
Automatic Exercise Classification
Development and Accuracy Evaluation of a Deterministic

Algorithm

Bachelor Thesis

Faculty of Science, University of Bern

submitted by

Aris Konstantinidis

from Athens, Greece

Supervision:

PD Dr. Kaspar Riesen

Institute of Computer Science (INF)

University of Bern, Switzerland

Abstract

The present study investigates the potential of computer vision for automatic track-

ing of physical activities. Research in this field has focused on systems that can

recognize a fixed set of exercises, without the ability to track a subject’s range

of motion (ROM) during a particular exercise. We present a system that is able

to learn a new exercise by only observing one initial repetition and track ROM

in real time. Arguably, such a system could automate the quantification of train-

ing regimes, which can be used to assist a wide spectrum of trainees, ranging from

bariatric patients to top athletes. By developing a mobile application prototype, we

show, that a smartphone’s front facing camera can be used as a basis for real-time

classification of exercises. Moreover, we measure the system’s accuracy by setting

up a standardized testing framework. The classification method is evaluated by

testing 7 common fitness exercises. After the system has learned to recognize these

movements, two subjects execute a short workout that contains repetitions from

each exercise. By optimizing the classification algorithm’s 6 tuning parameters, the

system achieves a exercise recognition accuracy of 90.7%. In addition, the system

is able to track the subjects’ ROM during exercise execution with an average pre-

cision of 83.9%. Although testing data is limited due to the time-costly nature

of manual labeling, and the prototype only reaches its full potential under certain

conditions, the results make a promising argument for a future application that is

able to reliably quantify workouts.

ii

Acknowledgements

I am grateful to be able to do research on a system that has the potential to

improve people’s lives, by assisting them in their physical activities. Yet, this would

not be possible without the support and encouragement of the people around me.

Specifically, I want to thank Professor Riesen for his trust in my work, my girlfriend

Nadia for her calming effect on me, my mother Sofia and my father George for

always believing in me, and my brother Pavlos, with whom during endless nights,

we co-developed a full featured version of the mentioned system.

iii

iv

Contents

1 Introduction 1

2 Basic Concepts 3

2.1 Human Pose Estimation . 3

2.2 Tracking of Physical Activity . 5

2.3 Range of Motion (ROM) . 5

3 Novel Method 7

3.1 Technologies . 7

3.2 Application Overview . 8

3.3 System Architecture . 9

3.4 Exercise Classification . 9

3.4.1 Data Description . 9

3.4.2 The ExerciseClassifier . 10

3.5 Classification Method . 13

3.5.1 Configuration Parameters 13

3.5.2 Main Classification Algorithm 15

3.6 Parameter Tuning . 18

4 Experimental Evaluation 19

4.1 Experimental Architecture . 19

4.1.1 Data Collection Phase . 19

4.1.2 Accuracy Testing Phase . 20

4.2 Parameter Ranges and Computational Considerations 22

4.3 Results . 24

4.3.1 Collected Data . 26

4.3.2 Optimal Parameter Combination 27

4.3.3 Accuracy Evaluation . 27

5 Conclusions and Future Work 29

v

A Code, Data and Results 31

Bibliography 33

vi

Chapter 1

Introduction

The quantification of physical activity has been the focus of numerous research

articles, demonstrating a plethora of benefits for various patient groups, including

those with diabetes [1] and bariatric patients [2]. By quantifying a trainee’s work-

out, progress can be objectively measured, evaluated, and adjusted according to

their needs. This quantification also enhances trainees’ awareness of their overall

movement quality.

One promising field for automatic movement quantification is computer vision.

For instance, Yu Chen et al. [3] developed a system based on deep learning of

images that could reliably detect the execution of several fitness exercises. An-

other approach in computer vision involves the calculation of body nodes. In this

paradigm, key body landmarks are extracted from videos and processed for further

analysis. Zhou et al. [4] utilized this technique to assess the similarity between

previously recorded exercises and real-time execution.

Despite the advancements in this field, existing research systems have several

shortcomings that reduce their usefulness in the fitness industry. Systems using deep

learning of images are not scalable, as they only recognize a few exercises they have

been trained on. The addition of new exercises or individualized variations would

require extensive training on a vast amount of new labeled data, which may not be

readily available. On the other hand, systems based on extracted body landmarks

are often specialized for specific movement types [5], focus solely on pose extraction

optimization, or do not track the Range of Motion (ROM) executed in real-time.

In this study, we will present a prototype solution capable of recognizing ar-

bitrary exercises by recording only one initial repetition and tracking the current

ROM in real-time. The research goal is to systematically test and analyze the sys-

tem’s accuracy in these tasks. By doing so, we aim to encourage the development

of industry-oriented applications that can assist trainees in achieving their fitness

goals. Although the prototype development is outside the study’s scope, we will

1

explore the main topics influencing its accuracy.

Chapter 2 will delve into the fundamentals of HPE, exploring its applications

and the role of ROM in assessing movement quality. Understanding these con-

cepts is crucial for developing systems that accurately quantify physical activity.

The chapter will also highlight the importance of measuring physical activity in

different populations, such as patients with chronic conditions or those undergoing

rehabilitation.

Chapter 3 will outline the conceptual framework of the proposed prototype. It

will discuss the integration of various components that contribute to the system’s

accuracy. This chapter will emphasize the need for a holistic approach in designing

and evaluating such systems, considering factors like user variability and environ-

mental conditions.

In Chapter 4, we will detail the experimental setup used to validate the pro-

totype. This section will cover the methodology for data collection, the metrics

for evaluating accuracy, and the statistical analysis of the results. By testing the

system, we aim to establish its reliability and practical applicability.

The final chapter will synthesize the study’s findings, addressing the research

questions posed at the outset. We will discuss the system’s limitations, such as

potential inaccuracies in different environments or with varying user demographics,

and propose directions for future research. Enhancing the system’s robustness and

expanding its applicability will be key areas for further investigation.

2

Chapter 2

Basic Concepts

In the following chapter, the field of Human Pose Estimation (HPE) will be intro-

duced, the importance of exercise quantification will be discussed and the concept

of Range of Motion (ROM) will be defined.

