents the minimum score that the maximizing player can guarantee, while beta represents
the maximum score that the minimizing player can ensure. These values are crucial for pruning branches
that do not need to be explored because they cannot affect the outcome. The pseudocode has been adapted
to fit the specific context of curling. It simulates gameplay until the end of the end is reached and then
returns the win probability. This adaptation ensures that the algorithm is directly applicable to the curling
scenarios addressed in this thesis, providing a practical and efficient method for strategic decision-making.

To visualize this process, Figure 2.6 depicts alpha-beta pruning using the same tree shown in Figure
2.5. In this depiction, edges in gray are not evaluated further. The algorithm starts by exploring the
leftmost branch of the tree, assessing the terminal nodes and propagating the values up to their parent
nodes. As the algorithm continues to evaluate the other branches, it uses two values, alpha and beta,
to keep track of the minimum and maximum scores that the maximizer and minimizer are assured of,
respectively. When the algorithm reaches the rightmost branch, it begins to prune nodes that cannot
affect the final decision, focusing on the evaluation of the second choice after the root. The maximizer

CHAPTER 2. THEORY 15

Algorithm 1 Minimax with Alpha-Beta Pruning
1: function MINIMAX(node, alpha, beta, isMaximizingPlayer)
2: if end is over then
3: return win probability given the new score
4: end if
5: if isMaximizingPlayer then
6: maxEval �1
7: for each child of node do
8: eval MINIMAX(child, alpha, beta, false)
9: maxEval max(maxEval, eval)

10: alpha max(alpha, eval)
11: if beta  alpha then
12: break
13: end if
14: end for
15: return maxEval
16: else
17: minEval +1
18: for each child of node do
19: eval MINIMAX(child, alpha, beta, true)
20: minEval min(minEval, eval)
21: beta min(beta, eval)
22: if beta  alpha then
23: break
24: end if
25: end for
26: return minEval
27: end if
28: end function

CHAPTER 2. THEORY 16

Figure 2.6: Effect of alpha-beta pruning on the minimax algorithm.

would not choose this option, as the previously evaluated move yields a score of 5. The second choice
cannot yield a score higher than 2, regardless of the evaluation of the remaining moves by the minimizer.
Therefore, by using alpha-beta pruning, the algorithm effectively reduces the number of nodes it needs to
evaluate, thereby increasing efficiency. This optimization ensures that only the most promising branches
are explored in depth, while less favourable ones are quickly discarded. This method significantly enhances
the performance of the minimax algorithm, making it more suitable for complex decision-making scenarios
such as those encountered in curling simulations.

The minimax algorithm, enhanced by alpha-beta pruning, is a powerful tool for decision-making in
zero-sum games. By systematically evaluating potential moves and counter-moves, it helps in identifying
the optimal strategy for each player. In the context of curling simulations, this algorithm is invaluable for
evaluating and comparing possible calls, ensuring that the bot can make strategic decisions that maximize
its chances of winning. The reduction in computational complexity provided by alpha-beta pruning further
enhances the efficiency and effectiveness of the simulation.

2.3.2 Monte Carlo Tree Search
Monte Carlo Tree Search (MCTS) [8, 18, 21] is a powerful search algorithm used to make optimal de-
cisions in uncertain and complex environments. This is the core search algorithm used in related works
focusing on the decision-making in curling [1]. Due to the inherent uncertainty in curling, each call must
be evaluated multiple times to increase the certainty of the decision. Monte Carlo Tree Search balances
exploration and exploitation [21] by iteratively building a search tree based on random simulations of the
game.

The Monte Carlo Tree Search algorithm consists of four main steps [22], which are repeated until a
computational budget (e.g., time limit) is exhausted. The four steps along with the application in curling,
are illustrated as follows:

1. Selection: Starting from the current game state, the algorithm selects child nodes, each representing
a different possible call. The selection policy balances the exploration of less promising nodes,
resulting from executing calls, and the exploitation of nodes with higher win rates.

CHAPTER 2. THEORY 17

Figure 2.7: Call evaluation using Monte Carlo Tree Search.

2. Expansion: Upon reaching a node that has unvisited children, the algorithm expands the tree
by adding more child nodes. These nodes represent additional possible moves. Due to the high
computational time required for simulating a curling shot, the number of child nodes added is
limited.

3. Simulation: For each newly added node, the algorithm performs a random simulation to the end
of the game. In the context of curling, the simulation runs only until the end of an end, as the win
probability for this stage of the game can be definitively determined.

4. Backpropagation: The win probabilities of terminal nodes are propagated back up the tree,
updating the value estimates and visit counts of the nodes along the path to reflect the outcomes of
the simulations. The updated values from the nodes are then used for further selection.

This iterative process allows the Monte Carlo Tree Search algorithm to build a comprehensive search
tree that effectively evaluates the potential outcomes of different moves. Figure 2.7 illustrates the Monte
Carlo Tree Search process, evaluating three different moves branching from the root node. Each move,
depicted with different dashed lines, is evaluated multiple times. This example shows that more promis-
ing moves are explored more frequently, while less promising moves are neglected. Through repeated
simulations and backpropagation of results, the algorithm refines its estimates, leading to more reliable
decision-making. This approach allows the algorithm to compare more promising moves with higher
certainty, without expending excessive computational time on less favourable options. In the context of
curling, Monte Carlo Tree Search is particularly useful due to the high variability and uncertainty in the
game’s dynamics. By performing numerous simulations for each potential call, the algorithm can provide
a more accurate evaluation of the expected outcome. This helps the curling bot to make informed strategic
decisions by considering the most likely results of each possible move.

In summary, Monte Carlo Tree Search is an effective method for handling the complexities and
uncertainties of curling. By iteratively simulating game outcomes and updating the search tree, Monte
Carlo Tree Search provides valuable insights that enhance the strategic capabilities of the curling bot,
ensuring more accurate and confident call evaluations.

CHAPTER 2. THEORY 18

2.4 Key Takeaways
This chapter explored the foundational concepts and strategies essential for developing an intelligent
curling bot. It began with an overview of the rules and basic strategic ideas of curling, providing the
necessary context for understanding the game’s dynamics and the decision-making processes involved.

The discussion then delved into various artificial intelligence concepts crucial for the bot’s development.
Supervised learning with neural networks (NNs) and graph neural networks (GNNs) were highlighted as
vital tools for solving complex classification tasks and handling graph-structured data. By training these
networks with input data representing the current state of the game and output labels for the best calls, the
bot can learn to make accurate and strategic decisions. In the context of curling, GNNs can represent the
relational structure of stones on the ice, enabling the bot to understand and predict the best moves in more
complex scenarios.

Pattern recognition with feature vectors was also covered, involving the matching of objects based
on their vectorized attributes. By extracting relevant features from the game state and representing them
as standardized vectors, the bot can compare new positions with historical data to make informed decisions.

Furthermore, the chapter discussed search algorithms, highlighting the minimax algorithm enhanced
by alpha-beta pruning. This method provides a systematic approach to decision-making by evaluating all
possible moves and counter-moves. Additionally, Monte Carlo Tree Search was presented as an effective
method for handling the uncertainty and variability of curling by performing multiple simulations for each
potential call, refining the evaluation of moves through iterative simulations and backpropagation.

These AI concepts collectively enhance the bot’s ability to analyze game states, predict outcomes, and
make strategic decisions. By integrating these methods, the bot can effectively navigate the complexities
of curling, optimizing its performance and strategic planning. This theoretical basis covers the essential
concepts, and Chapter 3 will explain how these techniques were applied in the context of this thesis.

3
Solution

This chapter provides a comprehensive exposition of the simulation environment and methodologies
developed for this thesis. Section 3.1 details the implementation framework of the simulation, highlighting
both the computational and infrastructural configurations used. Section 3.2 delves into the analytical
techniques and strategic tools available to the computational players, referred to as ”bots”, enabling them
to make informed decisions based on varied game scenarios. Section 3.3 explores the differences among
the bots in the simulation and describes the methods by which these bots systematically derive strategic
decisions, from observed positions and states during gameplay. Finally, Section 3.4 sets up the different
methodologies how the bots are tested.

3.1 Simulation
This section details the framework used to implement the simulation environment for this thesis. It
covers the core components that enable the simulation to function effectively and realistically. These
components include the game logic, which models the rules and mechanics of curling; the physics engine,
which simulates the physical interactions and movements of the stones; and player accuracy, which
introduces variability to replicate human performance. Together, these elements create a robust and
dynamic environment for testing and developing strategic decision-making in curling.

The game logic forms the core of the simulation environment, encapsulating the rules and mechanics
of curling. It is responsible for accurately modeling the game’s flow and ensuring that all actions adhere to
the established rules. The game logic includes the following components:

• Turn Management: Each end begins with the initialization of the curling sheet, where the positions
of the stones are set to out of play. Each shot in the simulation is executed sequentially, waiting for
all stones to come to a complete stop before the next shot is initiated.

• Strategy Implementation: Between shots, the bot evaluates the current state of play, assessing
the positions of all stones. It then uses predefined strategies to determine the optimal next call,
translating this strategy into specific shot parameters such as weight (speed), handle (rotation), and
line (launch angle).

19

CHAPTER 3. SOLUTION 20

• Scoring System: After all stones of an end have been played, the game logic calculates the score
based on the location of the stones in relation to the pin. The game continues through eight ends,
concluding with a tally of the scores to declare a winner. This process provides a complete emulation
of a curling match, testing the bots’ strategic capabilities.

