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Abstract

Building upon previous research focused on counting sheep on grassland captured by

unmanned aerial vehicles (UAVs), this thesis aims to expand the scope to counting

sheep in aerial imagery under adverse conditions using common object detection

algorithms. The goal is to assess the accuracy of Faster R-CNN, RetinaNet, and

YOLOv9 in counting sheep in challenging environments and to evaluate whether

their accuracy is sufficient for real-world applications. Additionally, the necessity of

datasets featuring sheep in adverse conditions is evaluated. It is important to note

that this thesis focuses only on counting sheep in individual images, not on entire

pastures.

This study develops novel datasets featuring sheep on snow, during dusk, and in

rough terrain. Additionally, an existing dataset of sheep on grassland is used for

comparison. These datasets are used to train and test the algorithms in various

configurations.

The results indicate that detectors trained solely on grassland images perform

poorly in adverse conditions, achieving a counting accuracy below 0.4. However, de-

tectors trained specifically on adverse conditions perform significantly better, with

counting accuracies between 0.9 and 0.94, although still below the 0.95 threshold

deemed necessary for real-world applications. Generalized models trained on all

datasets together perform similarly or better as specialized models, suggesting that

a single comprehensive model could suffice for varied conditions.

The study also explores a simple method to enhance performance by averaging

predictions from multiple images taken from different perspectives, improving the

counting accuracy to above 0.95 in snowy conditions.

Despite the detectors struggling to accurately detect sheep in extremely adverse

conditions, the results suggest that UAVs and object detection algorithms are viable

for sheep counting under moderately adverse conditions, such as on snow-covered

ground and at early dusk. This indicates potential for practical applications in

improving the efficiency of livestock monitoring.
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Chapter 1

Introduction

The present thesis is located in the field of artificial intelligence (AI). This is a

field of research in computer science with the goal of developing machines capable

of performing tasks that would necessitate intelligence if carried out by humans.

According to Negnevitsky [1], intelligence is ”the ability to learn and understand,

to solve problems and to make decisions.” Such tasks include reasoning, generalizing,

understanding natural language, and processing visual information. Contributions

to AI come from diverse fields, including mathematics, neuroscience, psychology,

and computer engineering [2].

Among the various subfields of AI lies computer vision, which focuses on the de-

velopment of algorithms that enable the analysis and understanding of real-world

environments through the use of cameras [3]. It finds application in a wide range of

domains, such as autonomous driving, where it is crucial for the detection of lanes

and nearby vehicles, thereby enabling navigation on the road. In security, facial

recognition systems rely on computer vision to accurately identify individuals and

either grant or deny access to private property. Furthermore, in healthcare, com-

puter vision plays a vital role in medical image analysis, assisting in the diagnostic

process.

Computer vision comprises various subdomains, each focusing on a specific task:

• Human pose estimation seeks to locate human body parts in an image and

create a representation of the body’s configuration, position, and orientation.

It is applied in areas like human-computer interaction and athletic training [4].

• Object tracking aims to estimate the trajectory of objects through successive

video frames. It finds applications in automated surveillance, traffic monitor-

ing, and sports [5].
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• Object detection strives to identify objects within an image and to determine

their precise location, which is typically marked by bounding boxes [6]. It

thereby answers the very important question of what objects are where. Since

this information is vital for the semantic understanding of images, object

detection provides a basis for various other computer vision tasks, such as

object tracking. It is applied in many real-world areas, including surveillance,

autonomous driving, and agriculture [7].

Nowadays, most object detection algorithms use convolutional neural networks

(CNNs), which are a type of artificial neural network (ANN). They are compu-

tational processing systems inspired by biological nervous systems, such as the

human brain. That means ANNs are comprised of interconnected computational

nodes, called neurons, that self-optimize through learning. Developed in the field of

machine learning, ANNs are a method to solve a wide variety of problems, often far

exceeding the performance of previous approaches. Convolutional neural networks

are a specialized form of ANNs tailored to learning robust and high-level feature

representations from images [8].

In recent years, the integration of AI into agricultural practices has expanded sig-

nificantly, enhancing the capability to explore, understand, and analyze agricul-

tural data. This has drastically improved decision-making in the field. A notable

data source are unmanned aerial vehicles (UAVs), commonly known as drones. Un-

manned aerial vehicles and AI are increasingly utilized for various purposes, thereby

aiding in the optimization of agricultural operations [9]:

• Assessing different plant stresses, such as water scarcity, diseases, nutrient de-

ficiencies, and pest infestations, through the use of multi-spectral and thermal

imaging sensors [10].

• Mapping weed distribution to develop site-specific herbicide application plans,

which helps to reduce herbicide use and more effectively target weed hot-

spots [11].

• Monitoring livestock, where animals are not only autonomously detected and

counted, but their distribution, health, and behavior are also assessed to en-

hance animal welfare [12].

The subdivision of AI into its various fields and subfields is depicted in Figure 1.1.

It is important to note that each level encompasses a broader range of fields than

illustrated and that some areas overlap. For example, object detection uses CNNs.

The present thesis is located in the subdomain of object detection, applied to an

agricultural context, specifically livestock monitoring.
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Artificial Intelligence

Computer Vision Machine Learning
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Convolutional
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Figure 1.1: The hierarchy of selected subfields in AI

Currently, most farmers rely on manually counting their animals. This process is

time-consuming and prone to errors. Especially large herds get counted rather infre-

quently, with some farmers not knowing the number of sheep on their pasture at all.

Unmanned aerial vehicles, in conjunction with object detection technology, could

help overcome these problems by providing a fast, frequent, and non-disruptive

method for counting animals. This would allow farmers to detect any loss of ani-

mals sooner and enable faster responses to mitigate further losses.

Numerous studies examine the capabilities of object detection systems to count

sheep in aerial imagery captured by UAVs. While the results are promising, the

research has largely focused on images of white sheep on green grassland [13].

The goal of this thesis is to assess the accuracy of common object detection algo-

rithms in counting sheep on aerial imagery under adverse conditions. The results

are evaluated to determine whether the observed performance is sufficient for real-

world applications under less-than-ideal conditions. To address this question, three

novel datasets comprising aerial imagery of sheep on snow, during dusk, and in

rough terrain are being developed as part of this thesis. The algorithms are tested

under various configurations of training and test data to determine the necessity of

new datasets in comparison to an already existing grassland dataset. In addition,

a simple method to increase the counting accuracy (CA) is being explored.

The following chapter introduces the topic of object detection, which includes an

explanation of CNNs, as well as a comparison of the employed algorithms. Chapter 3

describes the used datasets with a special emphasis on the creation of the snow,

dusk, and rough terrain datasets. Following that, Chapter 4 discusses the empirical

evaluation of the selected object detection algorithms on the four datasets. Finally,

Chapter 5 concludes this thesis and provides an outlook on future research.
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Chapter 2

Background and Related Work

This chapter introduces the theoretical background needed for the rest of this the-

sis. Section 2.1 reviews existing research concerning object detection, UAVs, and

livestock. Subsequently, Section 2.2 strives to explain the general principles of ob-

ject detection algorithms, incorporating an introduction to CNNs. Following this,

Section 2.3 examines the selection of object detection algorithms which are used in

the evaluation and provides a comparison of them.

2.1 Related Work

All papers reviewed in this section are related to agriculture and fall into at least

two of the following three categories: object detection, UAVs, and livestock, as

depicted in Figure 2.1.

Object 
Detection UAV

Livestock

Figure 2.1: The organization

of related work reviewed in

this section

The first three presented studies are located at the

intersection between two of the three topics, while

the latter four reports represent the intersection of

all three topics.

Unmanned Aerial Vehicles are widely used to manu-

ally observe animals without using AI. For instance,

Nyamuryekung’e et al. [14] assess the potential of

UAV video monitoring to predict the consumption

of specific food items by rangeland beef cows in a

controlled foraging environment. The experimen-

tal setup features twelve feed containers arranged

in an open semi-circle, each spaced 1 meter apart

and filled alternately with 200g of alfalfa hay, 200g
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of sudangrass hay, or 50g of cottonseed cake. Cows are allowed into the arena in-

dividually and in random order to feed from the bowls for four minutes, limited

by the UAVs’ battery life of 5-6 minutes per flight. After each session, the bowls

are weighed to measure the amount of feed consumed. The UAV footage is later

analyzed to determine the frequency of visits to each bowl relative to the total test

duration. The results indicate a strong linear correlation between the feeding fre-

quency observed by the UAV and the measured amount of food consumed. The

study further shows that UAV monitoring does not affect the cows’ natural feeding

behaviors, suggesting that this method is an effective and non-invasive approach to

monitor cows’ feeding patterns.