2.1 Human Pose Estimation

Human Pose Estimation (HPE) is a computer vision task that involves locating

and identifying key points on a person’s body, thereby defining their pose in a

given space. This area of research has gained significant attention due to its broad

applications, ranging from human-computer interaction and gaming to sports ana-

lytics and healthcare. Accurate pose estimation is crucial in understanding human

behavior, enabling machines to interpret and respond to human actions.

There are various approaches to tackle the challenge of human pose estimation,

broadly categorized into two main groups - 2D pose estimation and 3D pose esti-

mation. In 2D pose estimation, the focus is on body landmark detection, where

Convolutional Neural Networks (CNNs) have shown remarkable success in localizing

landmarks accurately. For example, Cao et al. [6] have shown a method of detecting

the 2D pose of multiple persons with impressive accuracy. Heatmap regression is

another technique in 2D pose estimation, with deep neural networks, particularly

Hourglass Networks, regressing heatmaps to predict keypoints [7].

In 3D pose estimation, monocular methods estimate the 3D pose from a sin-

gle 2D image, leveraging deep learning architectures to predict depth information

and reconstruct the 3D pose. Multi-view methods, on the other hand, utilize mul-

tiple camera views, employing triangulation and structure from motion (SfM) to

synthesize a three-dimensional representation of the human pose.

Human pose estimation algorithms generally follow a two-step process: training

and inference. During training, a model learns the relationship between input im-

3

Figure 2.1: Media-Pipe’s 33 body landmark locations.

ages and corresponding annotated pose data. The inference stage involves applying

the trained model to new images to predict body landmark locations. Deep learn-

ing architectures, particularly CNNs and recurrent neural networks (RNNs), play

a pivotal role in learning complex spatial dependencies and temporal sequences,

enhancing the accuracy of pose estimation.

Mediapipe Pose Detection, a prominent library in computer vision, employs

Convolutional Neural Networks (CNNs) and heatmap regression for accurate 2D

keypoint detection. It excels in real-time pose estimation, aligning with established

methodologies [6]. Furthermore, its capabilities extend to 3D pose estimation, mak-

ing it a versatile choice for sports applications. The library’s adherence to deep

learning architectures ensures robust spatial and temporal sequence understand-

ing, enhancing pose estimation accuracy. As shown in Fig. 2.1, Mediapipe uses a

skeleton-based approach to model the body. This renders it especially useful for fit-

ness applications, where body joints can be used to detect and describe movements.

In this study, we will use this library for the extraction of body landmarks. Yet,

for the classification of exercises and ROM, we will rely on a custom algorithmic

solution.

4

2.2 Tracking of Physical Activity

The benefits associated with exercise tracking for improved fitness outcomes have

been the focus of a number of research articles. For example, Burke et al. [8]

delved into sports psychology, proposing that self-monitoring plays a crucial role

in enhancing exercise adherence and performance. The act of logging and tracking

exercises contributes to a heightened sense of accountability and motivation among

individuals engaging in fitness activities.

Locke and Latham’s goal-setting theory [9] further accentuates the positive im-

pact of setting specific, challenging goals on performance. Keeping a record of

exercises allows individuals to establish clear goals and monitor their progress, po-

tentially bolstering adherence to workout routines and, consequently, influencing

results. In a study by Jakicic et al. [10], the incorporation of technology for self-

monitoring and feedback was associated with significantly increased weight loss

among participants. While not specifically focused on gym exercises, these find-

ings underscore the potential benefits of incorporating monitoring and feedback

mechanisms in a fitness context.

In addition, the prevalence of fitness apps and wearable technology in the con-

temporary exercise landscape further suggests a perceived value in monitoring work-

outs. For the scope of this study, we will focus on the automatic recognition of

performed exercises and tracking of a subject’s ROM during execution. Based on

this data, executed sets and repetitions can be measured. Furthermore, tracking

the ROM enables us to monitor a subject’s movement speed, which is also a crucial

parameter in fitness.

2.3 Range of Motion (ROM)

Range of motion (ROM) is a fundamental parameter in fitness that refers to the

extent to which a joint or series of joints can move in various directions. It is com-

monly measured in degrees and is crucial for evaluating flexibility and mobility. The

importance of ROM in physical activity cannot be overstated. A healthy ROM is

essential for performing everyday tasks with ease, as well as for excelling in various

sports and exercise routines. The ability to move joints through their full ROM

contributes to overall musculoskeletal health and reduces the risk of injury. Un-

derstanding and optimizing one’s ROM can enhance the quality of life and athletic

performance.

The concept of ROM has its roots in medical and anatomical literature. For

instance, the importance of ROM in fitness is underscored by research in sports

5

science. In their study, Suchomel et al. [11] discuss how achieving optimal ROM in

specific exercises can lead to improved strength and power development. This high-

lights the practical implications of ROM quantification in the context of strength

training and sports performance.

6

Chapter 3

Novel Method

In this chapter, we will present the technological decisions, implementation process

and overall structure of the system. In a later step, we will introduce the core

classification method and its configuration parameters. During this process, the

need for a standardised testing framework will be motivated.

3.1 Technologies

For the prototype, we chose to use a mobile platform. The choice was driven by the

need for accessibility and convenience. Mobile platforms offer users the flexibility

to utilize the app without significant infrastructural constraints, which is a pivotal

aspect of fitness guidance. In this sense, the ubiquity of smartphones ensures that

users can integrate their fitness routines into their daily lives, fostering engagement

and progress.

In terms of the technology stack, Java emerged as a robust choice for the de-

velopment of the application. Java’s reputation for speed and efficiency in mobile

application development is well-established. In view of the system’s requirements,

where various processes, such as model inference, deterministic classification, GUI

updates and data persistence, need to operate concurrently, Java’s inherent support

for multithreading has proven invaluable.

As mentioned previously, for the inference of body landmarks from image frames,

Google’s Media-Pipe pose detection solution was used. Besides from being an open

source project, its thorough documentation, planned maintenance and constant

development are some of the key benefits that motivated this decision.

7

3.2 Application Overview

The application’s main use cases are the recording of new exercises, the recognition

of previously recorded exercises and the tracking of ROM’s. In the first scenario,

the user is prompted to execute the new movement in a guided and systematic way.