The implementation of these components sets the foundation for the game logic, ensuring that all
actions and outcomes adhere to the established rules of curling. This robust game logic is crucial for
maintaining the integrity of the simulation, allowing for accurate rule enforcement and realistic gameplay.

With the basics of the game logic in place, the focus shifts on the physics engine, which is essential for
realistically imitating the physical dynamics of curling. The physics engine is a critical component of the
simulation, designed to realistically mimic the physical interactions and movements of the curling stones
on the ice. This level of detail is essential for creating a realistic and immersive simulation, providing a
solid foundation for testing and developing strategic decision-making in curling. The engine processes the
game through iterative time steps, meticulously managing key physical interactions and behaviors:

• Change of Position: Positions of the rocks are updated each time step based on their velocities.

• Curling Motion: Curling motion is simulated by adjusting the velocity vector. As the rock slows,
its velocity is scaled by a factor slightly less than 1, and the direction is incrementally rotated to
simulate the curl. The degree of rotation increases as the rock decelerates, governed by the following
relationship:

Rotation =

8
><

>:

sign⇥ 0.05
|V | if v < 100,

sign⇥ 0.025
|V | if v < 260,

sign⇥ 0.01
|V | otherwise.

Figure 3.1 visualizes the rotation of the velocity vector, showing that large velocities result in almost
no curl, whereas smaller velocities produce a much larger one.

• Velocity Reduction: The velocity decreases multiplicatively and ceases when insufficient to signifi-
cantly alter position:

V =

(
V ⇥ |V |�0.3

|V | if v < 10,

0 otherwise.

• Collisions: The physics engine accurately calculates the interactions between stones, incorporating
momentum, kinetic energy, and the loss of energy due the static friction between the rock and the
ice. Friction between the stones is also realistically modeled to enhance the authenticity of rock
interactions.

The constants used in the simulation’s physics engine were empirically derived through an iterative
process of trial and error. Starting with a framework that reflects research on the friction and the curl of a
stone [23], the constants were refined through expert evaluation of professional curlers to ensure that the
simulation mirrors real-world curling dynamics accurately. To enhance user experience, shots are rendered
at accelerated speeds to approximate real-time action, ensuring a continuous and realistic portrayal of rock
movement. However, the underlying simulation processes shots much faster, typically completing a throw
calculation in approximately 0.03 seconds. This is important for efficient algorithmic performance during
strategic decision-making.

To replicate the inherent uncertainties and variability in player performance observed in actual curling
games, Gaussian noise is introduced to each shot in the simulation. This method effectively limits the

CHAPTER 3. SOLUTION 21

Figure 3.1: Visualisation of the rotation relative to the rocks velocity.

player’s ability to consistently deliver perfect shots, thereby creating a more realistic and challenging
simulation environment.

The variability in the weight of a shot is modeled using Gaussian distributions, with different standard
deviations reflecting the accuracy levels observed among top-level players. This approach captures the
natural variability in the strength of each throw.

• For 30% of all throws, the noise level has a standard deviation (�) of 10 cm, representing high
accuracy.

• For 63% of all throws, � is 30 cm, indicating moderate accuracy.

• For 7% of all throws, � is 1 m, accounting for occasional significant deviations or mistakes.

The actual weight of the throw is determined by:

weightnew = N (µ,�2)

where µ is the intended weight of the throw and � is the standard deviation based on the above percentages.
Figure 3.2 visualizes the distribution curve, centering around the weight the player aims to achieve. This
distribution allows players to be accurate most of the time, with a small chance for significant outliers that
represent mistakes typical in top-level play. This distribution ensures that most throws are close to the
intended weight, with a small chance of larger deviations, mirroring real-world player performance.

The accuracy of the line, or the trajectory, of the shot is also influenced by Gaussian noise. The
standard deviation of this noise varies depending on the type of shot, reflecting the difficulty in controlling
different types of throws.

• Take-outs: These heavier and faster shots have a smaller standard deviation (� = 5cm), reflecting
their higher accuracy.

CHAPTER 3. SOLUTION 22

Figure 3.2: Visualization of Gaussian noise on the weight.

• Draws and Guards: These lighter and slower shots have a larger standard deviation (� = 10cm),
representing the greater difficulty in controlling their line due to the higher amount of curl.

This relationship is formalized as:

�line =

(
5cm if v > 280 (take-outs),
10cm if v  280 (draws and guards).

where v is the velocity of the throw.

By modeling the line accuracy in this way, the simulation accurately reflects the increased difficulty of
executing lighter, more precise shots compared to heavier, more direct shots.

The Gaussian noise models for weight and line accuracy are seamlessly integrated into the simulation.
Each shot’s intended line and weight are adjusted based on these noise models, ensuring that even the
most skilled virtual players exhibit performance variations similar to those of top human players. This
integration enhances the authenticity of the simulation, providing a realistic and challenging environment
for strategic analysis and training. By introducing controlled variability, the simulation not only mirrors the
unpredictability of real-life curling but also tests the robustness and adaptability of the strategies employed
by the bots.

3.2 Bot
This section details the components and methodologies used to develop the bot, which is responsible for
making strategic decisions during the curling simulations. The bot operates by analyzing the current game
position, determining the best possible calls, calculating the required curl for specific shots, checking for

CHAPTER 3. SOLUTION 23

free paths, and using search algorithms to enhance decision-making.

The core mechanism involves extracting a ranking of possible candidates calls from a given position,
considering five key factors: score, end, hammer, shot, and rock locations. This mechanism plays a crucial
role and will be further discussed in Section 3.3.

To execute a call accurately, the bot calculates the precise line, weight, and handle required. The bot
has several options for executing a shot:

• Draw: Calculating the necessary line and weight to place the stone at a specific location on the ice.

• Hit and Stay: Determining the required amount of curl and initial speed to hit a rock and maintain
its position.

• Freeze: Computing the line and weight needed to freeze to another rock, including options for
corner freezes.

• Tap: Assessing the line and weight needed for a straight or angle tap on a rock.

• Hit and Roll: Analyzing the angle and speed required to hit a rock and roll to a designated location.

• Double Take-out: Calculating the angle and the trajectories necessary to remove two rocks from
play.

• Run Back: Similar to a double take-out, involving hitting a front rock to travel back and remove a
secondary rock.

This comprehensive set of shot options allows the bot to execute any possible shot, at any location, and
relative to any rock on the ice. This versatility is crucial for adapting to various strategic scenarios during
gameplay.

With the line and weight determined, it is crucial to ensure that the path is unobstructed before execut-
ing the chosen shot. This calculation is not only a practical necessity but also fundamental to the strategic
integrity of the game. By verifying a clear path, the bot ensures that the intended purpose of each call is
fully realized, maintaining the effectiveness and precision of strategic plays.

The procedure involves a two-step process: Trajectory computation and obstacle detection to ensure
no other rocks block the path.

• Trajectory Computation: The trajectory of the stone is computed based on the initial weight and
line settings of the shot. This involves calculating all points along the expected path and using these
points to construct a line that represents the projected trajectory of the rock’s center. If the intention
is to hit another rock, the trajectory line terminates before reaching this rock. This method provides
a visual and precise prediction of the stone’s path, facilitating strategic planning and enabling crucial
adjustments before the shot is executed.

• Obstacle Detection: After establishing the trajectory line, the bot calculates the distance from the
line to each rock on the ice. If any rock is found to be closer to the line than the diameter of a stone,
the path is deemed obstructed; otherwise, it is clear. This step is critical to ensure that the planned
trajectory is free of interference, allowing the stone to reach its target without deviation.

CHAPTER 3. SOLUTION 24

Figure 3.3 visualizes this process, where the starting point on the lower left represents the hack, and
the curved line depicts the targeted path of the thrown rock’s center. The other points represent the centers
of all other rocks on the ice. The line is diagonal as the computations are made with predefined points to
facilitate faster calculation. These points do not reflect the actual positions on the ice but are relative to
other rocks, which is sufficient for accurately determining the free path.

Figure 3.3: Illustration of free path calculation.

Ensuring an unobstructed path allows the bot to execute strategic decisions with higher confidence
and precision. This process is vital for aligning the execution of the shot with its strategic objective,
maximizing the likelihood of achieving the desired outcome on the ice.

Finally, to enhance a call, search algorithms play a pivotal role in evaluating the potential effectiveness
of candidate calls generated during position analysis. To optimize the decision-making process, the two
search algorithms are combined. In the first stage, Monte Carlo Tree Search balances how many times
each candidate call gets evaluated, ensuring a broad exploration of potential moves. Once a promising
subset of calls is identified, the minimax algorithm is employed for a depth search after each candidate
call, considering potential counter-moves by the opponent and aiming to minimize potential losses under
worst-case scenarios. This hybrid approach leverages the strengths of both algorithms, ensuring a thorough
and efficient analysis that enhances the bot’s strategic decision-making capabilities.

The search depth extends until an end is completed, as it then becomes possible to use the win prob-
ability of intermediate ends. This means that earlier shots in an end have more depth than later shots.
Consequently, the choice of search algorithm and the setting of parameters depend on which shot of the
end is being played.

The search parameters are adjusted such that every call takes roughly the same amount of computational
time. There are three different search parameters that define the search:

• c, representing the number of calls analyzed, usually in a range between three and 20.