As mentioned earlier, Gallo et al. [11] study the use of the object detection algorithm

YOLOv7 to detect weeds on high-resolution aerial imagery captured by UAVs. The

study introduces the novel Chicory Plant dataset, consisting of 3,373 RGB images

with an average of 3,561 annotated weeds per image, captured at a flight height

of 65 meters above ground level. All images are recorded on a 5-hectare field in

Belgium cultivated with chicory. This novel dataset is used in conjunction with the

existing Lincoln Beet dataset, which contains 4,405 aerial images of sugar beet and

weeds captured 50 centimeters above ground. On the Chicory Plant dataset, the

object detector YOLOv7 achieved a recall of 58.1% and an mAP 0.5 score of 56.6%.

The mean average precision (mAP) is a widely used metric for object detection

accuracy, ranging from zero to one, with one being perfect. A formal definition

is provided in Section 4.1.3. The results achieved by Gallo et al. are promising

and demonstrate the feasibility of using object detection algorithms to achieve a

satisfactory level of weed detection accuracy on high-resolution aerial imagery. A

model trained on the Lincoln Beet dataset fails to accurately predict weeds in the

Chicory Plant dataset, yielding very poor results. This failure can be attributed

to the significant differences between the two datasets, suggesting that task-specific

datasets are needed for satisfactory performance.

Wang et al. [15] focus on the challenges of manual sheep counting and introduce a

novel architecture designed to count sheep at a passage. Based on the SSD archi-

tecture, they present the Sheep’s Head-Single Shot MultiBox Detector (SH-SSD),

which, combined with a tracking algorithm, allows for the accurate computation

of sheep quantity statistics. The dataset used consists of 5,735 images featuring

various breeds of sheep, sourced from internet repositories as well as 11,624 video

frames captured with a fixed camera at a 2 meter wide passage in a pasture in Mon-

golia. Compared to the standard SSD network, the SH-SSD network demonstrates

significantly improved performance, achieving 96.11% in mAP 0.5 and 63.41% in
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mAP 0.5:0.95, yielding gains of seven and twelve percentage points respectively. In

addition, SH-SSD is feasible for real-time use, achieving 84 frames per second on a

computing setup featuring one 48GB NVIDIA RTX A6000 graphics card.

Nowadays, livestock counting is usually done manually. This procedure is labor-

intensive and errors, such as duplication and omission are prone to occur. Con-

sequently, most farmers currently count their animals only a few times per year.

The integration of object detection systems with UAVs offers a promising solution

to address the problems associated with manual herd counting, enabling a faster,

more frequent, less labor-intensive, and more accurate assessment of animal count.

This would make an earlier detection of livestock losses possible, which, in turn, en-

ables a faster implementation of countermeasures to prevent further losses caused by

predators, damaged fences, or theft. Research in this area is ongoing, encompassing

various object detection systems and animal species.

A notable example is the work conducted by de LimaWeber et al. [16]. They present

a novel dataset containing 878 images of Nelore cattle. All images are captured in

a Brazilian feedlot by a UAV flying at altitudes between 20 and 100 meters above

ground level, with the camera pointing straight downward. The object detection

networks utilized are four models of YOLOv5, with various weight sizes. Each

model is trained for 2,000 epochs using the Adam optimizer with standard settings.

For the selected performance metrics, including precision, recall, and mAP 0.5, all

tested models performed similarly. However, for all metrics, the largest model,

YOLOv5-x, achieves the best results with a precision of 0.939, a recall of 0.981, and

an mAP 0.5 of 0.974. These promising results show that UAVs and AI can enable

farmers to obtain frequent herd counts with minimal effort.

The following studies on counting sheep in UAV aerial imagery using object detec-

tors are reviewed with special attention on the datasets as shown in Table 2.1.

Xu et al. [17] Sarwar et al. [18] Doll et al. [13]

Number of images 1,000 – 1,727

Resolution 4096×2160 4096×2160 3840x2160

Flight height – 80 m & 120 m various

Animals Sheep & Cattle White Sheep White Sheep

Ground Grassland Grassland Grassland

Location Australia New Zealand –

Weather Clouds & Sun Clouds & Sun Sun

Availability Not found Not found Public Domain

Table 2.1: Properties of selected datasets containing sheep captured by UAVs

6



Xu et al. [17] focus on achieving high accuracy in both classifying as well as counting

livestock in aerial imagery captured by UAVs. They introduce a novel dataset

comprising 1,000 high-resolution images, equally split between cattle and sheep

in Australian pastures. The images are annotated with polygons that accurately

outline the animals’ contours, providing detailed shape information. The images are

resized to 512×512 pixels for processing, and no data augmentation is performed.

The researchers employ the Mask R-CNN algorithm, which predicts the animals’

contours, enabling further analysis of their shape, pose, and direction, which is

useful for monitoring abnormal behaviors. A pretrained Mask R-CNN model is

fine-tuned on the dataset using stochastic gradient descent (SGD) for 1,000 epochs.

Afterwards, it achieves a total CA of 96% and a classification accuracy of 92%.

Sarwar et al. [18] explore UAV-based sheep counting in a series of research articles.

Their recent study builds upon earlier work and introduces a new dataset composed

of aerial images captured at altitudes of 80 m and 120 m. These high-resolution

images depict white sheep on green grassland in New Zealand, captured under

various weather conditions. For processing efficiency, the images are divided into

overlapping sub-images and resized to 256×256 pixels. Augmentation techniques,

such as translation and rotation, are applied to increase the number of training

images. They train a fully connected network using centroids as ground truth

data as well as a single-layered and a seven-layered CNN network for performance

evaluation and comparison. Additionally, multiple existing networks are fine-tuned

on the dataset. To enhance accuracy, two of the networks are combined, achieving

99% precision and 98% recall. According to the authors, these outcomes surpass

all previously reported results for detecting livestock in aerial imagery.

Doll and Loos [13] compare 44 state-of-the-art object detectors on a publicly avail-

able dataset provided by RIIS. The dataset consists of 1,727 high-resolution aerial

images of white sheep on grassland, primarily captured in direct sunlight. They

trained and evaluated YOLOv5 to YOLOv8, SSD, EfficientDet, CenterNet, and

Faster R-CNN in various network sizes and using the default settings recommended

by the models’ authors. All networks use pretrained weights from the COCO

dataset. Their findings indicate that for six out of the eight detection architectures

tested, the largest model does not achieve the highest mAP 0.5. This is, according

to the authors, likely due to the larger models suffering from underfitting1 because

of the small dataset. The best performances are achieved by YOLOv5-lu and SSD

RN50 v1 FPN, with mAP 0.5 values of 0.955 and 0.959, respectively.

1This might be a confusion as the problem is more likely to be overfitting.
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2.2 Object Detection Using CNNs

Object detection aims to locate and classify objects in an image and label them

using rectangular bounding boxes. The majority of object detection algorithms used

today rely on CNNs, which are a specialized variant of ANNs that are optimized

for handling image data.

Object detection with CNNs can be performed using two main methods: two-stage

detectors, which use a multi-step process, and one-stage detectors, which unify the

entire process in a single network.

This section starts with a brief review of ANNs. After that, an introduction to

CNNs is provided and the two main approaches to detecting objects with CNNs are

explained. The first two parts follow the structure and idea of O’Shea and Nash [8].

2.2.1 Introduction to ANNs

Artificial Neural Networks draw inspiration from biological nervous systems, partic-

ularly animal brains. These networks consist of numerous interconnected computa-

tional units, known as neurons, which collaboratively learn from the system’s input

to optimize the final output. Typically, ANNs are structured in layers, where each

layer consists of multiple neurons that receive all outputs from the previous layers’

neurons as their input, perform a mathematical operation, and pass the result to

the subsequent layer. The first and last layers of the network are exceptions to that.

In the first layer, the input layer, each neuron receives raw data as its input, while

the last layer, called the output layer, provides the network’s final result. This type

of architecture is often referred to as a feed-forward network. See Figure 2.2 for an

illustration of a typical ANN structure. Note that, in practice, there are usually

more layers with more neurons than depicted here.

 Input 1 

 Input 2 

 Input 3 

 Output 

Input Layer Hidden Layer Output Layer

Figure 2.2: The basic structure of an ANN

There are two key learning paradigms in AI: supervised and unsupervised learning.