As shown in Fig. 3.1 (a), the subject synchronises their ROM with a GUI element

that moves up and down with a configurable velocity. This approach enables the

system to model an exercise as a set of consecutive poses, where each pose describes

a specific phase of the movement.

One repetition of the new movement is sufficient for the system to create the

internal model of the exercise that it can later recognize. We define this process

as the system ”learning an exercise”. In the second case, shown in Fig. 3.1 (b),

when a subject performs a previously recorded exercise, the system automatically

recognizes its starting pose. Additionally, a visualisation of the system’s belief

(fixationValue) that a given exercise is actually executed is shown with the use

of a loading bar. This feature enables the user to visually perceive whether a given

exercise is being recognized.

In the third use case, shown in Fig. 3.1 (c), the system has locked the currently

executed exercise, and synchronises a GUI element with the user’s ROM. Based

on that, the trainee’s speed of execution can be measured and guided accordingly.

Furthermore, repetitions are automatically counted, which forms the basis of quan-

tifying a subject’s complete training regime.

(a) Recording Phase (b) Recognition Phase (c) Tracking Phase

Figure 3.1: Visualisation of the system’s three main use cases.

8

3.3 System Architecture

On a conceptual level, the application consists of five main modules - the App-

Manager, the ImageProvider, the LandmarkDetector, the ExerciseRecorder and

the ExerciseClassifier1. The AppManager acts as a finite state machine that directs

data flow and renders the GUI depending on the application’s current use case. The

ImageProvider offers a camera preview and provides the LandmarkDetector with a

continuous stream of image frames.

The LandmarkDetector uses Google’s Media-Pipe Pose-Detection ML solution

internally, to infer data describing the current pose. After inference, the data flow

can have two distinct pathways, depending on the current use case. For the record-

ing use case, the data is passed to the ExerciseRecorder, where it is processed and

persisted. The ExerciseRecorder is also responsible for rendering the graphical user

interface that guides the user through the recording process.

For the recognition and tracking use cases, the data is directly passed to the

ExerciseClassifier, which identifies the exercise that the current pose belongs to. It

also returns the ROM in which the subject’s pose is estimated to be in. The results

are then passed to the AppManager where the GUI is updated.

3.4 Exercise Classification

The system’s ability to recognize exercises is determined by three main factors -

the model’s inference quality, the recording method and the classification method.

Being state of the art, we view the chosen pose detection solution as a system-

context component. In this sense, improvements in this sector are outsourced to

Google’s Media-Pipe research.

On the other side, both recording and classification methods are mutable system

processes. After significant development efforts, we make the assumption that the

ExerciseRecorder stores the inferred poses in a reliable and accurate way. As a

logical conclusion, the ExerciseClassifier is estimated to have the highest potential

to determine the system’s accuracy. Thus, for the scope of this study, we will only

focus on the inner workings of the ExerciseClassifier.

3.4.1 Data Description

In order for the ExerciseClassifier to work, the current pose object and a set of

recorded exercises are required. A pose object is a list of 33 normalized 3D coordi-

1Full code available at: https://github.com/aris-konstantinidis/fugazi/blob/main/

src/main/java/org/example/Classifier.java

9

nates, each describing the position of a body landmark location. These pose objects

are inferred by Mediapipe’s pose detection model, based on the given image frames.

Each list item also contains information about the presence and the visibility of

each landmark. While presence implies the probability that a given landmark is

within the image frame, visibility also takes into account the possibility of occlu-

sions. Occlusions occur when from the viewer’s perspective, one landmark is hidden

by another. Figure 2.1 illustrates all available body landmark locations provided

by the Media-Pipe framework.

The set of recorded exercises contains lists of pose objects, each belonging to a

specific exercise. Here, each pose object also contains a ROM value, indicating its

position within the movement. For example, the exercise ”Squats”, could contain

a list of 5 pose objects, where the first pose object was captured at the start of the

exercise’s ROM and the last pose was captured at the end of the exercise’s ROM.

Consequently, the pose objects in the middle occupy 20%, 40%, 60% and 80% of

the exercise’s full ROM.

3.4.2 The ExerciseClassifier

In its simplest description, the ExerciseClassifier is a Java class. From a more

complex point of view, it is a stateful and event-driver module, responsible for the

accurate and reliable recognition of the currently executed pose. The most minimal

way that such a system could work, would be to compare the current pose input

with all the poses that have previously been recorded. Formally, given a pose input

p and a cached array of poses P , one could define the optimal result to be the pose

in the list of poses that is the most similar to the input pose. Given that the data, in

its most atomic level is expressed in 3D coordinates, the Euclidean Metric appears

to be a reasonable measure of fitness. Thus, in our case, the distance between two

poses p1 and p2 would be calculated by the following formula:

d(p1, p2) =
√

(p1x − p2x)
2 + (p1y − p2y)

2 + (p1z − p2z)
2 (3.1)

For computational efficiency, squaring will be ignored, as the resulting distances

can still be compared and only the relation between them is important. Although

in theory, this computation would always return the closest match, the are multiple

problems that arise. The following section discusses these issues in detail, and

motivates the need for a more sophisticated classification scheme.

10

Figure 3.2: An ambiguous pose that can be found in many common resistance
training exercises.

Considerations and Main Issues

First of all, the inferred input stream is noisy. For example, if an occlusion happens,

the model cannot robustly infer where the hidden body landmarks are positioned.

Combined with the inference model’s probabilistic nature, this leads to high jitter

of the input signal.

Furthermore, collisions between poses are not atypical for exercises. Many move-

ments during physical activities contain poses that are almost identical. For exam-

ple, the pose shown in Fig. 3.2 can be found in cable triceps extensions, biceps

barbell curls, shoulder side raises, dumbbell lateral raises, and many other exer-

cises. A system that solely relies on a distance metric would inevitably lead to an

unstable classification experience.

In addition, variation in the execution of a specific exercise should not be under-

estimated. Muscular and neurological fatigue occurs at almost every high-intensity

training, a fact that guarantees within-subject variation of execution between rep-

etitions. Between-subject variation in movement execution is also prevalent, given

the differences in fitness, psychological state, and expertise.