CHAPTER 3. SOLUTION 25

• w, indicating the width of each call, or how many times a call gets analyzed, usually in a range
between five and 30.

• f , standing for the number of follow-up calls in later arising positions. Due to the time complexity,
this is between one and four.

In gameplay, the bot is designed to respond within five seconds, ensuring timely decision-making. By
adjusting these parameters, the bot can effectively balance computational efficiency and strategic depth.
This adaptability ensures optimal performance across different scenarios, maintaining the integrity and
effectiveness of the strategic decision-making process in curling simulations.

These tools, the curl calculation, the free path calculation, and the search algorithms, ensure effective
decision-making for each bot. Each bot differs in its mechanism to rank the calls from a given position,
which is the most challenging task.

3.3 Position Analysis
This section examines the diverse methodologies utilized by six different bots to generate candidate calls.
Each bot adopts a unique approach, ranging from straightforward heuristic methods, implemented with
given rules, to intricate neural network-driven strategies. These techniques are engineered to assess the
current position on the ice, incorporating factors such as the score and hammer advantage, to propose
potential strategic moves. These methods are designed to produce a ranked list of calls; based on the
search algorithms, only the top k calls are considered. Calls that are not possible, such as attempting to
hit an opponent’s rock when no such rocks are in play or if the projected path of the call is not free, are
automatically excluded.

Initially, the first two bots rely on heuristic-based approaches, characterized by their rigidity and
predefined rule sets, which limit flexibility but ensure quick decision-making. In contrast, the subsequent
four bots function within a unified strategic framework that utilizes a list of 305 predefined calls. This
extensive repertoire covers a broad spectrum of calls, to have an adequate response for each position,
significantly enhancing their capability to analyze and adapt to complex scenarios. Each call within this
framework is assigned a unique identifier, streamlining network configuration and analysis.

3.3.1 Naive Bot
The Naive Bot is designed to establish a basic performance baseline within the simulation, facilitating
comparisons with more sophisticated competitors. Its strategy is straightforward: the primary choice is
to hit the opponent’s rock closest to the pin. The secondary choice is to draw to the pin. While these
rules do not reflect a deep strategic understanding of the game, they serve as an effective baseline. By
focusing on eliminating the opponent’s closest rocks, this strategy provides a fundamental challenge that
more advanced strategies must surpass to enhance gameplay and increase scoring opportunities.

3.3.2 Bot with Heuristics
The Heuristic Bot employs a predefined set of rules designed to facilitate strategic decisions based on the
current score and the stage of the end. This bot serves as a benchmark to assess the effectiveness of static
strategy frameworks against more dynamic, learning-based approaches. Its decision-making framework
is divided into three main phases: opening calls dictating the initial four rocks of the end, subsequent

CHAPTER 3. SOLUTION 26

Score Hammer No Hammer
Leading by two or
more points 1. Hit on opponent rock in house

2. Come around behind corner guard
3. Come around behind center guard
4. Draw to the wings of the house

1. Hit on opponent rock in house
2. Come around behind center guard
3. Draw to center top four

Trailing by two or
more points 1. Corner guard

2. Come around behind corner guard
3. Come around behind center guard
4. Freeze rock behind center guard

1. Center guard
2. Come around behind center guard
3. Freeze rock behind center guard

Level score
1. Hit on opponent rock in house
2. Come around behind corner guard
3. Corner guard
4. Come around behind center guard
5. Freeze rock behind center guard

1. Hit on opponent rock in house
2. Come around behind center guard
3. Center guard
4. Freeze rock behind center guard

Table 3.1: Strategic plays based on the relative score and possession of the hammer.

strategic calls for the later stages and finally the last rock, which focuses on maximizing the score.

Opening calls are essential for setting the initial strategy for the end. They are methodically categorized
based on the current score and whether the bot has the hammer, which determines the strategic focus of
the play. The predefined rules for these scenarios are detailed in Table 3.1, demonstrating a systematic
approach to initiating play under diverse conditions. One key distinction in strategy is based on whether
the bot is leading or trailing in the game. When leading, the bot tends to prefer take-out shots to simplify
the end and maintain its lead by reducing the number of opponent rocks in play. Conversely, if trailing,
the bot adopts more aggressive strategies, utilizing calls that increase complexity and potential scoring
opportunities to change the game’s momentum. Another notable difference lies in the bot’s use of the
hammer. With it, the bot often has more options to play on the sides of the rink, leveraging the last-stone
advantage to secure scoring positions away from the center. Without the hammer, the strategy focuses
more on central play, aiming to control the key scoring area and limit the opponent’s opportunities.

As the end progresses, the Heuristic Bot’s strategy adapts to the evolving game dynamics, showcasing
its sophisticated decision-making capabilities. The rules become more complex and include strategies such
as doubles, clearing, and run backs. These rules are divided into different subsets depending on the current
score, the hammer and the hypothetical score of the current end. They are set up similarly to the opening
calls but with more cases and up to 15 different calls per case.

Finally, the last call focuses on maximizing the score. Similar to the middle end stage, there are three
factors that determine which rules are implemented: the current score, the hammer, and the hypothetical
score of the current end. In this case, several calls, such as playing a guard, are neglected as they are never
beneficial to the situation. The focus is more on calls like drawing to the pin to secure the end.

CHAPTER 3. SOLUTION 27

3.3.3 Self-Learned Neural Network Bot
The wide range of predefined rules makes the heuristic bot flexible enough to respond accurately in given
scenarios, but it is still limited by the rigidity of its predefined strategies. As improvement, the development
of the Self-Learned Neural Network Bot employs a systematic and data-driven approach, leveraging
extensive simulated gameplay to train a series of neural network models. Each model is specifically
tailored for strategic decision-making corresponding to individual shots within an end. This subsection
covers the structure of the neural network, which is used for the position analysis within the bot, along
with an explanation of the input vector and the data collection process.

The architecture of the neural network is intricately designed to process complex inputs derived from
the game’s position. The input layer comprises a feature vector with 3,888 entries, where each entry cap-
tures a specific aspect of the current game situation. This extensive input is essential for a detailed analysis
of the game state. The network architecture includes two linear layers, each containing 100 neurons. These
layers are interconnected by a ReLU (Rectified Linear Unit) activation function to introduce non-linearity,
enhancing the model’s capability to learn complex patterns.

The output layer utilizes a softmax function to transform the linear layer outputs into a probability
distribution across 305 potential calls. Each output neuron is associated with a specific call, allowing for a
precise mapping of input features to game strategies. This setup enables the bot to evaluate and select the
most probabilistically advantageous moves based on the current game conditions. Additionally, alternative
configurations of the network are explored to optimize performance and accuracy, the details of which will
be discussed in Chapter 4.

The input vector for the neural network is meticulously designed to capture a wide array of features
from the game’s position, amounting to 3,888 distinct inputs. These inputs provide a rich, detailed view of
the game’s state, facilitating sophisticated analysis and decision-making. Key features encoded within the
input vector include:

1. Score and Score Range: This includes a detailed listing of each team’s rocks in the house, organized
from the closest to the furthest from the pin, accompanied by additional information about the
positional structure.

2. Path Information: Indicates whether paths are blocked or playable, providing strategic insights
into possible moves.

3. Rock Location: The precise location of each rock on the ice is recorded, offering critical spatial
data for strategy formulation.

4. Area Indicators: Identifies whether a rock is situated in key areas such as the house, the four-foot
circle, or on the centerline, influencing tactical decisions.

5. Guarded Status: Details how effectively each rock is protected by guards, with measures varying
by the height and position of the guards.

6. Frozen Status: Notes how many rocks are directly located behind each rock, assessing the difficulty
of removing the rock from play.

Figure 3.4 visually illustrates how positions on the ice are transformed into this comprehensive feature
vector. Each rock, in play or not, is represented by 142 neurons. For rocks not currently in play, all
corresponding neurons are set to zero to preserve the accuracy of the data representation. The arrangement
of these rocks in the vector is determined by their proximity to the pin. This and other configurations of

CHAPTER 3. SOLUTION 28

Figure 3.4: Conversion of a position on the ice to its corresponding feature vector.

the feature vector will be further explored in Section 4.1.

During the data collection phase, over 20,000 unique game positions were simulated to encompass a
broad spectrum of potential game scenarios. Each position was thoroughly analyzed by playing out each
potential call until the best statistical outcome was determined, resulting in a comprehensive dataset of
position-call pairs. This dataset forms the foundational training material, enhancing the neural network’s
ability to make informed decisions across diverse game conditions.

To ensure adaptability by both teams, the dataset focuses exclusively on the team with the red rocks.
To simulate a play for the team with the yellow rocks, the bot is programmed to invert the colors of all
rocks on the ice and recalculate the feature vector accordingly. This color inversion allows for training a
single model that is capable of making optimal decisions regardless of the team color.

Furthermore, to augment the training data without extending the data collection period, each game
position was mirrored along the centerline and paired with its corresponding strategic call. This data
augmentation technique effectively doubles the dataset size, providing a more varied set of scenarios for
model training.

To streamline the training process, each shot in the training phase is evaluated based on a standard end
scenario. This means that learning is not tailored to each specific end and score but is rather based on an
average win probability that takes into account all possible ends and relative scores. While this approach
may limit the initial quality of the bot’s call ranking, it is compensated by adjusting the search parameters
during actual gameplay to reflect the real-time win probabilities specific to the current end and score.