Here, we only focus on supervised learning, where the model learns from pre-labeled
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inputs. Each training example consists of a set of input values paired with the cor-

rect output values (annotations). The goal of the model is to learn a mapping from

inputs to outputs. During training, the model makes predictions on the training

data and corrects itself by comparing its predictions with the annotations.

Every neuron has a weight parameter associated with each of its input connections.

These numerical values determine the importance of all input features in producing

the neuron’s output. During training, these weights are adjusted to optimize the

model’s performance enabling the network to learn.

Predicting a discrete value, such as an assignment to a finite set of classes, is called

classification, while predicting a continuous number is known as regression.

2.2.2 Basic Principles of CNNs

One major limitation of traditional ANNs is their struggle with the computational

complexity involved in processing image data. For instance, an RGB input image

with 600×600 pixels would require each neuron in the first hidden layer to have

1,080,000 connections, one for every base-color and every pixel. To manage such a

large input, the network would need to be very large with numerous extensive hidden

layers. This is not feasible due to limitations in computational power and the risk

of overfitting. Overfitting happens when the network memorizes too specific details

of the training data to the extent that it performs poorly on new, unseen data.

Reducing the number of parameters required for training decreases the likelihood

of overfitting.

The primary distinction between traditional ANNs and CNNs is that the latter are

specialized to work with images as input data. This allows the incorporation of

image-specific features into the architecture, enhancing the network’s suitability for

image-focused tasks while also reducing the complexity of the model, thus reducing

the risk of overfitting

A key distinction is that neurons in CNN layers are organized in three dimensions:

height, width, and depth. Height and width correspond to the spatial dimensions of

the input (i.e., an image’s dimensions), while depth refers to the number of channels,

such as base colors or feature maps. For the example provided earlier, the input

volume has a dimensionality of 600×600×3. Unlike in standard ANNs, where each

neuron in a layer is typically connected to all neurons in the previous layer, neurons

in a CNN layer are only connected to a small, localized region of the preceding

layer. This localized connection is intended to capture local features, such as edges

or textures in the input data.
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Typical Architecture

A CNN is made up of three types of layers: convolutional layers, pooling layers,

and fully-connected layers. A combination of these layers forms the architecture of

a CNN. Figure 2.3 illustrates a simplified CNN architecture.

• Input layer: Similar to other ANNs, this layer provides the starting point of

the network and holds the pixel values of the image.

• Convolutional layer: Here, the input image gets scanned in small sections

to detect local patterns, including edges or textures using the convolution

operation. This process results in a feature map that highlights where a

specific pattern occurs.

• Pooling layer: The objective of this layer is to reduce the spatial dimension-

ality (height and width) of the input by downsampling in order to reduce the

number of parameters while retaining essential features.

• Fully connected layer: These layers use the feature maps extracted by

previous layers and perform classification or regression to compute the final

output of the network. In order to improve performance, nonlinear activation

functions may be applied between these layers.

Input Convolution Pooling Fully 
Connected

Output

Figure 2.3: A simple CNN architecture

The remainder of this subsection provides more details on these individual layers

and their hyperparameters.

Convolutional Layers

Since the CNN is named after the convolutional layer, it is evident that this layer

plays a vital role in the network’s operation. Convolutional layers use matrices,

called filters or kernels, that are typically small in the spatial dimensions but extend

across the entire depth of the input. These filters are convolved with the input data
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across the spatial dimensions, resulting in a 2D feature map. This means that a

filter slides over the input data with a predefined stride length. At each position, the

filter performs an element-wise multiplication with the overlapping part of the input

data, followed by a summation of these products. See Figure 2.4 for an example.

0 2

0 1

1 0

0 0 2 0 1

0 1 0 0 2

1 0 1

0 1 0

1 0 1

3 5 4

7 3 6

2 6 4

∗

Input Filter Output

0 1 0

2 1 1

0 2 2

Figure 2.4: Visual example of a convolution with a stride length of one

The stride length determines the number of pixels by which the filter moves across

the input image during the convolution operation. A stride length of one means

that the filter moves one pixel at a time, resulting in a large output feature map.

On the other hand, using a stride length of two would halve the dimensions of the

output compared to a stride of one.

The borders around the input are often padded with zeros or with the values at the

edge of the input. This helps to control the resulting feature map’s dimensions and

to preserve information at the borders.

A convolutional layer can have multiple filters, and every filter produces its own

feature map, highlighting the occurrence of certain patterns, such as lines or circles.

All feature maps are stacked in the depth dimension, resulting in the layer’s output

volume.

Usually, a non-linear activation function, such as ReLU, is applied to the output

volume of the convolution layers in order to allow the network to learn more complex

patterns and thus improve performance. ReLU is defined as:

ReLU(x) = max(0, x) (2.1)

As discussed earlier, to process an RGB image with a size of 600×600 pixels, each

neuron in an ANN’s first hidden layer would need to have 1,080,000 connections.

A CNN reduces this drastically by only connecting each neuron to a small part of

the input image. For example, when using a filter of size 5×5×3, each neuron in

the convolutional layer only needs 75 connections.
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Pooling Layers

The purpose of pooling layers is to reduce the spatial dimensionality of the input,

which in turn lowers the number of parameters and the computational complexity

of the model. In addition, pooling layers also help the model to become invariant

to small translations of the input. They work similarly to convolution layers in that

a pooling filter slides over the input and performs an operation.

There are two main types of pooling operations:

• Max pooling: Selects the maximum value from each patch of the input

covered by the filter. This helps in retaining the most significant features

detected in the previous layers.

• Average pooling: Computes the average of each patch of the input covered

by the filter. This helps in reducing noise and preserving the overall spatial

structure of the input.

Most of the time, the pooling filters in a CNN have a dimensionality of 2×2×1 and

are applied with a stride length of 2, reducing the spatial dimensionality of their

input to 25% while preserving the depth dimension. Typically, one or two convo-

lutional layers alternate with a pooling layer in a repeated pattern, progressively

extracting and condensing features from the input data.

Fully Connected Layers

In fully connected layers, each neuron is connected to every neuron in the adjacent

layers, similar to traditional ANNs (see Figure 2.2). Typically positioned toward

the end of a CNN, these layers use the feature maps extracted by the convolutional

and pooling layers to make final predictions. The feature maps, which are generally

multidimensional tensors, are flattened into a one-dimensional vector that serves as

the input for the first fully connected layer. The output yi for neuron i with the

input vector x = [x1, x2, . . . , x6] is computed as follows, where f is an activation

function, such as ReLU. Note that wij represents the weight of the j-th input to the

i-th neuron and bi is the bias term, which allows shifting the activation function.

yi = f(wi1x1 + wi2x2 + . . .+ wi6x6 + bi) (2.2)

Training

Before training can start, the architecture needs to be defined. This includes spec-

ifying the number and order of layers, the number and size of filters, as well as the
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pooling and activation functions. Following this, the network’s weights are initial-

ized with small, random values. The training images are then passed through the

network, and a loss function is used to compare the predicted output to the an-

notations. Finally, the network’s weights are improved via backpropagation. This

involves calculating the gradient of the loss function with respect to each of the net-

work’s weights and updating these weights using an optimization algorithm, such as

SGD. This process of passing images through the network and updating the weights

is repeated for many iterations to improve the network’s performance.

2.2.3 Two-Stage Detectors

Two-stage detectors rely on a two-step process for locating and classifying objects.

In the first stage, an algorithm generates a set of regions that may contain an object

of any kind, known as region proposals. The goal is to narrow down the areas of

interest and thus reduce the number of regions that need to be analyzed in detail

by the second stage, which classifies the objects and refines the bounding boxes for

each region proposal individually. This approach generally achieves high accuracy

but is rather slow.

Stage One

The input image is first processed by the backbone network, a CNN, which extracts a

set of feature maps. The feature maps generated by the first layers of the backbone

network capture fine details, whereas those produced by the later layers capture

higher-level features. The feature maps are subsequently used to compute region

proposals.

A grid is laid over the feature maps, and at each grid cell, multiple predefined

anchor boxes with various scales and aspect ratios are placed. This ensures that

the network can detect objects of different sizes and aspect ratios.

For each anchor box, a small CNN called the region proposal network (RPN) pre-

dicts the objectness score, which indicates the likelihood that the box contains an

object. Anchor boxes that surpass a predefined threshold are considered region

proposals. The RPN also refines each anchor box to fit the potential object more

precisely.