11

The previous problems lead to the realization that the classification algorithm

should allow some degree of deviation from the optimal movement execution, yet it

should still be able to differentiate between noise and an actual pose pattern. In-

evitably, the statistical problem described as Type-1 and Type-2 trade-off emerges.

A liberal classification scheme would result in a disproportionate number of false

positives, a highly conservative approach would lead to an excessive number of false

negatives. In the next section, we will discuss ways in which these problems can be

controlled.

Exploration of Sophistication Methods

A plausible way to enrich the classification system with some degree of deterministic

intelligence, is by mimicking a human approach to classification. Instead of focusing

on finding a better suited metric, previous experience can be used as a bias for the

next predictions. Analogous to human behavior, the system could maintain a notion

of classification certainty and be conditioned by past events. In digital systems,

memory can be expressed through persistence of data. By storing a sequence of

observed data points, a system can extract a pattern in time, and bias itself towards

an expected future outcome. The following example introduces the main questions

that emerged during development.

The system has learned to recognize two exercises E1 and E2. Although

the two movements differ in their overall displacement of the body’s

landmarks, both contain a pose that is almost identical. These poses

are defined as pE1 and pE2 . At some time, the ExerciseClassifer has

observed 10 consecutive poses that belong to exercise E1. Then, based

on the euclidean distance between the newly observed pose pn and all

the other recorded poses, the closest found distances are d(pn, pE1) and

d(pn, pE2). It is computed that d(pn, pE1) > d(pn, pE2). Should the

system immediately accept that the subject switched to exercise E2?

Should it recognize this computational result as an outlier and still pre-

dict E1? After how many such outliers should the system change its

belief that exercise E1 is performed?

The previous example motivates the necessity of four constructs that will be

programmed as configuration parameters into the classification algorithm, namely

memory, certainty, deviation and fixation. Memory describes the persistence of

past events. Certainty expresses the belief that the system has, that its current

prediction is correct. Deviation defines an artificial threshold that the system will

use to differentiate between variations that fall within a typical range, and variations

12

that fall outside of this boundary. This is needed in order for the system to be able

to differentiate between noise and actual pose patterns. Fixation describes the act of

ignoring a purely computational result, in favour of a heuristic belief, that another

outcome should be the correct one.

3.5 Classification Method

In this section, the configuration parameters, the main algorithm and the need for

a rigid testing framework will be introduced.

3.5.1 Configuration Parameters

Based on the previously mentioned constructs of memory, certainty, deviation and

fixation, during development, 6 configuration parameters emerged. In the following,

the motivation for the existence of each parameter and their importance for the

system’s performance will be presented.

1. exerciseHistorySize

The exercise history buffer is essentially a list that holds the last n exercise predic-

tions. This parameter facilitates the integration of a historical bias into the exercise

recognition process. For example, when the most recent k predictions consistently

indicate the same exercise, it may suggest a higher likelihood that the current pose

corresponds to the same exercise. If the buffer size is excessively large, it can exert

an overwhelming influence on predictions based on past data. Conversely, if the

buffer size is too small, predictions may primarily be influenced by the present in-

put, which, given the noisy nature of our data, could potentially result in jitter and

an overall unstable classification experience.

2. exerciseSwitchThreshold

The exercise switch threshold complements the exerciseHistorySize by specifying

the number of occurrences of the same exercise within the history buffer, required

to trigger exercise recognition. Given that the model infers 33 3D landmarks from

a single image frame, the model will always generate some number of erroneous

outputs. Therefore, it is crucial to select an appropriate switch threshold, that

allows for some error, but can still help the system differentiate between noise and

a pattern over time. A small value is prone to a series of outliers that can trigger

a false positive classification, while a large value may act conservatively, making

exercise recognition slow.

13

3. maxFixationValue

The maxFixationValue expresses the classifier’s confidence in the execution of an

exercise. For instance, during the initial prediction of an exercise like ”Squats,” the

belief that this exercise is actually executed should be relatively weak, as the ob-

served data could potentially only include noise. However, with consistent ”Squats”

predictions, the classifier should strengthen its belief , as the probability that noise

consequently triggers the recognition of a specific exercise is estimated to be low.

This parameter adds an additional layer of robustness against outliers, ensuring rel-

ative stability in predictions. Its second responsibility is to allow short deviations

from the optimal movement execution, without directly aborting the exercise. For

example, during exercise execution, a trainee might take in a muscle relaxing pose

that deviates significantly from the target poses. In this case, the fixationValue

will act as a counter that will prevent the exercise being exited in the middle of

the set. Determining the ideal value for this parameter is challenging, as a high

fixation value could lead to a erroneous fixation on a false positive result, while a

small value may lead to the loss of the desired bias, and an unstable classification

scheme.

4. sdLow

During comparisons between the currently observed pose and all recorded poses, the

ExerciseClassifier will always identify a ”best fitting” pose. Thus, the possibility

that no exercise is performed is not included in the set of possible outcomes. As

a consequence, it is crucial to establish an absolute deviation threshold, when it

comes to recognizing that no exercise is being performed. This necessitates the

determination of a reference value. Through analysis described in a later section,

such a value was found as a starting point. It’s worth noting that this value is

influenced by the size of the dataset used for the analysis and could have been

optimized empirically. A high value can lead to a multitude of false positives, while

a small value may not allow sufficient variation in exercise execution.

5. sdHigh

The sdLow parameter comes into play when the ExerciseClassifier has not yet locked

a specific exercise. In this scenario, the current pose is compared with all recorded

exercise poses, with a relatively small allowed deviation as specified by sdLow, to

avoid false positives. However, once the ExerciseClassifier has locked an exercise,

the comparisons are intentionally limited to the currently fixated exercise poses,

allowing for a greater deviation as specified by sdHigh to accommodate a greater

14

variation in exercise execution. This is used as a fixation method, to make the overall

classification experience more stable. It’s important to note that this parameter is

currently also an estimate, based on sdLow.