Models were developed sequentially for each shot, from the last to the first, to precisely address the
strategic requirements specific to each rock’s context. Figure 3.5 visualizes the process to develope the
first three models.

• Last Rock Model: Trained on the final shot of the end, this model concentrates on decision-making

CHAPTER 3. SOLUTION 29

Figure 3.5: Visualization of the self-learning process.

that directly impacts the immediate score outcome, which makes it easy to score each shot.

• Second Last Rock Model: Following the optimization of the last rock model, training progresses to
the second-to-last rock. In this stage the all possible options for the fifteenth rock are explored, and
subsequently playing the last rock by the opposing team as learned before. This way it is possible to
assign a value, dependant on the score outcome of the end, to each shot.

• Earlier Rocks: Training for progressively earlier shots is handled equivalently as the second-to-last
rock. By exploring all possible shots and finishing the end with previously learned models.

Each model utilizes subsets of the initial 20,000 simulated positions, specifically tailored to reflect
the number of rocks already played in each scenario. This approach allows the bot to feature 16 distinct
models, each finely tuned for optimal performance for specific shots during an end.

This structured, sequential training approach ensures that decisions for earlier shots in the end are
influenced by strategies learned for later shots. While this methodology provides an efficient way to train
the bot, it also introduces a vulnerability to errors. For instance, an incorrectly classified position in the last
shot could lead to an incorrect example in the dataset for the second-to-last rock, potentially propagating
errors backward through the training sequence.

In summary, the Self-Learned Neural Network Bot leverages a comprehensive and systematic approach
to strategic decision-making. By training neural networks on extensive simulated data and using a
sequential, rock-specific method, the bot develops sophisticated strategies tailored to each game scenario.
Despite potential vulnerabilities, this methodology allows for nuanced and highly adaptive gameplay.

3.3.4 Supervised Neural Network Bot
The Supervised Neural Network Bot shares the same architectural framework as the Self-Learned Neural
Network Bot but is distinguished by its training methodology and data utilization. It focuses on data
labelled by experts to refine strategic decision-making capabilities, harnessing the insights of experienced
curling professionals. This bot utilizes an identical feature vector and neural network structure to that out-
lined in Subsection 3.3.3. It also employs the same color-switching and mirroring technique, minimizing
the effort required for dataset preparation and ensuring consistency across various game scenarios, but
differs in the method of the data collection.

Unlike the Self-Learned Bot which autonomously generates strategic calls through extensive simu-
lation, however, the Supervised Neural Network Bot is trained on a dataset which includes over 12,000
positions, each rigorously evaluated by seasoned curlers who have identified the best call based on their

CHAPTER 3. SOLUTION 30

knowledge and strategic insights. This expert-guided methodology ensures that the training data reflect
advanced strategic thinking and adhere to the competitive standards of curling. The training process for
this neural network involves fine-tuning the model to align closely with expert-labeled outputs, effectively
learning to replicate expert strategic decisions. Like its self-learned counterpart, the Supervised NN Bot is
equipped with 16 individual models, each specifically fine-tuned for distinct shots within the game. This
targeted approach ensures that the bot’s strategies are both precise and tailored to the various stages of the
game, in the same way a human would strategize.

By leveraging expert knowledge for its training, the Supervised NN Bot not only mimics high-level
human play but also integrates these expert insights into its algorithmic decisions. This approach provides a
robust framework for the bot, ensuring that each decision it makes is grounded in well-established strategic
principles and expert validation.

3.3.5 Graph Neural Network Bot
The Graph Neural Network Bot builds upon the foundational data and training strategies employed by
the Supervised Neural Network Bot but incorporates a graph-based model architecture. This advanced
approach is specifically designed to more effectively analyze the relational dynamics between rocks on
the curling sheet. By representing rocks as nodes and their connections as weighted edges, the GNN bot
processes the game state through multiple layers of graph convolutions, capturing complex dependencies
and spatial relationships to inform strategic decisions.

By using the same extensively annotated dataset as described in Subsection 3.3.4, this bot ensures
consistency in training quality while exploring new dimensions of data representation. Similar to the
Supervised NN Bot, the GNN Bot is equipped with 16 distinct models, with each dedicated to optimizing
decision-making for a specific shot in the end. This differentiation ensures that strategies are finely tuned
to the unique tactical requirements of each shot, from the opening to the final positions of an end. The
key difference lies in the representation of the position: here, the position is converted into a graph, and a
graph neural network is trained to accurately respond with the optimal call.

In the graph neural network architecture of the bot, each node within the input graph represents a rock
on the curling sheet. These nodes are intricately defined by several attributes that capture the essence and
strategic significance of each rock’s position. Key attributes for each rock include:

• Location: The coordinates of the rock on the ice, relative to the pin.

• Area Indicator: A categorical attribute indicating whether the rock is positioned in strategic areas
such as the house, the four-foot circle, or on the centerline.

• Guarded Status: Two numerical values ranging from 0 to 1, reflecting how well the rock is guarded,
with separate measurements for the in-turn and out-turn approaches.

• Frozen Status: A numerical value between 0 and 1 indicating the extent to which the rock is frozen
to another, affecting its mobility and strategic removal options.

Weighted edges are established between nodes to depict the relational dynamics among rocks. The
weight of an edge is determined by the strength of the relationship between rocks. That is, heavier weights
are assigned to edges where rocks exhibit a stronger connection, such as being in similar lines which may
indicate a guarding relationship or when rocks are in close proximity to each other. This graph structure
allows the bot to analyze the position and interpret complex rock relationships. Figure 3.6 provides an

CHAPTER 3. SOLUTION 31

Figure 3.6: Conversion of an example position to its input graph.

example of the conversion from the current position into a graph.

With a clear understanding of the input for the GNN, the next step is to explain the architecture of the
GNN. The GNN Bot utilizes a specialized architecture designed to process graph-structured data, enabling
sophisticated analysis of the relationships between rocks in curling:

• Graph Convolution Layers: The core of the model consists of two graph convolution layers
that transform the input features (attributes of rocks and their positions) into higher-level abstract
representations. These layers leverage the message passing paradigm to facilitate the flow of
information between nodes, thereby capturing the intricate relationships among the rocks.

• Pooling and Output Layer: After processing through the graph convolution layers, node features
are aggregated using global mean pooling, which condenses the information from all nodes into
a single vector. This vector is then processed through a linear layer to project the features into
an output space suitable for classification. The final output is processed by a softmax function,
which converts the linear layer outputs into a probability distribution over possible strategic calls,
indicating the most advantageous moves given the current game state.

The forward pass of the GNN orchestrates data through these components: graph convolution layers,
pooling, and fully connected layers. This structured data flow ensures that the GNN Bot can quickly assess
game dynamics and make informed decisions, reflecting a deep understanding of the ongoing strategic
interactions.

The training process for each of these models involves iterative optimization, where the model is
exposed to all positions from the training dataset specifically tailored for that shot. This approach allows
the models to learn from a wide range of scenarios, enhancing their ability to generalize and apply strategic
knowledge effectively under varying game conditions. During training, each model cycles through the
dataset, adjusting its parameters to minimize prediction errors and improve its accuracy in forecasting the
most effective call.

CHAPTER 3. SOLUTION 32

By leveraging graph neural networks, the GNN Bot enhances its ability to understand and analyze the
complex relational dynamics between rocks on the curling sheet. This advanced approach, combined with
the meticulous training of 16 distinct models for each shot, ensures that the bot can make highly informed
and strategic decisions. The integration of graph-structured data processing allows the GNN Bot to offer a
sophisticated and robust solution for strategic decision-making in curling simulations.

3.3.6 Database Bot
The Database Bot represents the final approach in this thesis, leveraging a comprehensive database of posi-
tions, each linked with a call ranking chosen by experts. The mechanism involves three key steps: feature
extraction, finding the closest match using a weighted metric, and transferring the call to the new position.
Additionally, this thesis investigates the number of distinct positions that exist according to the given metric.

Feature extraction is the foundational step in preparing game data for effective comparison. The process
involves distilling complex game situations into a standardized form, or feature vector, that quantitatively
describes key aspects of a position:

• Score and Score Range: Current and potential future score based on the ongoing end.

• Rock Count: The number of red and yellow rocks overall, as well as those within the house.

• Rock Proximity: Distances of each rock from the pin, providing a spatial analysis of stone
placement.

• Tee Line: Indicators of whether or not rocks are in front or behind the tee line.

• Guard and Freeze Metrics: Quantitative measures from 0 to 1 indicating how well a rock is
guarded or frozen, reflecting defensive and offensive potentials.

• Guard Count: Total number of guards in play, and in certain ares, influencing the strategic approach
to rock protection.

These features are designed to encapsulate all necessary information to allow for a comprehensive
assessment of the game state, ensuring that every crucial element is considered in the decision-making
process.

With a uniformly defined feature vector, it is possible to compare two vectors and compute their
distance relative to each other. Vector comparison in the curling simulation is executed using an adapted
Euclidean distance method that prioritizes more influential game aspects by adjusting the importance of
less crucial features. This specialized approach ensures that strategic decisions focus on the most impactful
elements of the current position:

• Weighted Importance: Weights are assigned to various features based on their relative importance
in influencing game outcomes. For instance, rocks positioned closer to the center of the house are
deemed more critical and thus assigned higher weights compared to rocks that are farther away or
outside the house. Specifically, the guarded status of the shot rock (most important rock) is given a
full weight (factor of 1), while lesser strategic rocks, for example the fifth rock, receive a reduced
weight (factor of 0.5).