If multiple region proposals overlap beyond a certain threshold, only the proposal

with the highest objectness score is retained. This process, known as non-maximum

suppression (NMS), prevents multiple region proposals for one object.
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Stage Two

First, the feature maps, which are cropped to the region proposals generated by

stage one, are rescaled to a uniform size. These feature maps are then processed by

fully connected layers, referred to as the network’s head, which refine the extracted

features in preparation for classification and bounding box adjustments. Finally, a

fully connected layer outputs class scores for each region proposal, indicating their

likelihood of belonging to specific categories of objects. Simultaneously, the network

predicts offset values for the bounding boxes to fit the detected objects precisely.

The final output of the object detector consists of multiple bounding boxes, usually

described by their width, height, and the location of the top left corner, as well as

the class label with the highest classification score along with its score.

Output

Input
Image Feature Maps

Feature Maps

Backbone Network

Region ProposalsRegion Proposal
Network

OutputClassification and
Regression Head X, Y, W, H, Class, Score

X, Y, W, H, Class, Score

...

Two Stage Detectors

One Stage Detectors
Input
Image Feature Maps

Backbone Network

X, Y, W, H, Class, Score

X, Y, W, H, Class, Score

...Classification and
Regression Head

Figure 2.5: A visualization of the two main object detection approaches using CNNs

2.2.4 One-Stage Detectors

One-stage detectors unify the entire object detection process in a single network

and skip the region proposal generation. This usually sacrifices some accuracy but

increases the inference speed – the time it takes to generate new predictions –

compared to two-stage detectors.

Similar to two-stage detectors, a backbone CNN first extracts feature maps from

the input image. After that, the detection network applies additional convolutional

layers to the feature maps to prepare them for the subsequent layers. Again, anchor

boxes are used as reference points to predict the actual bounding boxes. Depending

on the specific architecture, convolutional or fully connected layers are used to

predict the class scores as well as offsets for all bounding boxes. Finally, NMS is

applied to remove redundant boxes.

See Figure 2.5 for a visual comparison between the two approaches.
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2.3 Comparison of Selected Algorithms

Having established the fundamental principles of object detection algorithms, this

section focuses on a detailed examination and comparison of three specific algo-

rithms. These algorithms — Faster R-CNN, RetinaNet, and YOLO — are sub-

sequently trained and evaluated using aerial sheep datasets. Faster R-CNN is de-

signed as a two-stage detector, whereas RetinaNet and YOLO are one-stage detec-

tors. Table 2.2 provides a quick reference for comparing the main attributes of each

algorithm.

Faster R-CNN [19] Retina Net [20] YOLOv9 [21]

Architecture two-stage one-stage one-stage

Backbone Network ResNet or VGG ResNet Darknet

Anchor Boxes yes in RPN yes no, direct
regression

Loss Function – – –

Speed slow moderate fast

mAP 0.5:0.95 on COCO 0.467 (0.215) 0.436 (0.391) 0.556

Year of publication 2015 2017 2024

Table 2.2: Properties of selected object detectors

2.3.1 Faster R-CNN

Introduced by Ren et al. [19] in 2015, the two-stage detector Faster R-CNN builds on

its predecessors, R-CNN and Fast R-CNN. The original R-CNN model, proposed

by Girshick et al. [22] in 2014, is the pioneering algorithm to demonstrate the

effectiveness of CNNs in object detection tasks. Gershick refines this method in

2015 with Fast R-CNN [23], which features a Region of Interest (RoI) pooling layer

that improves speed and accuracy. Building on this progression, Faster R-CNN

integrates an RPN into the architecture, allowing end-to-end training and further

performance enhancements.

Faster R-CNN is renowned for its accuracy, particularly in detecting small objects.

However, it requires substantial computational resources, and its inference speed is

relatively slow.

On Microsoft COCO, a popular benchmarking dataset for object detectors, Faster

R-CNN achieves an mAP 0.5:0.95 of 21.5%. This dataset includes 80k training, 40k

validation, and 20k test images featuring objects from 80 different categories [24].
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As its backbone network, Faster R-CNN uses VGG or ResNet. These networks are

also used in other computer vision tasks and are not specific to object detection.

The feature maps output by the backbone network serve as the input to the RPN,

which generates a set of region proposals using a 3×3 convolutional filter and anchor

boxes as explained in Section 2.2.3. Each region proposal is mapped onto the

corresponding location in the feature maps. Because the proposals can vary in size,

in the RoI pooling layer, a max-pooling operation is used to standardize them. After

that, the fixed-size feature maps are flattened into a single vector and passed through

two fully connected layers. The output of the second layer is then branched into two

separate heads: one fully connected layer that outputs a probability distribution

over the object classes, and another layer that outputs four values representing the

bounding box coordinates (x, y, width, and height) for each proposal.

For the evaluation on the aerial sheep datasets, the fasterrcnn resnet50 fpn v2 im-

plementation of Faster R-CNN provided by Torchvision is utilized. This model

incorporates enhancements suggested by Li et al. [25], including the use of an im-

proved backbone network, two convolutional layers in the RPN, and employing four

convolutional layers followed by a fully connected layer to predict bounding boxes.

This improved model achieves an mAP 0.5:0.95 of 46.7% on the COCO dataset.

2.3.2 RetinaNet

In 2017, Lin et al. [20] introduce the one-stage detector RetinaNet. Upon its in-

troduction, this algorithm achieves the speed of earlier one-stage detectors and

exceeds the accuracy of all state-of-the-art two-stage detectors. On COCO, this

model achieves an mAP 0.5:0.95 of 40.8%.

RetinaNet uses ResNet as its backbone network, which outputs various feature

maps at different scales. These feature maps are processed by the Feature Pyramid

Network (FPN) to create a multi-scale feature hierarchy that enables the detection

of objects of different sizes. The FPN first reduces the depth of each feature map

using 1×1 convolutional layers. Then, it upsamples the lower-resolution feature

maps and combines them with the next higher-resolution maps through element-

wise addition. Anchor boxes are used as starting points for predicting the bounding

boxes. The head of the network is split into two subnetworks: one for classifica-

tion and one for regressing the box offsets. Each subnetwork comprises five 3×3

convolutional layers.

RetinaNet introduces a novel loss function that improves handling of the class im-

balance between background and actual objects. Focal loss modifies the traditional
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cross-entropy loss by down-weighting easy examples and, in turn, focusing on hard

negatives. This loss function is defined in Equation 2.3, where pt represents the

predicted probability for the true class and γ is a predefined focusing parameter.

FL(pt) = −(1− pt)
γ log(pt) (2.3)

In the evaluation, the retinanet resnet50 fpn v2 implementation from torchvision

is employed. This model incorporates the improvements proposed by Zhang et

al. [26], which include a novel way of defining positives and negatives, i.e., objects

and background. With these improvements, the model achieves an mAP 0.5:0.95 of

43.6% on COCO.

2.3.3 YOLOv9

The initial version of YOLO, introduced in 2016 by Redmon et al. [27], marks the

debut of one-stage detectors. It offers substantially faster performance compared

to all common object detectors available at that time, but this comes at the cost

of accuracy. Subsequently, numerous advanced versions are developed, culminating

in the release of YOLOv9 by Wang et al. [21] in 2024. YOLOv9 is available in four

differently sized versions, with the largest one achieving an mAP 0.5:0.95 of 55.6% on

COCO.

YOLOv9 incorporates numerous complex features, the full explanation of which

would exceed the scope of this thesis. Nevertheless, intuitive explanations are offered

for several key features:

It does not rely on anchor boxes and instead directly estimates an object’s center,

thereby simplifying the model. The Programmable Gradient Information (PGI)

feature mitigates data loss during training, resulting in enhanced efficiency and

improved performance. Additionally, the Generalized Efficient Layer Aggregation

Network (GELAN) allows for the flexible selection of computational blocks tailored

to specific devices for improving inference speed without sacrificing accuracy. Fur-

thermore, YOLOv9 uses the CSPDarknet53 backbone network, which provides a

strong and efficient foundation for feature extraction.

For the evaluation phase, this study utilizes the YOLOv9 implementation provided

by Ultralytics. Due to computational limitations and the findings reported by Doll

et al. [13], only the second-largest model variant, YOLOv9c, is employed.

17



Chapter 3

Novel Datasets

This chapter provides an overview of the datasets used for evaluation. The first

section (3.1) reviews the existing dataset published by RIIS, which comprises im-

ages of white sheep on grassland. The following sections (3.2 - 3.4) highlight the

development of novel datasets that feature sheep in more adverse conditions in

Switzerland, such as on snow, during dusk, and in rough terrain. See Table 3.1 for

a quick comparison between the four datasets.