6. landmarkPresenceThreshold

The model used for inferring landmarks assigns a presence value to each joint,

indicating the probability that a joint is visible and not occluded in the image

frame. The landmarkPresenceThreshold is used by the classifier to determine

whether a comparison is rational. For example, if the knees have a low presence

value, it would be problematic to compare them with a stored pose where the knees

were clearly visible. A high presence threshold acts conservatively, allowing exercise

recognition only when joints are clearly visible, which may not always hold true in

real life scenarios. On the other hand, a low value may result in the use of joints

from the current pose whose 3D coordinates are likely not very accurate.

3.5.2 Main Classification Algorithm

The ExerciseClassifer’s main function is to predict which exercise is performed and

at which ROM. Exercises are defined by a unique integer (eid) while ROM (rom) is

expressed as a percentage value. These two values make up the ClassificationResult,

that is computed after each classification iteration. Internally, the ExerciseClas-

sifer uses two lists, namely the exerciseHistory and the fixationValues. The

exerciseHistory is a limited size queue, where the newly predicted eid is stored,

and the oldest entry is removed. The fixationValues’s length equals N+1, where

N is determined by the number of exercises that have been recorded. The additional

entry is reserved for the fictional nullExercise, which expresses that no exercise is

recognized.

During initialization, while each exercise’s fixationValue is set to 0, the nullEx-

ercise’s value is set to the maximal allowed fixation value, which is one of the 6

configuration parameters. Each time that an exercise is believed to be executed, if

another exercise’s fixation value is greater than 0, it is decremented. If the list only

contains 0’s, the predicted exercise’s fixation value is incremented. This technique

has proven to smoothen switching between exercises and increases classification

stability. The algorithm is made up of two main conditional branches. The first

branch, called interExerciseCase, is chosen when based on its previous measure-

ments, the system believes that the trainee is not executing an exercise yet. The

second branch, called intraExerciseCase is chosen when based on its previous mea-

surements, the system believes that the subject still performs a particular exercise.

15

Purposefully, the previous outcome biases the handling of the next data point.

In the interExerciseCase, the current input pose is compared with all recorded

exercises’ starting poses, by measuring their distance. As mentioned previously,

this comparison will always return an exercise, which excludes the possibility that

no exercise is performed. To solve this issue, the notion of deviation is needed.

The system should be able to compute, whether a given pose significantly deviates

from the target pose. The subsection ”Exploring an Absolute Deviation Threshold”

describes the research that was done to explore possible deviation boundaries.

Continuing with the interExerciseCase, the system outputs the best matching

pose, given that the found pose lies within a given deviation threshold. If an exercise

is found, the fixation value of this particular exercise is incremented, and the eid of

the exercise is inserted into the exercise history. If no exercise is found, the fixation

value of the last exercise that was believed to be most probable is decremented, and

null is inserted into the exercise history. If the fixation value of an exercise exceeds a

certain threshold, defined by the maxFixationValue, the ExerciseClassifier accepts

it as the currently executed movement.

This leads to the intraExerciseCase, where the system is challenged to maintain

its belief that a particular exercise is still executed. In the intraExerciseCase, the

Classifier compares the currently observed pose only with the poses of the exercise

that is believed to be executed. If the found pose lies within an acceptable threshold,

the fixation value of this exercise is incremented, and its eid is inserted into the

exercise history. In the opposite case, its fixation value is again decreased and

null is inserted into the history buffer. If the ratio between the exercise’s eid

occurrences to the exercise history list size lies below some defined value - called

the exerciseSwitchThreshold, and the fixation value of the exercise is 0, the belief

that this exercise is still performed is aborted, and the interExerciseCase gets active.

To sum up, Fig. 3.3 presents the classification algorithm in a visual way.

Exploring an Absolute Deviation Threshold

As mentioned previously, the system requires a threshold that separates typical

and atypical movement deviations from a target movement. In order to find such

a reference value, we took advantage of the fact, that no two exercise repetitions

are exactly the same. When a trainee executes an exercise, each repetition can be

viewed as a time-series. In Fig. 3.4, the change in the angle of the left elbow over

time, for 3 repetitions of biceps dumbbell curls is illustrated. As shown, although

all 3 curves show the same overall pattern over time, there are evident differences

between them. To improve visualization and help understanding, the following

example will use angles that were inferred from the actual 3D positions of body

16

Figure 3.3: Flowchart representing the classification algorithm.

landmarks. It is noted, that the actual implementation works directly with the 3D

coordinates, as the abstraction of angles is unnecessary and increases latency.

To derive an approximate measure of deviation, the following statistical proce-

dure was used. We recorded several repetitions of the same exercise and aggregated

all repetitions for each joint angle as a time-series. For a fixed point in time (ROM),

based on all execution variants, we calculated the mean angle of the particular joint.

Then, we calculated the standard deviation of the angle for this point in time. The

resulting vector of standard deviations was then used to derive a distribution. As

seen in Fig. 3.4, the distribution appears to follow the Gaussian distribution. In

other words, most of the time, the standard deviation - or variance in execution of

an exercise, lies within a particular boundary, and only rare are there significant

outliers in variation.

For example, for bicep curls, it was calculated that for the most time, the vari-

ation of the elbows’ angles between different repetitions typically lies between 14

and 19 degrees. Having computed an estimate for how much variation in movement

execution can be expected, allows us to be able to better differentiate between typi-

cal and atypical variations, and ultimately be able to recognize whether a pose does

not match any of the recorded poses.

17

Figure 3.4: Change in the angle of the left elbow over time, for 3 repetitions of
biceps curls.

Figure 3.5: The distribution of standard deviations.

3.6 Parameter Tuning

During development, numerous combinations of the 6 presented configuration pa-

rameters were tested. Quickly, the interdependence between them became evident.

For example, we could increase both sdLow and switchThreshold, which would

allow greater movement variance but require more occurrences of a specific exercise

in the exercise history to result in this exercise’s recognition. On the other side,

we could decrease sdLow, narrowing the allowed movement deviation, and decrease

the switchThreshold. Even if less exercise occurrences are required in the history

buffer, less poses would fall within the defined standard deviation. As one can see,

both configurations could theoretically result in similar classification strategies.

Although each configuration parameter seems to play a vital role in the classifica-

tion scheme, the assumed dependencies between them do not allow each parameter

to be optimized separately. Thus, in order to find the parameter combination that

will output the highest classification accuracy, we will use a data-driven approach.