• Distance Calculation: The modified distance calculation integrates these weights, enhancing the
focus on key strategic elements. This method is not only more relevant but also ensures a more
accurate match to historical data, as it amplifies the influence of critical game factors over peripheral
ones.

CHAPTER 3. SOLUTION 33

Figure 3.7: Transferring a call from the database to the current position.

The formula used for this adapted Euclidean distance is expressed as:

D(X,Y) =

vuut
nX

i=1

wi · (xi � yi)2

where D(X,Y) is the distance between vectors X and Y , wi denotes the weight assigned to the ith feature,
and xi and yi are the feature values for vectors X and Y respectively.

This weighting and calculation method allows the bot to swiftly locate the most analogous past position
within the database. Upon identifying the position most similar to the current one, the bot adopts the
associated ranked calls. It then fine-tunes these strategies to fit the specifics of the new situation, illustrated
in Figure 3.7.

To make future improvements, this thesis also investigates how many possible arrangements with the
previously defined metric exist. To enhance the robustness and comprehensiveness of the database, a
continuous expansion strategy is employed. This involves observing and analyzing new positions during
actual games. Each new position is compared to existing entries in the database:

• Threshold for Similarity: A predetermined threshold determines whether a new position is similar
enough to those already in the database. If no existing entry matches the new position closely
enough (as defined by the similarity threshold), the position is added to the database.

• Continuous Learning: This ongoing process not only expands the database but also refines the
bot’s ability to handle a wider variety of strategic scenarios, enhancing its adaptability and accuracy
over time.

By integrating new positions into the database, the bot progressively becomes more adept at recognizing
and responding to diverse and complex game situations. This dynamic approach to database management
ensures that the bot remains current with evolving strategies and conditions in competitive curling. This

CHAPTER 3. SOLUTION 34

strategy of expanding the database through real-time game observation underscores a commitment to
continuous improvement and adaptability, ensuring that the bot remains a valuable tool for strategic
analysis and decision-making in the sport of curling.

3.4 Test Setup
This section details the methodologies and configurations used to evaluate the various components of the
developed bot within the curling simulation. The setup includes the evaluation of the positions analysis,
search algorithms, position classification accuracy, along with an evaluation of each bot in gameplay to
test its adaptability in game scenarios.

The evaluation of learning bots involves testing three different bots: the Self-Learned NN bot, the
Supervised NN bot, and the GNN bot. Each bot’s performance is assessed by how well it handles decision-
making across various stages of a curling game. Each test is conducted on 100 positions, selected to focus
on different stages of an end, such as early, middle, and late stages. Positions were selected by top curlers
who defined the ”correct” call for each position, and additional ”acceptable” calls were noted, reflecting
the subjective nature of strategy in curling. This ensures that the bots are evaluated based on high-level
strategic thinking.

The impact of different configurations on the performance of neural network models is also explored.
This includes varying the size of the neural networks and adjusting the input vectors. Different structures,
such as the number of layers and neurons per layer, are tested to identify the optimal network size that
balances complexity with the risk of overfitting. The three different models that were tested contain
different number and sizes of hidden layers, all equiped with a ReLU activation function and a softmax at
the output layer.

• Final Model: Two hidden layers of size 100 each.

• Extended Model: Two hidden layers of size 500 each.

• Reduced Model: One hidden layer of size 20.

Two different configurations of input vectors are assessed, specifically, one with random rock order and
one with a fixed method to order the rocks in the input vector. The order is straightforward, where the rock
closest to the pin gets assigned as the first rock in the feature vector, the second-closest gets assign the
second spot and so forth.

To compare the accuracy of NNs and GNNs in handling different game scenarios, a test setup was
created that categorized positions by their complexity. This involved defining positions with varying
numbers of rocks and strategic intricacies. The test set included simpler scenarios with fewer rocks
and straightforward strategies, as well as more complex configurations with multiple rocks and intricate
strategic considerations. Each bot was tested on these categorized positions to evaluate their ability to
accurately predict optimal moves. The comparison aimed to determine how the structural differences
between NN and GNN affect their performance across a spectrum of position complexities. This setup
provided a basis for analyzing which type of neural network is more effective in different strategic contexts,
where both networks are trained on the same dataset.

The evaluation of search algorithms focuses on comparing the effectiveness of Monte Carlo Tree
Search and minimax in enhancing strategic decision-making. Different setups of parameters are tested to
compare their effectiveness, including the number of analyzed calls (c), the maximum number of times a

CHAPTER 3. SOLUTION 35

call gets analyzed (w), and the number of follow-up calls in later positions (f). The success rates of the
search algorithms are compared against decisions recommended by the Supervised Neural Network Bot to
understand how search algorithms help the bot align with expert strategies.

Timing analysis measures the computational time required for each parameter setup under various
game conditions. Execution times are recorded for each algorithm during different stages of the game, on
a standardized set of positions with predetermined conditions to ensure consistency. The analysis aims to
determine how the stage of an end (how many rocks are remaining), and the chosen parameters c, w and f

affect the performance and thoroughness of strategic analysis. The goal is to balance thorough analysis
with efficient processing to ensure quick decision-making during gameplay.

The accuracy of the bots’ ability to classify positions during gameplay is examined by assessing the
accuracy with different database sizes and the number of rocks in the position. The database is expanded
through games played between two bots, with each position classified before every shot. If the dissimilarity
to the most similar position in the database is greater than a threshold (�), the position is added to the
database to enhance future classification accuracy. The threshold � is is set to one, aligning with expert
opinion that such a call transfer still yields the optimal call.

To comprehensively evaluate the adaptive capabilities of the bots, a detailed tournament setup was
designed. Each bot played multiple matches against every other bot, including self-matches, to assess their
strategic flexibility and overall performance in diverse gameplay scenarios. These matches are summarized
in two tournaments:

1. With Search Algorithms: In this setting, bots utilize their full potential by employing search
algorithms to determine the best strategic moves, showcasing their maximum strategic capabilities.

2. Without Search Algorithms: Here, bots execute shots based on their immediate position analysis,
providing critical insights into the strengths and weaknesses of each bot’s decision-making process
without the aid of advanced search techniques.

This setup allowed for an in-depth examination of how each bot adapts to different opponents and strategies.
Additionally, to understand how well the bots’ strategies align with human gameplay, they strongest bot
was tested against human players of varying expertise, from professional curlers to complete novices. The
human opponents were categorized as follows:

• Professional Curler: Competes international levels.

• Experienced Amateur: Possesses significant experience but does not compete professionally.

• Casual Player: Started curling within the last three to five years.

• Non-Curler: Lacks any prior experience with curling.

These matches aimed to provide insights into the effectiveness of the bots’ decision-making algorithms
when faced with real-world strategic challenges.

This comprehensive test setup ensures a thorough evaluation of the curling game simulation’s various
components, providing valuable insights into the effectiveness and efficiency of the implemented strategies
and algorithms.

CHAPTER 3. SOLUTION 36

3.5 Analysis
In this chapter, the development and implementation of various bots for the curling game simulation were
detailed. The Naive Bot and Heuristic Bot serve as baselines, using simple strategies to make decisions.
The Self-Learned Neural Network Bot and Supervised Neural Network Bot leverage neural networks
to enhance strategic decision-making, with the former relying on extensive simulated gameplay and the
latter on expert-annotated data. The Graph Neural Network Bot advances this approach by employing a
graph-based architecture to capture the relational dynamics between rocks more effectively. Finally, the
Database Bot utilizes a comprehensive database of pre-ranked positions to inform its strategic choices,
incorporating a continuous expansion strategy to improve over time.

Each bot’s methodology, from feature extraction to strategic call ranking, highlights the diverse
approaches used to tackle the complexity of curling gameplay. By integrating advanced machine learning
techniques and continuous learning mechanisms, these bots collectively demonstrate the potential for AI
to make informed and strategic decisions in dynamic, real-world scenarios. The next chapter will present
the results of evaluating these bots, providing insights into their performance and effectiveness in various
aspects of the game.

4
Results

This chapter presents the findings from the evaluation of various components of the curling game simulation,
including position analysis, search algorithms, and position classification. The accuracy of the learning
bots is detailed in Section 4.1. Next, Section 4.2 compares the performance of different search algorithm
parameters. The accuracy of position classification, as explained in the database bot, and the impact of
database expansion are examined in Section 4.3. Finally, Section 4.4 offers a comprehensive comparison
of the bots in gameplay and includes tests against curlers with varying levels of expertise.

4.1 Position Analysis of Learning Bots
This section evaluates the performance of three different bots: the Self-Learned NN bot, the Supervised
NN bot, and the GNN bot. The analysis compares how each bot handles decision-making across various
stages of a curling game, with specific attention to the quality of their strategic calls. Additionally, different
structures of NNs are compared.

The performance of each bot in correctly identifying the optimal or acceptable calls was quantified and
is presented in Table 4.1. The table shows the percentage of times each bot made a call that matched the
curlers’ chosen strategies.