Grassland Snow Dusk Rough Terrain

Images 1,727 200 200 200

Background grassland snow grass & snow grass & dirt hills

Sheep color white various white & black black

Lighting sun clouds dusk sun & clouds

Resolution 3840×2160 8064×4536 8064×4536 8064×4536

Annotations 55,435 3,444 4,604 4,775

Table 3.1: Characteristics of utilized datasets

3.1 Grassland

As previously mentioned, several studies examine the use of object detectors for

counting white sheep on grassland. Consequently, publicly available datasets fea-

turing white sheep in such environments exist. For further evaluation in this thesis,

the Aerial Sheep dataset provided by RIIS on Roboflow [28] is employed. Refer to

Figure 3.1 for illustrative examples.

The dataset comprises a total of 1,727 aerial images captured by a UAV, featuring

55,435 annotated sheep. All images are taken under direct sunlight conditions.
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While the majority of images depict white sheep on plain grassland, some also

include other elements, such as tree shadows, buildings, fences, and cows. The

annotations lack precision, with many bounding boxes being considerably larger

than the sheep they mark.

A random selection of 70% of all images is used for training, 20% is used for val-

idating the hyperparameters, and 10% is reserved for final testing. This split is

predefined by RIIS. The training images are augmented to generate three training

examples per original image using horizontal and vertical flipping, 0% to 20% crop-

ping, adjusting the hue from -15° to +15°, saturation and brightness adjustments

of -15% to +15%, and exposure compensation of -10% to +10%.

Figure 3.1: Selected images of the Aerial Sheep dataset by RIIS [28]

3.2 Snow

The first novel dataset of sheep in adverse conditions features white, brown, and

black sheep on snow-covered ground. Figure 3.2 displays selected images from the

dataset.

All images are captured with a DJI Mavic Air 3 [29]. This commercially available

UAV is equipped with two cameras. The wide-angle camera offers a field of view

of 82° and an aperture of f/1.7, while the telephoto camera has a 35° field of view

and an aperture of f/2.8. Both cameras use sensors with a resolution of 8064×6048

pixels and are stabilized by a motorized gimbal. This dual-camera setup allows for

capturing more diverse images from various perspectives.

The images in this dataset are captured in December 2023 and January 2024 across

seven different locations in Switzerland: Utzenstorf, Kernenried, Wiler bei Utzen-

storf, Aefligen, two locations in Lohnstorf, and Gerzensee. Both the wide-angle and

telephoto cameras are employed, with flight heights ranging from 20 to 50 meters.

At heights below 20 meters, some sheep show signs of disturbance, while above

50 meters, the sheep are not visible enough for reliable annotation. The weather

conditions during capture include snowfall and overcast skies. All 937 images are

taken during daylight hours.
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A random selection of 200 images is annotated using bounding boxes on Roboflow,

resulting in 3,444 annotated sheep. Animals at the edge of images are annotated

only if they are clearly identifiable as such. The dataset is divided into 70% training,

15% validation, and 15% test data, and the same augmentation settings as used on

the grassland dataset by RIIS are applied. The annotated images are publicly

available on Roboflow as the SnowSheepUAV dataset [30], while the remaining

images can be provided upon request.

This dataset presents challenges due to the similarity in appearance between the

sheep and their surroundings. White sheep blend into the white snow, while dark

sheep are difficult to distinguish from sleep spots, where the snow is melted in

sheep-sized patches, exposing the dark ground beneath. Moreover, differentiating

individual sheep is challenging because they are often clustered closely together in

groups.

Figure 3.2: Selected images of the SnowSheepUAV dataset

3.3 Dusk

The second novel dataset comprises aerial imagery of sheep during dusk, both on

snow-covered ground and on grassland. Figure 3.3 depicts selected images.

In December 2023, 386 images of black and white sheep on snow are captured

in Kernenried and Aefligen at flight heights between 20 and 50 meters. In May

2024, 543 images featuring white sheep on grassland are captured in Utzenstorf and

Wiler at flight heights between 20 and 100 meters. All images are taken between

30 minutes before and one hour after sunset. Beyond this time frame, the sheep are

not visible enough for accurate annotation.

A random selection of 100 snow images and 100 grassland images are annotated

with a total of 4,604 bounding boxes, and the same annotation rules, split settings,

and augmentations as used in the snow dataset are applied. The dataset is available

for further research on Roboflow as DuskSheepUAV dataset [31]. The poor lighting
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conditions, which minimize the contrast between the sheep and their surroundings,

present challenges.

Figure 3.3: Selected images of the DuskSheepUAV dataset

3.4 Rough Terrain

The third and final novel dataset contains pictures of black sheep in rough terrain,

such as on steep hills with trees, tall grass, dirt, stones, and streams. See Figure 3.4

for illustrative examples.

All images are captured in May 2024 at three different locations around Wattenwil,

Switzerland. Both cameras of the DJI Mavic Air 3 are utilized, and due to the

significant contrast between the sheep and the ground, flight heights of up to 80

meters are possible. The images are taken during daylight hours with direct sunlight

or overcast skies.

Out of the 286 captured images, a random selection of 200 images is annotated

with a total of 4,775 sheep annotations. The annotation rules, split settings, and

augmentations used are identical to those applied in the snow dataset. This dataset

is publicly available on Roboflow as RoughTerrainSheepUAV dataset [32].

The challenges in this dataset are mainly due to partial occlusions of the animals by

trees and tall grass. Furthermore, many adult sheep are accompanied by their lambs

in close proximity, complicating differentiation. Because of the steep terrain and

the presence of both adult sheep and lambs, sheep within the same image appear

in a wide range of sizes.

Figure 3.4: Selected images of the RoughTerrainSheepUAV dataset
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Chapter 4

Empirical Evaluation

This chapter describes the conducted experiment. Section 4.1 outlines the experi-

mental setup, including the performance metrics and hyperparameter tuning strat-

egy. After that, Section 4.2 presents and discusses the achieved results.

4.1 Experimental Setup

Training &

Validation

Testing

Grassland Grassland

Grassland Snow

Grassland Dusk

Grassland Rough Terrain

Snow Snow

Dusk Dusk

Rough Terrain Rough Terrain

All Grassland

All Snow

All Dusk

All Rough Terrain

Table 4.1: Experimental setup

This experiment aims to evaluate the ac-

curacy of widely-used object detection al-

gorithms like Faster R-CNN, RetinaNet,

and YOLOv9 in counting sheep on aerial

imagery under adverse conditions. It also

seeks to assess if this accuracy meets the

requirements for real-world applications.

Additionally, the experiment aims to de-

termine the necessity and impact of the

novel datasets.

4.1.1 Train-Test Split

As described in Chapter 3, all datasets

are randomly split into 70% training, 15%

validation, and 15% test data, except for

the grassland dataset, which follows a 70-

20-10 split. The assignment of images to

these splits remains consistent across all configurations. To improve speed and

reduce model complexity, the images are rescaled to 600×600 pixels.
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All algorithms use pretrained weights from COCO [24]. They are then trained

individually on each of the four datasets to create specialized models, as well as on

a combined dataset to create a generalized model.

The best hyperparameters are determined based on their performance on the valida-

tion split. Subsequently, the optimal configuration for each algorithm and training

dataset is evaluated on the test split of various datasets. This evaluation also ex-

amines the detectors under unfamiliar conditions, thereby assessing the importance

of the novel datasets. Table 4.1 provides an overview of the different combinations

of training, validation, and test data examined for each detector.

4.1.2 Hyperparameter Tuning

The hyperparameters for all three algorithms are tuned individually for each train-

ing/validation dataset. For Faster R-CNN and RetinaNet, which are implemented

using Torchvision, a gridsearch is conducted to tune the learning rate, momentum,

and weight decay of the SGD optimization function. Refer to Table 4.2 for the

tested values. Both algorithms are trained for 50 epochs with every hyperparame-

ter combination. The hyperparameters and epoch which achieved the best CA on

a given validation dataset are then selected as the final model.