In the following chapter, we will discuss the design of a standardized experiment

with which classification accuracy will be analysed.

18

Chapter 4

Experimental Evaluation

In this chapter, the procedure followed to quantify the system’s classification accu-

racy is presented.

4.1 Experimental Architecture

The experiment consists of two separate phases - the data collection phase and the

accuracy testing phase. While the first phase is conducted using the existing system

infrastructure, the second phase is delegated into a standalone testing project1.

4.1.1 Data Collection Phase

As a first step, we will use the application’s recording use-case to generate a SQLite

database file that contains the exercises that the ExerciseClassifier can recognize.

This process is visualized in Fig. 4.2. The ExerciseClassifier can then load this data

in a way that allows efficient comparison with a new pose input. We define this

dataset as the reference dataset.

In a second step, we will record videos in the form of a list of consecutive image

frames, pass these image frames to Mediapipe’s pose detection model for inference

and store the inferred pose data into a CSV file. Each entry will also contain the

image frame’s captured timestamp. In parallel, we will store each image frame and

again use the captured timestamp as the file’s name. After all poses have been

stored in the CSV file, we will proceed with the labeling process. To do so, based

on each inferred pose’s timestamp, we will visually analyse the corresponding image

frame and manually add an exercise and ROM value.

For example, the pose in Fig. 4.1 (a) would be assigned the executed exercise’s

eid for the exercise label and 0 for the rom, as the subject has not yet initialized the

1The repository can be found at: https://github.com/aris-konstantinidis/fugazi

19

movement. Analogous, the pose in Fig. 4.1 (b) would be assigned the same eid for

the exercise label and 0.5 for the rom. The pose in Fig. 4.1 (c) would also be assigned

the same eid for the labeled exercise and 1 for the rom value, as the subject’s pose

is at the maximum ROM for this exercise. Although the objectivity and validity of

this labeling process can not be proven scientifically without significant additional

effort, we tried to label each pose as accurate as possible. This data is defined as

the test dataset.

(a) 0% ROM. (b) 50% ROM. (c) 100% ROM.

Figure 4.1: A subject performs Standing Dumbbell Shoulder Side Raises (SDSSR)
at different ROM’s.

Each entry can then be loaded and passed to the ExerciseClassifier for classifi-

cation. The recorded videos will depict trainees executing a random permutation

of the exercises that the system is able to recognize.

4.1.2 Accuracy Testing Phase

To evaluate the system’s accuracy, we will create a separate testing project. As

shown in Fig. 4.3, the testing tool instantiates an ExerciseClassifier and provides

it with several parameters. Firstly, the SQLite file containing the reference data

is loaded. This way, the ExerciseClassifier accesses the reference data, with which

comparisons can be made. Secondly, the CSV file containing the manually labeled

poses is passed through the ExerciseClassifier’s classify method. This data acts

as the testing data, based on which the classification accuracy will be evaluated.

Thirdly, the ExerciseClassifier is given a set of parameter combinations. For each

parameter configuration, a ClassificationResult is returned. ClassificationResults

contain the predicted eid and rom. Finally, each prediction’s accuracy score is

20

Figure 4.2: The experiment’s reference data collection process.

21

Figure 4.3: The experiment’s testing process.

computed. The module2 responsible for computing classification accuracy measures

whether the predicted exercise matches the actual observed exercise, and whether

the predicted ROM falls within a specific boundary around the actual rom.

Finding whether the correct exercise was predicted is an elementary task, as

the predicted eid can be directly compared to the labeled eid. For the ROM,

being continuous in nature, a margin of error of 0.15 around the correct percentage

was allowed. Thus, a negative or positive difference between prediction and actual

percentage that was lower or equal to 0.15 was deemed as a correct prediction.

4.2 Parameter Ranges and Computational Con-

siderations

Each parameter combination creates a unique classification strategy that directly

influences the ClassificationResult. Thus, it becomes evident that the choice of the

parameter combinations that are tested is of vital importance. Given the novel

nature of the classification algorithm, we will approach the search for the optimal

parameter configuration in a computational manner by using a grid search3. Yet,

for a grid search to be computationally feasible, each parameter has to have a

clearly defined start, end and step value. The step value will be added to the start

2Full code available at: https://github.com/aris-konstantinidis/fugazi/blob/main/

src/main/java/org/example/MetricScorer.java
3Full code available at: https://github.com/aris-konstantinidis/fugazi/blob/main/

src/main/java/org/example/GridSearch.java

22

value after each iteration, until the end value is reached. The discretisation of the

value space that a parameter can take is a demanding task, as too many values

might reach computational limits, whereas too view values do not guarantee that

a representative sample of the possible parameter value space is explored. In the

following subsection, the selection of ranges for the 6 parameters will be discussed.

ExerciseHistorySize

On an average modern smartphone, the system analyzes approximately 15 image

frames per second. When a user takes in the starting pose of an exercise, they

should get immediate feedback, to avoid making them doubt the correctness of the

pose, or lose trust in the system’s classification method. As mentioned by Miller

[12] in his research article ”Response time in man-computer conversational transac-

tions”, response times of more than 4 seconds for actions that await communicative

response lead to a disruption of the communication thread. Ideally, feedback should

occur approximately within 500 milliseconds to 2 seconds. From a technical point

of view, if the system only considers the last image frame input, as discussed in

previous chapters, classification would be jittery. Thus, it is assumed that the ideal

exerciseHistorySize lies between 5 and 20. The lowest step increment of 1 is

chosen.

ExerciseSwitchThreshold

This is the only parameter that is not manually configured by the researchers,

but is automatically computed based on the exerciseHistorySize. The exercis-

eSwitchThreshold’s lower and upper bounds are restricted by the exerciseHistory-

Size. Specifically, given an exercise history buffer of length N , it is assumed that the

optimal value lies within [floor(N/2)+1, N). Setting the exerciseSwitchThreshold

to a lower value has been empirically shown to destabilize classification, as the sys-

tem becomes prone to outliers. The lowest step increment of 1 is chosen.