The data reveals several trends regarding the performance of the bots during different stages of the end.
The accuracy generally increases at later stages of the end due to two primary reasons. Firstly, at these

Test Condition Self-Learned NN Supervised NN GNN
Correct Acceptable Correct Acceptable Correct Acceptable

Fifth Rock 23% 41% 41% 80% 32% 79%
Ninth Rock 12% 51% 33% 69% 35% 73%

Second Last Shot 64% 87% 82% 90% 83% 88%
Last Shot 95% 98% 93% 96% 89% 96%

Table 4.1: Percentage of correct and acceptable calls made by each bot purely by the position analysis.

37

CHAPTER 4. RESULTS 38

Configuration Ordering Input Accuracy Training Set Accuracy Test Set
Final Model Yes 97% 95%

Extended Model Yes 99% 82%
Reduced Model Yes 82% 80%

Final Model No 62% 49%
Extended Model No 88% 38%
Reduced Model No 53% 41%

Table 4.2: Performance of various neural network configurations on the training set and the test set.

stages, a bot can evaluate more calls using a search algorithm, which allows for more thorough analysis and
better decision-making. Secondly, the strategy in the later stages is usually more straightforward, focusing
mainly on either scoring more points or limiting the opponent’s ability to score points. In contrast, the
performance tends to decline during the middle stages of the end. This is attributed to the more complex
strategies involved, making it more challenging for the bots to make optimal decisions. The complexity
and variability of potential outcomes in these stages require more sophisticated analysis, which the current
systems might struggle to handle effectively. The accuracy for earlier shots often shows a significant gap
between choosing the optimal call and an acceptable call. This is primarily due to the fewer rocks involved,
making it easier to identify an acceptable call.

This analysis highlights the capabilities and limitations of each bot. While the Self-Learned NN bot
performs well in the final shots, it struggles in the earlier stages of the game. Both the Supervised NN and
the GNN bots show similar performance compared to each other during all stages of the end. The drop
in performance of the Self-Learned NN bot is explainable as the learning of earlier stages of the game is
dependent on the performance of later shots. In contrast, the Supervised NN bot and the GNN bot benefit
from expert-provided training data, making them less dependent on the sequence of learning.

When examining individual positions, it is clear that bots have more difficulty recognizing good
calls in more complex scenarios. This is because there are more possible options to consider, and some
calls are not detectable by the bot due to the limited number of predefined calls. Overall, the results
underscore the complexity of strategic decision-making in curling, where later stages of the game allow
for more precise and effective calls. The findings also affirm the significant impact of search algorithms in
enhancing decision-making quality, suggesting avenues for future improvements in bot design and strategy
development.

Next, the thesis explores the impact of different configurations of the input vector and neural network
architectures on the performance of models used in curling bot simulations. As the input is deemed more
important, two different input vector are tested across various structures of neural network, summarized
in Table 4.2. The results indicate that while the complexity of the neural network structure can influence
performance, careful consideration must be given to the risk of overfitting, especially when training data
is limited. The chosen network configuration, with two hidden layers of 100 neurons each, provides a
good balance between model complexity and the need to prevent overfitting, ensuring robust and reliable
performance across different gameplay scenarios. Additional data might allow for a larger network that
can incorporate more nuances in complex positions.

The choice of the input vector is crucial in effectively capturing all relevant aspects of a curling game’s
state. Simple image-based inputs are inadequate for representing the strategic complexity of the sport,
necessitating a more detailed feature-based approach:

CHAPTER 4. RESULTS 39

Figure 4.1: Different attempts of ordering rocks.

Number of rocks Shots remaining Accuracy NN Accuracy GNN
r < 4 1 95% 90%

4  r < 8 1 92% 88%
r � 8 1 87% 88%
r < 4 2 87% 86%

4  r < 8 2 80% 80%
r � 8 2 71% 79%

Table 4.3: Comparison of NN and GNN position classification accuracy.

• Ordering of Rocks: Performance improves when rocks are ordered according to their importance
to the current game situation. This ordering was determined by the distance to the pin, allowing the
network to prioritize more significant rocks during processing.

• Detailed Features: Including features from all rocks on the ice significantly enhances neural network
performance. This comprehensive input ensures that the network has access to all game-critical
information.

• Indicator Vectors: Using indicator vectors, which consist only of values 0 and 1, to represent
qualitative aspects such as whether a rock is guarded, enhances performance. This restructured data
presentation, with more entries used to represent one feature, rather than using a single float input,
optimizes how the neural network processes the information.

A further enhancement could involve redefining the order of the rocks in the input vector, as visualized
in Figure 4.1. Prioritizing rocks within the house by their distance to the pin and then including guards
based on their distance from the center line could improve the neural network’s ability to evaluate and
respond to game situations more effectively.

Specifically comparing the differences between the NN and the GNN, the findings show similar
numbers in overall positions but differ when the positions are categorized into different strategies. Table
4.3 illustrates the accuracy of each bot during model training on the chosen test set, specifically analyzing
the accuracy for only the last rock and second-to-last rock in various configurations.

CHAPTER 4. RESULTS 40

Search Parameters Rock remaining
5 4 3 2

No Search 42% 63% 69% 82%
f = 1 55% 61% 71% 88%
f = 2 58% 70% 71% 93%
f = 4 64% 73% 80% 95%

Table 4.4: Success rate with different search parameters.

The results indicate similar performance levels for both NN and GNN, with NN slightly outperforming
GNN in simpler scenarios. However, as the complexity of the positions increases with more rocks, the
performance of NNs declines more sharply compared to GNNs. This trend suggests that GNNs may be
better suited for handling complex positions, whereas NNs could be more effective in simpler scenarios
with fewer rocks.

• Ordering of Rocks: GNNs do not require a specific ordering of input features, providing flexibility
in dynamic game situations where the importance and interrelations of rocks can change throughout
play.

• Complexity in Data Representation: Graph neural networks leverage the graph structure to model
complex relationships between rocks, allowing for a more nuanced understanding of the game state.
However, this complexity necessitates advanced data processing techniques.

• Lack of Position Data: While GNNs excel at analyzing relationships between individual rocks,
they may not capture the holistic strategic dynamics dependent on the overall positioning of all rocks
as effectively as NNs.

Future improvements could involve using GNNs for more complex positions and NNs for simpler
ones, or potentially integrating both networks into a hybrid model. This hybrid approach would combine
the strengths of both architectures: GNN’s adeptness at handling relational data and NN’s efficiency in
processing positional features. Integrating these architectures could enable the model to capture both
detailed interactions among rocks and the overall strategic layout, potentially leading to richer and more
precise game analysis.

4.2 Search Algorithm Parameters
This section evaluates the effectiveness and efficiency of the developed search algorithm, combining Monte
Carlo Tree Search and minimax, with alpha-beta pruning, used within the curling simulation. The focus is
on both the quality of decisions made and their computational performance, under different circumstances
and parameters, providing a dual perspective on their utility in game scenarios.

Firstly, this section assesses the quality of strategic decisions made by the search algorithm within the
simulation. This comparison aimed to understand how search algorithms help the bot to align with expert
strategies, which is indicative of their ability to mimic high-level human strategic thinking.

Table 4.4 presents the success rates with different parameters. The focus on this analysis is on the
parameter f , which indicates the maximum number of follow-up calls in later positions. In each scenario
the number of analyzed calls c is set to 10 and the maximum width w is set to 5. The column shows how
many shots are remaining in the end.

The data in Table 4.4 shows that incorporating a search algorithm generally improves the success rate
of strategic calls compared to the baseline (No Search). The success rate increases with the number of

CHAPTER 4. RESULTS 41

Search Parameters Rock remaining
13 5 4 3 2 1

c = 4, w = 4, f = 1 9.41 3.35 2.72 2.07 1.37 0.47
c = 4, w = 20, f = 1 50.91 13.25 10.84 8.53 4.52 1.46
c = 20, w = 20, f = 1 157.44 40.16 31.17 25.89 15.74 6.72
c = 4, w = 4, f = 2 - 29.67 13.09 7.01 2.70 0.48
c = 4, w = 4, f = 4 - 182.54 63.34 18.70 3.24 0.47

Table 4.5: Time used for evaluating c⇥ w calls, with f follow-up calls in seconds.

follow-up calls (f), indicating that deeper evaluations lead to better decision-making. For example, with
5 rocks remaining, the success rate increases from 55% with f = 1 to 64% with f = 4. This trend is
consistent across different stages of the end, demonstrating the benefit of deeper search depths in enhancing
call quality.

To ensure a quick decision making the computation demand of each setup has to be evaluated alongside
the quality. Timing analysis focused on measuring the computational time of each parameter setup under
various game conditions. The number of calls analyzed in each setup was recorded, alongside the time
taken to process these calls. The timing results for the different setups were documented in Table 4.5. The
top row indicates the number of rocks remaining in the end.

The results highlight a near-linear increase in computation time with the number of calls (c) and
evaluations per call (w). However, the efficiency of Monte Carlo Tree Search allows for some time savings
even with higher values of c and w, demonstrating MCTS’s ability to balance exploration and exploitation.

In contrast, increasing the depth of follow-up calls (f) has a much greater impact on computation time.
This significant increase underscores the computational intensity of deeper evaluations.

The findings suggest that early end evaluations should be conducted with f = 1 to manage computation
time effectively, ensuring timely decision-making. This approach allows the bot to make quick decisions
in the earlier stages of an end while leveraging the strategic depth provided by search algorithms. As the
game progresses and fewer rocks remain, increasing the depth of follow-up calls becomes more feasible
and beneficial for achieving higher accuracy in strategic calls.