Parameter Practical Range Tested values

Learning rate [0, 1] 0.0005, 0.001, 0.005, 0.01, 0.05

Momentum [0, 1] 0.8, 0.9, 0.95, 0.97, 0.99

Weight Decay [0, 0.1] 0.0001, 0.0005, 0.001, 0.005, 0.01

Table 4.2: Gridsearch values for Faster R-CNN and RetinaNet

The tuning procedure proposed by Smith [33], which uses a learning rate range

test, does not yield sufficient results in the current task. Nonetheless, following

Smith’s recommendation, the largest feasible batch size is employed. On a single

Nvidia RTX 3090 from UBELIX, the high-performance computing cluster at the

University of Bern [34], the maximum achievable batch size is 16 images per batch.

The YOLOv9 implementation by Ultralytics uses a genetic algorithm to optimize

its hyperparameters. This class of algorithms takes inspiration from genetics and

natural selection and applies small, random modifications to the hyperparameters to

generate new candidates for evaluation [35]. On every training/validation dataset,

YOLOv9 is tuned for 300 iterations of 30 epochs. Despite YOLOv9 applying its

own augmentations, the additional augmentations outlined in Chapter 3 enhance

performance, as evidenced by preliminary experiments.
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4.1.3 Performance Metrics

Two performance metrics are used in this thesis: counting accuracy (CA) and mean

average precision (mAP). While CA is one of the most important metrics for the

task at hand, mAP is widely used in object detection and is therefore also reported.

Counting Accuracy (CA)

This thesis primarily focuses on the accuracy of sheep counting. Bounding box

precision and other metrics are of secondary importance, as the system is designed

to count sheep rather than evaluate their position. Therefore, the CA, defined in

Equation 4.1, best answers the main question of this thesis in a single numerical

value. For multiple images, the mean CA of all images is reported.

CA = 1−
|detected count− ground truth count|

ground truth count
(4.1)

Mean Average Precision (mAP)

The mAP is one of the most widely used metrics for evaluating the performance

of object detectors. It is the mean of the average precision across all classes. The

average precision represents the area under the precision-recall curve, which is ob-

tained by plotting precision on the y-axis against recall on the x-axis. This curve

is smoothed by replacing P (r), the precision at recall level r, with the maximum

precision for any recall level r̂ ≥ r, as defined in Equation 4.2.

Pinterp(r) = maxr̂≥rP (r̂) (4.2)

The definitions of precision and recall are given by the following equations, where

TP denotes true positives (correctly detected sheep), FP denotes false positives

(incorrectly detected sheep), and FN denotes false negatives (unrecognized sheep).

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(4.3)

A prediction is regarded as true if it has an intersection over union (IoU) with a

ground truth box larger than a given threshold, which is usually denoted in super-

script, e.g.,mAP 0.5 for an IoU threshold of 0.5. The IoU is outlined in Equation 4.4.

IoU =
area of overlap

area of union
= (4.4)

In the special case of mAP 0.5:0.95, popularized by COCO [24], the average mAP over

different IoU thresholds ranging from 0.5 to 0.95 with a step-size of 0.05 is reported.
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4.2 Results and Discussion

This section presents and discusses the results achieved by Faster R-CNN, Reti-

naNet, and YOLOv9 on the various experimental setups outlined in Section 4.1.

Additionally, a simple method for improving CA performance is presented.

4.2.1 Quantitative Results

Table 4.3 displays the CA and mAP 0.5 for the three object detection models Faster

R-CNN, RetinaNet, and YOLOv9 across various training and testing configurations,

as outlined in Section 4.1. The table is structured with rows indicating different

combinations of training and test data, such as grassland, snow, dusk, and rough

terrain. The columns are organized to show the results for each model, with sepa-

rate columns for CA and mAP 0.5 under each model. The leftmost column lists the

training and validation datasets, followed by the testing datasets, while the subse-

quent columns provide the performance metrics for the three models. The highest

value per configuration and metric is highlighted in bold.

Training & Testing Faster R-CNN RetinaNet YOLOv9

Validation CA mAP 0.5 CA mAP 0.5 CA mAP 0.5

Grassland Grassland 0.977 0.942 0.970 0.912 0.975 0.968

Grassland Snow 0.078 0.002 0.188 0.009 0.011 0.010

Grassland Dusk 0.409 0.204 0.394 0.227 0.376 0.331

Grassland Rough Terrain 0.141 0.013 0.155 0.012 0.098 0.000

Snow Snow 0.913 0.879 0.885 0.716 0.942 0.896

Dusk Dusk 0.905 0.843 0.806 0.643 0.869 0.895

Rough Terrain Rough Terrain 0.921 0.890 0.895 0.778 0.928 0.906

All Grassland 0.977 0.932 0.971 0.910 0.9761 0.967

All Snow 0.942 0.859 0.790 0.646 0.933 0.886

All Dusk 0.930 0.840 0.859 0.649 0.928 0.875

All Rough Terrain 0.901 0.842 0.874 0.685 0.921 0.885

Table 4.3: Counting accuracy and mAP 0.5 of Faster R-CNN, RetinaNet, and
YOLOv9 on different experimental setups

Note that the results reported here should be interpreted with caution, given that

the test data originates from the same flights as the training data, resulting in a

high degree of similarity. Furthermore, the snow, dusk, and rough terrain datasets

each contain only 30 images in their test splits, which is relatively low.
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The confidence threshold, i.e., the minimum confidence score required for a predic-

tion to be counted as valid, has a significant impact on the number of predictions.

Instead of the common value 0.5, the optimal threshold is determined for each

model based on the CA on the validation dataset. Refer to Appendix A for more

detailed information about the confidence thresholds and the hyperparameters used

for training.

According to the farmers supplying their sheep for this thesis, a UAV system for

sheep counting would be valuable if it achieves a CA of at least 0.95. They note

that this is the same level of accuracy they attain with manual counting. Therefore,

the algorithms are considered adequate for real-world applications if they achieve a

CA of at least 0.95. This threshold is referred to as CA95.

All detectors trained on the grassland dataset achieve a CA above 0.97 when pre-

dicting grassland images, significantly surpassing the CA95 threshold and slightly

outperforming the results achieved by Xu et al [17]. Faster R-CNN achieves the

highest CA of 0.977, while YOLOv9 achieves the best mAP 0.5 of 0.968, moderately

surpassing the results reported by Doll and Loos [13]. However, the performance

reported by Sarwar et al. [18] surpasses the results achieved in this thesis. The

YOLOv9 algorithm achieves a precision of 0.979 and a recall of 0.961, which are

one and two percentage points lower, respectively, than the results reported by Sar-

war et al. It is important to note that while the dataset used by Doll and Loos is

very similar to the one used in this thesis, the datasets employed by Xu et al. and

Sarwar et al. are not publicly available. Therefore, their results cannot be compared

to the results obtained in this thesis with full accuracy.

The algorithms trained exclusively on grassland images exhibit poor performance

when predicting sheep in the other three datasets. Comparing their performance

to the detectors specialized for snow, dusk, and rough terrain reveals that the

specialized detectors significantly outperform the grassland-trained detectors. This

finding supports the assertion by Gallo et al. [11] that task-specific datasets are

highly important. For all three adverse conditions, the best specialized detectors

achieve a CA of at least 0.9, but do not meet the CA95 threshold. Thus they cannot

be considered sufficient for real-world applications.

Among all setups with identical training and testing datasets, the highest perfor-

mance is achieved on the grassland dataset, whereas the lowest performance is

observed on the dusk dataset. As shown in Figure 3.3, the dusk images are the

most challenging for human visual detection due to the low contrast between the

sheep and the background. Furthermore, this dataset comprises images of both
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snow-covered ground and grassland, necessitating the models to generalize across

significantly different terrains.

When analyzing the performance of detectors trained on the training data from

all four datasets together, the results reveal notable strengths of such generalized

detectors. They are evaluated on the test data of each individual dataset separately.

The Faster R-CNNmodel achieves the highest CA in all but one test case. These CA

scores match or surpass the performance of the best specialized detectors in most

cases, indicating that the generalized models outperform the specialized ones. This

might be due to the larger training dataset. Regarding mAP 0.5, YOLOv9 achieves

the highest score of all generalized detectors across all test cases, although it falls

slightly short of the specialized detectors’ performance. These results suggest that

training a single detector on a mixed dataset encompassing various conditions may

be sufficient. This approach would significantly simplify deployment for real-world

applications compared to using specialized detectors for each condition.

In most experimental setups, Faster R-CNN and YOLOv9 outperform RetinaNet on

the CA metric, particularly when trained and tested on the same dataset. Regarding

the mAP 0.5 metric, YOLOv9 performs best across almost all setups. For instance,

in the Grassland training and Grassland testing setup, YOLOv9 attains the highest

mAP 0.5 of 0.968, surpassing both Faster R-CNN and RetinaNet. This trend is also

evident in most other setups. This observation aligns with the results achieved on

the COCO dataset, as shown in Table 2.2, where YOLOv9 outperforms the other

two algorithms.