MaxFixationValue

The fixation value acts as an output stabilizer that allows for errors. Again, as-

suming that an average smartphone produces 5 image frames per second, a very

high value like 50, would result in a very slow rejection of a previously performed

exercise. On the other side, a very low number like 1, would mean that an exercise

will be rejected if a trainee deviates from the movement threshold for more than

half a second. Thus, it is assumed that the optimal value should lie between the

values 3 and 20. The lowest step increment of 1 is chosen.

23

SDLow

The method for finding a plausible standard deviation reference value was discussed

above. The results indicated that during different repetitions of the same exercises,

body landmarks show an average standard deviation value of 0.01. In addition,

empirically, we observed that values above 0.02 result in a significant increase of

false positive exercise classifications. On the other hand, values below 0.01 allow

little to no movement deviation. It is thus assumed, that the optimal value should

lie between 0.01 and 0.02. Considering the computational restrictions of a grid

search, we chose a step value of 0.0025.

SDHigh

To avoid limiting the search space by additional assumptions, the same values as

sdLow are used.

LandmarkPresenceThreshold

By means of trial and error, it was found out, that the landmarkPresenceThreshold

remains very high (above 0.92), unless a body landmark completely disappears from

the image frame. Thus, we will assume a minimum value of 0.92 and a maximal

value of 97. A step value of 0.01 is chosen.

Using the boundaries presented above and given that each iteration completes

in approximately 14.8 nanoseconds, we evaluated the grid search’s feasibility and

estimated the running time needed to explore the defined value space. Alg. 1

illustrates the used method. All computations were executed on a Lenovo ThinkPad

X1 Carbon Gen 10, which features a 12th Gen Intel Core i7 processor, a 32GB

LPDDR5 RAM at 5200 MHz, and 1TB PCIe SSD of storage.

We calculated that the grid search will test 237600 unique parameter combina-

tions with a running time of N ·237600 milliseconds, where N is the number of image

frames in the reference dataset. Thus, for a 5 minute video with 15 FPS, the exper-

iment would need 392040000 computations and a running time of approximately 1

hour and 37 minutes to complete.

4.3 Results

In this chapter, the collected data will be presented and the experiment results will

be analysed.

24

Algorithm 1 calcGridSearchStats

Require: imageFrames
Ensure: {paramCombs, iters, nanos}
paramCombs← 0
iters← 0
nanos← 0
for a← 5 to 20 by 1 do
for b← floor(a/2) + 1 to a by 1 do
for c← 3 to 20 by 1 do
for d← 0.01 to 0.02 by 0.0025 do
for e← 0.01 to 0.02 by 0.0025 do
for f ← 0.92 to 0.97 by 0.01 do
paramCombs← paramCombs + 1
for g ← 0 to length(imageFrames)− 1 do
iters← iters + 1
nanos← nanos + 14.8

end for
end for

end for
end for

end for
end for

end for
return {paramCombs, iters, nanos}

25

Exercise Poses Reps

Squats 251 6

Back Rows 274 8

Shoulder Presses 186 3

Shoulder Side Raises 250 7

Overhead Triceps Extensions 277 7

Right Torso Rotations 291 7

Right Shoulder External Rotations 331 8

No exercise 1312 -

Table 4.1: Absolute number of poses and repetitions recorded during test data
collection.

4.3.1 Collected Data

Due to the fact that the data labeling process is extremely time costly, we only used

a home fitness testing scene. To still collect a representative amount of data, a rel-

atively big set of exercises was recorded. The exercises were chosen based on their

commonality in the field of fitness. Furthermore, we aimed to include compound ex-

ercises as well as isolated ones. The list includes Squats, Back Rows, Side-Shoulder-

Raises, Shoulder-Presses, Overhead-Triceps-Extensions, Right-Torso-Rotations and

Right-Shoulder-External-Rotations.

It is noted, that this kind of setting, containing exercises that are not performed

on machines, is more difficult to be tracked, as the variation in execution, and the

subject’s positioning in the camera frame can vary more, compared to movement

execution on machines. To collect testing data two subjects performed a random

permutation of the recorded exercises. The first recorded video has a duration of 5

minutes and 27 seconds and produced 1657 poses. The second one has a duration

of 4 minutes 59 seconds and produced 1515 poses.

1312 of the overall 3172 collected image frames4 depict the subjects not executing

any exercise, and will act as noise. The overall executed repetitions for each exercise

are shown in Tab. 4.1. The sequence of the exercises was chosen randomly by the

subjects during recording. Between sets, the subjects were instructed to show a

normal relaxation behavior. Manual labeling of the test data5 took approximately

8 hours to complete.

4A subset of the collected image frames can be found at: https://github.com/

aris-konstantinidis/fugazi/tree/main/data/3/frames
5The CSV file that contains the complete labeled test data can be found at: https://github.

com/aris-konstantinidis/fugazi/blob/main/data/2/test-data.csv

26

Parameter Value

exerciseHistorySize 11

exerciseSwitchThreshold 8

maxFixationValue 4

sdLow 0.0149

sdHigh 0.0174

landmarkPresenceThreshold 0.96

Table 4.2: Optimal parameter values found via grid search.

4.3.2 Optimal Parameter Combination

In sum, 237600 different parameter combinations where evaluated on 3172 different

poses. Each computation took about 14.8 nanoseconds. The overall grid search’s

running time was 3 hours 5 minutes and 11 seconds. Tab. 4.2 shows the parameter

configuration that yielded the highest exercise and ROM classification accuracy.

In order to be able to visualize the explored parameter value space and its effect

on ROM accuracy, we held sdLow, sdHigh and landmarkPresenceThreshold con-

stant and equal to their optimal found values and repeated the grid search with only

3 degrees of freedom. The explored parameter value space and the resulting ROM

accuracy scores are shown in Fig. 4.4. As expected, the grid forms a triangular shape

which is determined by the lower and upper bounds that exerciseHistorySize

sets for exerciseSwitchThreshold. We observe that the highest ROM accuracy is

achieved when exerciseHistorySize is greater than 10, exerciseSwitchThreshold

has a value of about 60% of the exerciseHistorySize and maxFixationValue is

below 5. From the found data, we assume that the optimal classification strategy

should take into account the image frames of the last 1 second, allow a 4/10 noise

to data ratio and avoid high exercise fixation.