Overall, the combination of Monte Carlo Tree Search and minimax enhances the bot’s decision-making
quality. By adjusting search parameters based on the stage of the game, the bot can balance thorough
analysis and efficient processing, leading to optimal performance in curling simulations. These insights
pave the way for further improvements in bot design and strategy development, emphasizing the importance
of dynamic parameter adjustments to maximize both accuracy and efficiency.

4.3 Position Classification
This section evaluates the accuracy of the bots’ ability to classify positions during gameplay and examines
the impact of varying database sizes on this accuracy.

Table 4.6 illustrates the accuracy with various database sizes and different numbers of rocks in the
position. The first trend is that a larger database enhances the accuracy. The second trend is that the bot
has more difficulty accurately classifying positions with more rocks.

The database was expanded through games played between two bots, with each position being classified
before every shot. If � � 1, indicating significant dissimilarity and uncertainty, the position is added to the
database to enhance future classification accuracy. After analyzing 300,000 positions from around 2,500

CHAPTER 4. RESULTS 42

Number of Rocks 200 positions 1,000 positions 10,000 positions 52,726 positions
r < 4 80% 91% 98% 99%

4  r < 8 12% 25% 41% 53%
8  r < 12 1% 8% 12% 15%
r � 12 0% 1% 2% 3%

Table 4.6: Comparison of accuracy depending on the number of positions in the database.

Figure 4.2: Distribution of positions with 52,726 entries in the database.

games, the database expanded to include 52,726 entries. Figure 4.2 illustrates the distribution of these po-
sitions, which predominantly feature five to nine rocks. There are fewer positions with less than five rocks,
because there are fewer configurations that have not already been encountered. Conversely, positions with
more than nine rocks occur less frequently in gameplay, leading to their underrepresentation in the database.

Figure 4.3 illustrates the probability p of adding a new position based on the current database size
and the number of rocks in the position, with 1� p representing the accuracy. The likelihood of adding
new positions generally decreases as the database expands, particularly for positions with fewer rocks.
However, the results indicate that additional positions can still be found, as 1 � p is not yet zero for
more complex configurations. This approach establishes only a lower bound for the number of possible
configurations since the search, especially for positions with more than four rocks, is not exhaustive. While
a more extensive search would likely uncover additional positions, the significant computational demands
necessitate limiting the scope of this study. Nonetheless, the observed trends and tendencies are sufficiently
clear to support the conclusions drawn.

Overall, the position classification results demonstrate a clear pattern: classifying positions with fewer
rocks is inherently easier and requires fewer entries in the database. To enhance classification accuracy,

CHAPTER 4. RESULTS 43

Figure 4.3: Probability of expansion over time.

especially for configurations with many rocks, further database expansion could be pursued. Alternatively,
relying on position classification primarily for configurations with fewer than eight rocks could ensure
high accuracy, with additional mechanisms needed to handle more complex configurations effectively.

4.4 Bot Comparison
This section presents a comprehensive evaluation of each bot’s performance in gameplay scenarios, com-
paring them not only against each other but also against human players of varying skill levels. This analysis
demonstrates each bot’s adaptability in dynamic game environments and highlights their strategic strengths
and weaknesses. By including games against human players, the evaluation puts the bots’ capabilities into
perspective, offering insights into how well they can compete against experienced and novice curlers alike.

The results of the tournament matches are succinctly summarized in the win table, depicted in Table
4.7. Each bot participated in a total of 120 games across both settings, featuring search algorithms and
without them.

Each bot is guaranteed a minimum of ten wins, reflecting the games played against themselves, and
can achieve up to 110 wins due to these self-matches. The Supervised Neural Network Bot and the Graph
Neural Network Bot exhibit the strongest overall performance, particularly without the use of search
algorithms. Conversely, the Naive and Database bots show limited success, indicating their strategies may
not be as robust or adaptable under competitive conditions.

The tournament results, depicted in Table 4.7, and the scoreboard of each match highlight several key
trends:

CHAPTER 4. RESULTS 44

Bot With Search Without Search
Supervised NN 94 104

Supervised GNN 92 94
Heuristic 69 71

Self-Learned NN 61 50
Database 31 31

Naive 13 10

Table 4.7: Number of wins made by each bot in the tournament.

Opponent Type Number of Games Number of Wins Win Rate of Bot
Professional Curler 19 0 0%

Experienced Amateur 12 2 17%
Casual Player 9 4 44%
Non-Curler 10 10 100%

Table 4.8: Performance of the top bot against human players of varying expertise.

• The Naive bot primarily achieves victory in games against itself, with minimal success against other
bots, indicating its limited strategic variety.

• The Heuristic bot demonstrates better performance when leading but struggles when behind, sug-
gesting that its strategy may not be robust with an offensive setup, where the opponent has more
rocks in the house.

• Both the Supervised NN and GNN bots exhibit superior performance, winning the most games.

• Especially the Supervised NN Bot excels in the tournament without search.

Furthermore, the inclusion of search algorithms generally improves decision quality, allowing bots to
reconsider their initial choices and potentially select better strategies. However, this flexibility also intro-
duces greater variance in outcomes, as enhanced strategic options can lead to both superior and inferior
decisions, depending on the effectiveness of the bot’s algorithm and the complexity of the game situation.
This variability is also highlighted in the greater number of ”upsets”, where a worse bot beats a stronger
bot due to the increase in randomness.

The Supervised Neural Network Bot, deemed the most successful in previous tests, was further
evaluated through matches against human players of diverse skill levels. These matches were conducted to
evaluate the bot’s strategic decision-making capabilities and to gauge the effectiveness of these decisions
in comparison to human players with varying levels of curling expertise. The results of these encounters
are summarized in Table 4.10, which details the bot’s performance across different categories of player
expertise.

The outcomes against human players highlight the Supervised NN Bot’s varying success across
different skill levels. While the bot was unable to secure wins against professional curlers, indicating a gap
in handling complex strategic scenarios, its performance improved against less experienced players. The
bot achieved a 17% win rate against experienced amateurs and 44% against casual players, suggesting
it competes effectively in mid-level strategic contexts. Notably, its 100% success against non-curlers
demonstrates the bot’s capability to outperform complete novices.

These results suggest that while the Supervised NN Bot is competent against novice and intermediate
players, enhancements are needed for it to challenge expert-level strategies. This points to opportunities for

CHAPTER 4. RESULTS 45

further development, particularly in advanced strategic modeling and learning to better mimic professional
gameplay nuances.

5
Conclusion and Future Work

This thesis explored the development of strategic decision-making in curling using advanced computational
methods. The primary focus was on position analysis, leveraging supervised learning with various data
collection techniques to evaluate and rank possible calls. Additionally, the utility of search algorithms in
refining call rankings was investigated. The insights gained from this study highlight both the potential
and the challenges of using these techniques in complex game scenarios.

The central questions posed at the beginning revolved around the effectiveness of advanced computa-
tional methods in enhancing strategic decision-making in curling. Specifically, how can position analysis
be improved to provide better insights into optimal calls? How do search algorithms perform in various
game situations? And what methods can be developed to classify and evaluate game positions effectively?
A multi-faceted approach was employed, implementing and comparing several mechanisms through a
series of tests.

Different methods of position analysis were tested on an expert-guided test set and in game scenarios.
The results from these comparisons highlight the strengths and weaknesses of various approaches in
position analysis. Firstly, all bots would benefit significantly from an increase in the dataset size. A larger
dataset would enable the development of a more robust network capable of handling complex scenarios.

The learning mechanisms demonstrated promising results, often outperforming the heuristic approach
in gameplay scenarios. The self-learned NN bot showed strong performance on the last shot but exhibited
weaknesses in earlier stages. This suggests that middle and early end stages have to be evaluated more
thoroughly. A more robust evaluation of later shots could also benefit earlier shots, as mistakes in the
final shots of an end get transferred down. Another approach is to combine the self-learned training with
expert-supervision, by discarding wrong examples from the dataset, gathered by the self-learned method.
This way a more robust training set, with less outliers, could increase the accuracy.

The supervised NN bot and the GNN bot achieved the highest win rates and overall accuracy among all
tested bots. A combination of these two methods could potentially yield even better results. Specifically,
training simpler positions with the NN and more complex positions with more rocks using the GNN could

46

CHAPTER 5. CONCLUSION AND FUTURE WORK 47

optimize performance across different scenarios.

The database bot, with only 200 positions in its database, performed poorly, underscoring the necessity
for a larger database. For positions with fewer than six rocks, a database size of at least 25,000 well-chosen
or iteratively evaluated position-call pairs is recommended to achieve significantly better performance.

An analysis of the best inputs and structures for both NNs and GNNs, using a supervised learning
approach, revealed that the accuracy of these models is more dependent on the input vector than on the
specific structure of the NN or GNN. Ordering the rocks and incorporating several different attributes for
each rock proved crucial for achieving good results.

A promising approach would combine these methods in the following manner:

• Use a database for positions with four rocks or fewer.

• Use a supervised NN for positions with five to eight rocks.

• Use a supervised GNN for positions with more than eight rocks.

• To efficiently increase the dataset size, a self-learned approach is recommended.

By adopting this strategy, the system can leverage the strengths of each method, ensuring robust and
accurate position analysis across a wide range of scenarios.