4.2.2 Qualitative Results

As an illustrative example, a closer examination focuses on the Faster R-CNN model

trained on the dusk dataset. This analysis includes an evaluation of the gridsearch,

the loss and accuracy of the best configuration during training, and a detailed look

at predicted images to assess the algorithm’s strengths and weaknesses.

As illustrated in Figure 4.1, there is a substantial variation in performance depend-

ing on the hyperparameters used for training, with the CA on the validation set

ranging from 0.7 to 0.92. The left plot shows the CA on the z-axis, with the learning

rate and weight decay varying across the entire tested range on the y- and x-axes,

respectively. The momentum is fixed at 0.97, which achieves the best performance.

The right plot shows the CA on the z-axis, with the learning rate on the y-axis and

momentum on the x-axis. The weight decay is fixed at its optimal value of 0.0005.

Note that for hyperparameter evaluation, the confidence threshold is consistently
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set at 0.5, and both plots show the CA at the best epoch for each hyperparameter

configuration. As indicated by the white dot, the highest CA is achieved by the

Faster R-CNN model using momentum=0.97, weight decay=0.0005, and learning

rate=0.01 at iteration 25. This model is selected for final evaluation on the test set,

and its performance is reported in Table 4.3.

Figure 4.1: The CA for Faster R-CNN with various hyperparameter configurations
trained on the dusk dataset. Since the gridsearch covers three parameters, one is
fixed on the value of the optimal configuration for each plot. The coloring corre-
sponds to CA, ranging from dark for the lowest to bright for the highest CA.

Figure 4.2: Accuracy (left) and epoch loss (right) of Faster R-CNN during training
on the dusk dataset

Figure 4.2 illustrates the loss and performance of the best Faster R-CNN model

during training on the dusk dataset. The left plot shows the CA (orange) and

mAP 0.5 (blue) achieved on the validation set at the end of each epoch. The right

plot displays the training (blue) and validation (red) loss per epoch. Both plots

reveal that after ten epochs of training, performance improvements on the validation
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set plateau, and the validation loss even begins to increase slightly. Notably, the

training loss continues to decrease until epoch 35, suggesting that the model is likely

overfitting the training data. This observation explains why the best performance

for all Faster R-CNN and RetinaNet models is achieved before epoch 50.

Figures 4.3 (a) – (d) provide illustrative examples of images from the dusk dataset.

The top image is annotated using the true annotations, while the bottom image

depicts Faster R-CNN’s predicted bounding boxes.

Comparing the predicted bounding boxes by Faster R-CNN to the true annotations

reveals the algorithm’s strengths and weaknesses. The algorithm excels at detecting

large, isolated objects, as shown in Figure 4.3 (a), but it has difficulty identifying

small appearing objects as seen in Figure 4.3 (b). This may be due to the fact that

all images have to be resized to 600×600 pixels before being fed into the network,

resulting in significant compression of small appearing sheep. If multiple sheep are

close together, the detector may recognize them as a single sheep, as depicted in

Figure 4.3 (c). Additionally, some objects on the field, such as water tanks, are

incorrectly identified as sheep by the detector. See Figure 4.3 (d) for an example.

Such false positives are also observed with RetinaNet and YOLOv9.

4.2.3 Simple CA Performance Improvement

Enhancing the CA can be achieved through several straightforward methods beyond

improving the detection models, such as averaging predictions. If capturing all

sheep in a single image is feasible, multiple images from different perspectives can

be taken. For each image, the sheep count is predicted. Due to occlusions or

misleading objects, some images may yield predictions that are either too high or

too low. Averaging the predictions across all images may result in a prediction

closer to the true count.

The snow dataset is well-suited for this method, as the sheep are clustered closely

together, allowing most images to capture all sheep in the pasture. However, the

other datasets are not suitable for this method since the sheep are spread out, and

the pastures are too extensive to be covered in one image with sufficient resolution.

Applying this method to the snow dataset results in an improvement in CA by two

to three percentage points. The highest score of 0.964 is achieved by YOLOv9,

while Faster R-CNN achieves a score of 0.944, and RetinaNet achieves 0.918. Given

that YOLOv9 now surpasses the CA95 threshold necessary for basic practicality

in real-world use, the developed system may be sufficiently accurate for real-world

applications in counting sheep on snow if the sheep are clustered closely together.
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(a) Good predictions (b) Sheep are too small

(c) Sheep are too close together (d) False positive on water tank

Figure 4.3: True annotations and predictions by Faster R-CNN on dusk images
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Chapter 5

Conclusions and Future Work

This concluding chapter revisits and discusses the central question of this research

in Section 5.1. It starts with a summary of the work undertaken and the key re-

sults obtained. The main findings are reiterated and accompanied by a critical

commentary on their implications and limitations. Subsequently, Section 5.2 pro-

vides recommendations for future research, proposing potential directions to further

explore and build upon the outcomes of this study.

5.1 Conclusions

The primary objective of this thesis is to determine how accurately common object

detection algorithms, such as Faster R-CNN, RetinaNet, and YOLOv9, can count

sheep in aerial imagery captured under adverse conditions. To achieve this, three

novel datasets featuring sheep during dusk, in rough terrain, and on snow-covered

ground, captured by a UAV, are developed and published. Additionally, an existing

dataset of white sheep on grassland is used for comparison. After tuning and

training the algorithms on each dataset separately, their performance is evaluated

on various test sets. The findings are analyzed to assess whether the observed

accuracy is sufficient for real-world use and to evaluate the necessity of the novel

datasets.

The algorithms trained exclusively on the grassland dataset perform well on this

same dataset, matching the high precision levels previously reported by other re-

searchers. All three tested detection algorithms substantially surpass the CA95

threshold required by farmers for real-world practicality on the grassland dataset.

However, their performance degrades significantly when tested on all adverse datasets,

suggesting that grassland datasets are not sufficient for reaching satisfactory per-
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formance in adverse conditions.

When specifically trained on these unfavorable conditions, the algorithms perform

significantly better, achieving a CA of 0.9 to 0.94 and an mAP 0.5 of around 0.9.

These findings indicate that specific data is essential for achieving high accuracy in

various adverse conditions.

Algorithms trained on all four datasets together achieve at least the same accuracy

as those trained only on a single specific dataset, suggesting that condition-specific

datasets and detectors may not be needed. This also indicates that datasets should

include images captured under all possible conditions and from various perspectives.

Despite the high CA achieved by these generalized detectors, they still fall just

short of the CA95 threshold in adverse conditions. Therefore, none of the trained

detectors are sufficient for real-world applications in such challenging environments.

Enhancing the CA may be achievable by averaging multiple sheep count predictions

from different viewpoints of the same pasture. When applied to the snow dataset,

this technique allows the CA to surpass the CA95 threshold. However, this approach

requires that all sheep are visible in a single image taken from a reasonable distance.

Therefore, it is only suitable for very specific conditions, and its practical use is very

limited.

Achieving a CA above 0.95 on the grassland and snow datasets, and nearly reaching

this threshold on the dusk and rough terrain datasets, the best detectors demon-

strate promising results. While the detectors still have difficulties in correctly de-

tecting sheep in extremely adverse conditions, UAVs and object detection algo-

rithms might still be viable for sheep counting under moderately adverse conditions,

such as on snow-covered ground and during early dusk. However, further testing is

necessary to confirm the reported performance on slightly varied data, as the test

split used in this evaluation is a random selection of images from the same flights as

used for training. Additionally, the scope of this thesis is limited to counting sheep

in single images. Consequently, if not all sheep in a pasture can be covered with a

single image, new techniques beyond those presented here are necessary.

Beyond the presented results, it is important to note that at flight heights above 20

meters, sheep do not exhibit signs of disturbance from the commercial UAV used

for capturing the adverse datasets. Furthermore, nearly all sheep captured in this

thesis can be accurately annotated by an untrained human. Consequently, the use

of UAVs for accurately counting sheep under adverse conditions may soon become

feasible, given the continuous advancements in object detection algorithms.
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5.2 Future Work

The results achieved in this thesis are promising and may be nearly sufficient for cer-

tain real-world applications. However, improving the performance, particularly the

CA of the models, is necessary for larger-scale deployment in real-world scenarios.