4.3.3 Accuracy Evaluation

As mentioned previously, accuracy is evaluated for exercise classification and ROM

classification separately. By using the parameter values from Tab. 4.2, the system

achieved an overall exercise classification accuracy of 90.7%6. Using a 15% margin

of error allowance, the predicted ROM’s matched the actual ROM’s in 83.9%7 of

6CSV file with predictions can be found at: https://github.com/aris-konstantinidis/

fugazi/blob/main/data/2/predictions/0.9079445.csv
7CSV files with predictions can be found at: https://github.com/aris-konstantinidis/

fugazi/blob/main/data/2/predictions/0.8398487.csv

27

Figure 4.4: The parameter combination outcome space for variable exerciseHistory-
Size, exerciseSwitchThreshold and maxFixationValue and fixed sdLow, sdHigh and
landmarkPresenceThreshold.

Figure 4.5: ROM time-series for the 2 recorded test videos. Labeled values are
visualized in blue, predicted values are visualized in red.

the cases. Figure 4.3 illustrates the actual and the predicted values for the two test

cases.

28

Chapter 5

Conclusions and Future Work

Based on the experimental results and further empirical testing, we could prove that

the system can learn and recognize new exercises by only observing one repetition.

In addition, we could show that tracking of ROM’s in real time is possible. Both

tasks are also performed with a relatively high precision. Yet, as shown in Fig. 4.5,

accuracy can fluctuate significantly. This variation in accuracy can be attributed

to many factors.

As discussed in previous chapters, the deviation magnitude between the learned

movement and the executed movement plays a critical role. In fitness, most exer-

cises can be performed using multiple variations. Even if two trainees execute the

same exercise variation, their movement style will likely differ. Thus, classification

accuracy is highest, when the same trainee records and later executes the same

exercise variation.

In addition, movement speed seems to be negatively correlated with ROM clas-

sification quality. If a trainee executes a movement with high velocity, the inferred

poses are more likely to be erroneous, which makes classification more challenging.

Furthermore, classification is not possible if the subject’s angle towards the

camera differs more than approximately ±30 degrees between the learning phase

and the recognition phase. Mediapipe’s pose detection model, in its current state,

delivers distorted poses depending on the body’s overall angle towards the camera.

Faulty poses are also generated when body landmarks are occluded.

Thus, to achieve the highest possible classification accuracy, the following con-

ditions should be met

• The significant joints of an exercise should not be occluded during learning or

recording phase.

• The angle of the subject’s body towards the camera during learning phase

should be approximately equal to the angle during recognition.

29

• The same exercise variation for learning and recording should be used.

• The subject’s moving speed should not be lower than 1 second for a complete

ROM.

In order to further optimize the classification method, the step values for sdLow,

sdHigh and landmarkPresenceThreshold could be made smaller. In addition, the

usage of more testing scenes would ensure that the parameters are not specialized

for a specific setup and exercise execution variant. For example, if the test dataset

contained poses that perfectly match the reference data, sdLow and sdHigh could be

small. On the other hand, if reference and testing data showed great discrepancies,

sdLow and sdHigh would need to be higher, in order for any of the observed poses

to fall within the allowed threshold.

30

Appendix A

Code, Data and Results

Code and data used in this study is referenced in footnotes. The complete testing

project can be found at https://github.com/aris-konstantinidis/fugazi.

31

32

Bibliography

[1] Shiyuan Yu, Zhifeng Chen, and Xiang Wu. The impact of wearable devices on

physical activity for chronic disease patients: Findings from the 2019 health

information national trends survey. Int J Environ Res Public Health, 20(1),

January 2023.

[2] John M Jakicic, Kelliann K Davis, Renee J Rogers, Wendy C King, Marsha D

Marcus, Diane Helsel, Amy D Rickman, Abdus S Wahed, and Steven H Belle.

Effect of wearable technology combined with a lifestyle intervention on long-

term weight loss: The IDEA randomized clinical trial.

[3] Kuan-Yu Chen, Jungpil Shin, Md Al Mehedi Hasan, Jiun-Jian Liaw, Okuyama

Yuichi, and Yoichi Tomioka. Fitness movement types and completeness detec-

tion using a Transfer-Learning-Based deep neural network. Sensors (Basel),

22(15), July 2022.

[4] Jiangkun Zhou, Wei Feng, Qujiang Lei, Xianyong Liu, Qiubo Zhong, Yuhe

Wang, Jintao Jin, Guangchao Gui, and Weijun Wang. Skeleton-based hu-

man keypoints detection and action similarity assessment for fitness assistance.

pages 304–310, 2021.

[5] Zhonghan Zhao, Shanzhen Lan, and Shujun Zhang. Human pose estimation

based speed detection system for running on treadmill. pages 524–528, 2020.

[6] Zhe Cao, Tomas Simon, Shih-En Wei, and Yaser Sheikh. Realtime multi-person

2d pose estimation using part affinity fields. 2017.

[7] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked hourglass networks for

human pose estimation. 2016.

[8] Lora E Burke, Valerie Swigart, Melanie Warziski Turk, Nicole Derro, and

Linda J Ewing. Experiences of self-monitoring: successes and struggles during

treatment for weight loss. Qual Health Res, 19(6):815–828, April 2009.

33

[9] Edwin Locke and Gary Latham. A theory of goal setting task performance.

The Academy of Management Review, 16, 04 1991.

[10] John M. Jakicic, Kelliann K. Davis, Renee J. Rogers, Wendy C. King, Mar-

sha D. Marcus, Diane Helsel, Amy D. Rickman, Abdus S. Wahed, and

Steven H. Belle. Effect of Wearable Technology Combined With a Lifestyle

Intervention on Long-term Weight Loss: The IDEA Randomized Clinical Trial.

JAMA, 316(11):1161–1171, 09 2016.

[11] Timothy J Suchomel, Sophia Nimphius, and Michael H Stone. The importance

of muscular strength in athletic performance. Sports Med, 46(10):1419–1449,

October 2016.

[12] Robert B. Miller. Response time in man-computer conversational transactions.

In Proceedings of AFIPS ’68 Fall Joint Computer Conference, Part I, San

Francisco, CA, USA, pages 267–277, 1968.

34