The learning bots were trained to respond to a set of 305 calls. While this setup allows for significant
flexibility and the ability to handle a wide range of positions, it is not sufficient when compared to the
continuous decision-making capability of human players. Humans can adjust their calls in a fluid and
dynamic manner, something the fixed set of 305 calls cannot fully replicate. One way to improve this
is to train different networks with varying output sizes. More complex positions often require more
sophisticated calls, necessitating a larger list of potential responses. Conversely, simpler positions do not
benefit from an extensive list, which could complicate classification and decision-making. By tailoring the
size of the output set to the complexity of the position, the system can better mimic human decision-making.

Along with the position analysis search algorithms were observed, regarding their improvement to the
call ranking. The combination of the Monte Carlo Tree Search and the minimax algorithm was evaluated,
focusing on its accuracy and efficiency in making strategic calls with various parameters, namely c (the
number of analyzed calls), w (the maximum number of times a call gets analyzed) and f (the number of
follow-up calls).

Increasing the number of follow-up calls (f) enhances call accuracy but significantly increases compu-
tation time, making it infeasible to use f > 1 in earlier stages of an end. Limiting the depth of follow-up
calls while allowing 1 < f < 10 at all stages, with a maximum depth of 4, could provide a balance between
accuracy and efficiency. This would mean the bot has to evaluate positions regarding their win probability
in the middle of an end. A naive approach could be to evaluate the position purely on the hypothetical
score, but this would miss other significant details. Further evaluations are needed to validate this approach.

The efficiency limitation poses a serious challenge for the broader application of the minimax algorithm.
Although a more efficient implementation of the simulation could potentially enhance the thoroughness of
minimax’s analysis, the required improvement in speed would need to be substantial to have a meaningful
impact.

CHAPTER 5. CONCLUSION AND FUTURE WORK 48

The main focus of the position classification was to improve the database bot, but a robust classification
system could also enhance the search algorithm, if every position in the database gets coupled not only
with a call ranking but also with a win probability.

Different methods and feature vector representations, along with distance metrics, were analyzed
to determine the most effective approach for classifying new positions. The construction of the feature
vector is of paramount importance. It must capture features of the entire sheet independently of the rocks’
relationships to each other, while also assigning a specific position to each rock to assess various aspects
such as how guarded and how frozen a rock is, or whether it is in front of the tee. The order of these rocks
within the feature vector is critical and raises several questions. Using a defined order based on the distance
from the pin is a solid starting point, but further improvements can be made with more sophisticated
methods. For instance, incorporating additional criteria for ordering the rocks could enhance the accuracy
of the classification.

A weighted distance metric was found to improve classification accuracy. By reducing the importance
of less significant rocks, the weighted metric helps to focus on the most important features, minimizing
interference from less relevant rocks. This approach ensures that the classification process emphasizes
the critical aspects of each position, leading to more accurate and meaningful comparisons. With the
results from the database expansion presented, it is possible to demonstrate a lower bound of 52,726
possible positions using the chosen setup for comparison. A more extensive search would likely reveal
more positions, particularly those with 12 or more rocks. Even with the current database, the probability
of recognizing such positions is below 3%.

Overall, the position classification system developed in this research provides a robust framework for
evaluating and comparing game positions, leveraging the strengths of different feature vector representa-
tions and distance metrics to optimize performance. Improvements can be made in the ordering of the
rocks and in a further expansion of the database.

5.1 Future Work
Games against human players have established a solid baseline, demonstrating that the bot can be a
valuable tool for improving strategic thinking in curling. For beginners, the bot offers an excellent platform
to try out different strategies and learn the fundamentals of the game. However, the bot is not yet advanced
enough for professionals curlers to reliably test and refine new strategies.

Going forward, there are numerous avenues for improving the bot’s performance and capabilities. One
of the primary challenges with reinforcement learning is that the bot utilizes different models, making it
difficult to identify and rectify mistakes within specific models. Enhancing the bot’s ability to recognize
and correct errors across its models is essential for its development.

Another crucial aspect is the ordering of rocks as input, which has been identified as a significant factor
in the bot’s decision-making accuracy. Exploring more sophisticated methods for dynamically ordering
rocks based on their importance to the position could lead to better performance.

Additionally, the results show that splitting the bot into different mechanisms tailored to specific
aspects of the game would enhance its overall effectiveness. For instance, distinct modules could be
developed to handle the early, middle, and late stages of the end, each optimized for the unique challenges
and strategies relevant to those phases. One possible approach is to use a database bot for the early stages
of the end, where fewer rocks are involved, and machine learning models for later stages, where different

CHAPTER 5. CONCLUSION AND FUTURE WORK 49

inputs are used depending on the complexity of the positions.
Increasing the size of the dataset with accurate position-call pairs is important for both the database

approach and machine learning. One way to achieve a larger dataset is to use a self-learned approach with
expert supervision to filter out incorrect calls.

Redefining the bot’s training approach using reinforcement learning could also provide significant
improvements. By continuously learning and adapting from both simulated and real games, the bot could
develop more advanced strategies and improve its performance over time. A challenging aspect of this
approach is managing the bot’s different models for various stages of the game. Currently, the bot uses
distinct models tailored to specific stages of the end, which complicates the training process. Implementing
a single, unified model could streamline the training process but may reduce the bot’s adaptability to the
specific context of each shot. Balancing the need for specialized models with the simplicity of a unified
approach will be crucial for optimizing the bot’s strategic capabilities.

In summary, while the current bot offers a robust foundation for strategic training and competition,
there is substantial potential for further enhancement. By addressing the identified challenges and exploring
innovative solutions, future research can continue to advance the capabilities of curling bots, making them
even more valuable tools for players at all levels.

Bibliography

[1] Han Y, Zhou Q, Duan F. A game strategy model in the digital curling system based on NFSP. Complex
and Intelligent Systems. 2021:1-7.

[2] Masui, F., Otani, H., Yanagi, H., Ptaszynski, M. (2019). Study on Game Information Analysis for
Support to Tactics and Strategies in Curling. In: Cabri, J., Pezarat-Correia, P., Vilas-Boas, J. (eds)
Sport Science Research and Technology Support. icSPORTS icSPORTS 2016 2017. Communications
in Computer and Information Science, vol 975. Springer, Cham.

[3] K Lee, SA Kim, J Choi, SW Lee. Deep Reinforcement Learning in Continuous Action Spaces: a Case
Study in the Game of Simulated Curling, PMLR 80:2937-2946, 2018.

[4] World Curling Federation. Rules of Curling 2023. Available from: https://worldcurling.org/wp-
content/uploads/2023/07/2023-The-Rules-of-Curling.pdf

[5] The Forecast Factory LLC. True win probability charts. [online]. 2020-2023 [Accessed 14 April 2024].
Available from: https://doubletakeout.com/winprob

[6] Howard R. Curl to win: Expert advice to improve your game. HarperCollins Publishers Ltd; 2009

[7] Zhou ZH. Machine learning. Springer nature; 2021 Aug 20.

[8] Goodfellow I, Bengio Y, Courville A. Deep learning. MIT press; 2016 Nov 10.

[9] Mohri M, Rostamizadeh A, Talwalkar A. Foundations of machine learning. MIT press; 2018 Dec 25.

[10] Nasteski V. An overview of the supervised machine learning methods. Horizons. b. 2017 Dec
1;4(51-62):56.

[11] Hamilton WL. Graph representation learning. Morgan and Claypool Publishers; 2020 Sep 16.

[12] Wu Z, Pan S, Chen F, Long G, Zhang C, Philip SY. A comprehensive survey on graph neural networks.
IEEE transactions on neural networks and learning systems. 2020 Mar 24;32(1):4-24.

[13] Balakrishnan R, Ranganathan K. A textbook of graph theory. Springer Science and Business Media;
2012 Sep 20.

[14] Morris C, Ritzert M, Fey M, Hamilton WL, Lenssen JE, Rattan G, Grohe M. Weisfeiler and leman
go neural: Higher-order graph neural networks. InProceedings of the AAAI conference on artificial
intelligence 2019 Jul 17 (Vol. 33, No. 01, pp. 4602-4609).

[15] Murphy KP. Machine learning: a probabilistic perspective. MIT press; 2012 Sep 7.

[16] Deza E, Deza MM, Deza MM, Deza E. Encyclopedia of distances. Springer Berlin Heidelberg; 2009.

[17] Knuth DE. The art of computer programming. Pearson Education; 1997.

50

BIBLIOGRAPHY 51

[18] Sutton RS, Barto AG. Reinforcement learning: An introduction. MIT press; 2018 Nov 13.

[19] Shannon CE. XXII. Programming a computer for playing chess. The London, Edinburgh, and Dublin
Philosophical Magazine and Journal of Science. 1950 Mar 1;41(314):256-75.

[20] Knuth DE, Moore RW. An analysis of alpha-beta pruning. Artificial intelligence. 1975 Dec 1;6(4):293-
326.

[21] Browne CB, Powley E, Whitehouse D, Lucas SM, Cowling PI, Rohlfshagen P, Tavener S, Perez
D, Samothrakis S, Colton S. A survey of monte carlo tree search methods. IEEE Transactions on
Computational Intelligence and AI in games. 2012 Feb 3;4(1):1-43.

[22] Chaslot G, Bakkes S, Szita I, Spronck P. Monte-carlo tree search: A new framework for game ai.
InProceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment
2008 (Vol. 4, No. 1, pp. 216-217).

[23] Maeno N. Dynamics and curl ratio of a curling stone. Sports Engineering. 2014 Mar;17:33-41.