Building upon the findings and limitations presented previously, there are several

promising avenues for future research with the goal of enhancing the capabilities

and applications of UAVs in monitoring sheep. These areas include:

• Annotating all images: Completing the annotation of the remaining 1,552

images in the snow, dusk, and rough terrain datasets would provide a more

comprehensive foundation for training and evaluation, potentially leading to

improved accuracy and robustness of the models.

• Counting sheep on whole pastures: While this thesis focuses on counting

sheep in individual images, real-world applications require the sheep count of

an entire pasture. Increasing the flight height to cover large pastures in a single

image is often impractical due to flight restrictions and reduced resolution.

Consequently, innovative solutions are needed to overcome this issue.

• Detecting fences: Instead of detecting missing sheep after the fact, a more

effective strategy might involve models that detect fences and identify po-

tential breaches. This would enable the implementation of countermeasures

before any sheep are lost.

• Assessing sheep health: In addition to solely counting the sheep, UAVs

could be equipped with algorithms that assess the health of sheep by de-

tecting signs of limping or identifying sheep that are turned on their backs.

Consequently allowing timely intervention and care.

• Using infrared cameras: Employing infrared cameras, which can detect

the thermal signature of animals even in total darkness, could improve sheep

detection in low-light-conditions or dense vegetation, where visual detection

is challenging.

Most importantly, the developed solutions need to be integrated into a usable prod-

uct. This involves designing a user-friendly interface that allows farmers to ef-

fortlessly deploy and operate UAVs for sheep monitoring with clear instructions,

automated processes, and intuitive controls. Ensuring the product’s usability is

crucial for its adoption and effectiveness in real-world farming environments.
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Appendix A

Best Hyperparameters

A.1 Faster R-CNN

Training & Validation
Dataset

Momentum Weight
decay

Learning
rate

Epoch Confidence
Threshold

Grass 0.99 0.0001 0.005 35 0.3

Snow 0.9 0.0001 0.05 45 0.57

Dusk 0.97 0.0005 0.01 25 0.5

Rough Terrain 0.97 0.01 0.0005 42 0.5

All 0.8 0.005 0.005 40 0.71

Table A.1: Best hyperparameters for Faster R-CNN

A.2 RetinaNet

Training & Validation
Dataset

Momentum Weight
decay

Learning
rate

Epoch Confidence
Threshold

Grass 0.97 0.001 0.005 34 0.5

Snow 0.9 0.0005 0.01 24 0.49

Dusk 0.9 0.005 0.005 41 0.51

Rough Terrain 0.95 0.01 0.005 36 0.51

All 0.97 0.0005 0.005 38 0.49

Table A.2: Best hyperparameters for RetinaNet
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A.3 YOLOv9

Training & Validation
Dataset

Momentum Weight
decay

Learning
rate

Epoch Confidence
Threshold

Grass 0.90 0.0005 0.0100 50 0.29

Snow 0.89 0.0004 0.0100 50 0.27

Dusk 0.92 0.0005 0.0105 50 0.11

Rough Terrain 0.9500 0.0008 0.0081 50 0.11

All 0.9371 0.0005 0.0095 50 0.3

Table A.3: Best hyperparameters for YOLOv9
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Marina de Nadai Bonin Gomes, Luiz Orćırio Fialho de Oliveira, Sérgio Ra-

poso de Medeiros, and Maria Istela Cagnin. Counting cattle in UAV images

using convolutional neural network. Remote Sensing Applications: Society and

Environment, 29:100900, 2023. Publisher: Elsevier.

[17] Beibei Xu, Wensheng Wang, Greg Falzon, Paul Kwan, Leifeng Guo, Zhiguo

Sun, and Chunlei Li. Livestock classification and counting in quadcopter

aerial images using Mask R-CNN. International Journal of Remote Sensing,

41(21):8121–8142, 2020. Publisher: Taylor & Francis.

[18] Farah Sarwar, Anthony Griffin, Saeed Ur Rehman, and Timotius Pasang. De-

tecting sheep in UAV images. Comput. Electron. Agric., 187:106219, 2021.

[19] Shaoqing Ren, Kaiming He, Ross B. Girshick, and Jian Sun. Faster R-CNN: To-

wards Real-Time Object Detection with Region Proposal Networks. In Corinna

Cortes, Neil D. Lawrence, Daniel D. Lee, Masashi Sugiyama, and Roman Gar-

nett, editors, Advances in Neural Information Processing Systems 28: Annual

38



Conference on Neural Information Processing Systems 2015, December 7-12,

2015, Montreal, Quebec, Canada, pages 91–99, 2015.

[20] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár.

Focal Loss for Dense Object Detection. IEEE Trans. Pattern Anal. Mach.

Intell., 42(2):318–327, 2020.

[21] Chien-Yao Wang, I.-Hau Yeh, and Hong-Yuan Mark Liao. YOLOv9: Learning

What You Want to Learn Using Programmable Gradient Information. CoRR,

abs/2402.13616, 2024. arXiv: 2402.13616.

[22] Ross B. Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich

Feature Hierarchies for Accurate Object Detection and Semantic Segmentation.

In 2014 IEEE Conference on Computer Vision and Pattern Recognition, CVPR

2014, Columbus, OH, USA, June 23-28, 2014, pages 580–587. IEEE Computer

Society, 2014.

[23] Ross B. Girshick. Fast R-CNN. In 2015 IEEE International Conference on

Computer Vision, ICCV 2015, Santiago, Chile, December 7-13, 2015, pages

1440–1448. IEEE Computer Society, 2015.

[24] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, James Hays, Pietro Perona,

Deva Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft COCO:

Common Objects in Context. In David J. Fleet, Tomás Pajdla, Bernt Schiele,

and Tinne Tuytelaars, editors, Computer Vision - ECCV 2014 - 13th European

Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V,

volume 8693 of Lecture Notes in Computer Science, pages 740–755. Springer,

2014.

[25] Yanghao Li, Saining Xie, Xinlei Chen, Piotr Dollár, Kaiming He, and Ross B.

Girshick. Benchmarking Detection Transfer Learning with Vision Transform-

ers. CoRR, abs/2111.11429, 2021. arXiv: 2111.11429.

[26] Shifeng Zhang, Cheng Chi, Yongqiang Yao, Zhen Lei, and Stan Z. Li. Bridg-

ing the Gap Between Anchor-Based and Anchor-Free Detection via Adaptive

Training Sample Selection. In 2020 IEEE/CVF Conference on Computer Vi-

sion and Pattern Recognition, CVPR 2020, Seattle, WA, USA, June 13-19,

2020, pages 9756–9765. Computer Vision Foundation / IEEE, 2020.

[27] Joseph Redmon, Santosh Kumar Divvala, Ross B. Girshick, and Ali Farhadi.

You Only Look Once: Unified, Real-Time Object Detection. In 2016 IEEE

Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las

39



Vegas, NV, USA, June 27-30, 2016, pages 779–788. IEEE Computer Society,

2016.

[28] Riis. Aerial sheep dataset, 2022. https://universe.roboflow.com/riis/

aerial-sheep [Accessed: 25.5.2024].

[29] DJI. Dji air 3 - specs, 2024. https://www.dji.com/ch/air-3/specs [Ac-

cessed: 10.6.2024].

[30] Lars Wuethrich. Snowsheepuav dataset, 2024. https://universe.roboflow.

com/lars-wuethrich/snowsheepuav [Accessed: 25.6.2024].

[31] Lars Wuethrich. Dusksheepuav dataset, 2024. https://universe.roboflow.

com/lars-wuethrich/dusksheepuav [Accessed: 25.6.2024].

[32] Lars Wuethrich. Roughterrainsheepuav dataset, 2024. https:

//universe.roboflow.com/lars-wuethrich/roughterrainsheepuav

[Accessed: 25.6.2024].

[33] Leslie N. Smith. A disciplined approach to neural network hyper-parameters:

Part 1 - learning rate, batch size, momentum, and weight decay. CoRR,

abs/1803.09820, 2018. arXiv: 1803.09820.

[34] University of Bern. High performance computing (hpc), 2016. https:

//www.unibe.ch/universitaet/campus__und__infrastruktur/rund_um_

computer/soft_und_hardware/hardware/hochleistungsrechner_hpc_

grid/index_ger.html [Accessed: 15.5.2024].

[35] Ultralytics. Hyperparameter tuning, 2024. https://docs.ultralytics.com/

guides/hyperparameter-tuning [Accessed: 10.5.2024].

40


