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Abstract

Graphs offer the advantage of representing data with binary relations and without
fixed sizes, such as molecules. The downside of using them is that they introduce a
higher complexity which makes tasks like binary classification less efficient. Their
counterpart in data representation, the feature vector, allows for faster computation
time but lacks the two mentioned benefits. This thesis explores the topological
descriptors embedding (TDE), a method that maps a graph to a feature vector while
retaining as much of the structural properties of the graph as possible. This process
enables the use of more efficient classification algorithms on graphs. In this thesis,
we employ fourteen topological descriptors and three label descriptors to perform
the TDE on eight different data sets containing chemical compounds. We use three
different binary classifiers (k-NN, SVM, ANN) in combination with the TDE and
compare the prediction accuracies to three respective reference systems. The k-NN
and SVM use the graph edit distance, while the ANN is compared to a GCN. We
achieve competitive or better accuracies when pairing the TDE with the SVM or
k-NN. Conversely, it underperforms when combined with the ANN. Additionally,
we track selected features when applying two feature selection methods to the TDE
and find that certain features seem to be beneficial across all the data sets.
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Chapter 1

Introduction

This bachelor’s thesis lies in the field of artificial intelligence (AI). One way of
defining AI is: "Artificial intelligence (AI) is the field of research that strives to
understand, design, and build cognitive systems. From computer programs that
can beat top international grand masters at chess to robots that can help detect
improvised explosive devices in war, AI has had many successes." [1] The first
program described as an artificial intelligence program was called the Logic Theorist
and was written in 1956 [2]. The program was able to prove mathematical theorems
just like a mathematician could. Since then AI has made significant progress and
for a more detailed overview, see the review by Brunette [3]. There are several uses
for AI. For example, recommendation algorithms are used by Amazon or Netflix to
provide personalized recommendations of items [4], and facial expression recognition
algorithms can be used for surveillance or driver safety [5].

One of many sub-fields embedded in AI is machine learning (ML). Machine
learning uses data, features, and different models to perform different tasks. In
essence, the goal of the ML approach is to map outputs as correctly as possible
to data points (i.e. perform predictions). Classification and regression are two ex-
amples among numerous ML tasks designed to accomplish this goal. A common
task in machine learning is binary classification, where one of two possible classes
is mapped to each data point. A practical example could be the classification of
whether an email is spam or not. Various models that perform this type of clas-
sification exist, such as the k-nearest neighbors model (k-NN), the support vector
machine (SVM), and the artificial neural network (ANN), just to name a few. The
classification models are trained on training data and can then be used to perform
predictions on new data [6].

This ML approach can also be adopted for pattern recognition (PR), a subfield of
ML. Pattern recognition aims to automatically discover regularities in data. It uses
computer algorithms to find them and then performs tasks (e.g. classification), based

1



on the identified patterns [7]. The two main approaches to solving the classification
task in PR are the statistical and the structural approaches [8].

The following paragraph summarizes the different approaches and is based on the
paper by Bunke et al. [8]. In the statistical approach, the patterns are represented
as feature vectors which are formally represented as n-dimensional vectors in the
feature space Rn. This approach offers the advantage of the availability of many
mathematical operations which can be applied in the real coordinate space. Due
to this, numerous classification algorithms with low computational complexity are
available. The two main disadvantages of the statistical approach are that feature
vectors do not possess the ability to describe binary relations and that they are
constrained to a fixed size. These disadvantages do not apply to the structural
approach. In the structural approach, the data is represented as graphs. Graphs
are composed of nodes and edges (which form a binary connection between a pair
of nodes) and can vary in size and simplicity. Consequently, the two previously
mentioned limitations do not exist. However, along with the representational power
gained from using graphs also comes a higher computational complexity. This
is because some basic mathematical operations like summation or multiplication
do not exist between graphs. Even checking for equality between two graphs is
computationally a lot more expensive than checking whether two vectors are equal.
Two common approaches that mitigate the increased computational complexity
when using graphs are the application of graph kernels or graph embeddings.

The method of using a topological descriptors embedding (TDE) is examined in
this thesis. The idea behind this concept is that given a graph g, the descriptors
are calculated on g, and then used to create a feature vector that represents g. By
computing all these descriptors for g, it is explicitly mapped to the real coordinate
space, where the standard models for classification can be applied.

It is essential to understand the benefits of this method and the reasons for its
further examination. As mentioned above, various approaches to classifying graphs
exist. However, most graph analytics methods have a high computation and space
cost, which is a problem that graph embedding seeks to solve. Graph embedding is
an efficient way of reducing the increased complexity which is coupled with using
graphs. Additionally, it maximizes the preservation of structural information and
graph properties [9].

The goal of this bachelor thesis is to classify chemical compounds through graph
embedding using the TDE. We select the three classifiers k-NN, SVM, and ANN for
this task. Then the accuracies are compared to those achieved by reference systems.
We hypothesize that the TDE can compete with modern classification methods
while being computationally faster. If the hypothesis is verified, this would fur-
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ther strengthen the main advantage of graph embeddings, their low computational
complexity. This approach could therefore be an alternative for classifying graphs
when less computational power is of vital importance. A further question we seek
to answer is which descriptors (i.e. features) are most important and consequently,
a subgoal is finding the best features for classification. This procedure is commonly
referred to as feature selection (FS), of which numerous variants exist. Feature
selection is performed with the goals of reducing computation time, improving pre-
diction performance, and achieving a better understanding of the data [10]. In light
of the advantage of the computational efficiency of the TDE, another subgoal of
this thesis is to compare the computation times to those of the reference systems.

The next few chapters form the main part of the thesis and are organized as
follows. In Chapter 2, the theoretical concepts needed to understand the thesis are
explained. Chapter 3 presents the current research and a similar study in the field.
Chapter 4 provides insights into the methodology employed in this thesis, including
topics like the embedding process, the data sets, and the reference system. The
results are presented and analyzed in Chapter 5, before the thesis concludes with
Chapter 6, summarizing the findings and suggesting future research directions.
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Chapter 2

Basic Concepts

In this chapter, the theoretical basics needed to understand the thesis are covered.
The concepts are divided into their own sections. This chapter begins with the
basic concepts of graph theory in Section 2.1, then moves on to introduce different
descriptors in Section 2.2, and finally, Section 2.3 gives a brief overview of the
classifiers we use.

2.1 Graph Theory

A graph is a mathematical concept. One reason for using graphs is the represen-
tational power they possess. These concepts are explained to ensure the compre-
hension of the different definitions of the descriptors in Subsection 2.2. We also
introduce some notations which will be used in Section 2.2 for defining the descrip-
tors. First, we begin with the definition of a graph.

Definition 2.1 (Graph [11]). Let LV and LE be finite or infinite label sets for
nodes and edges, respectively. A graph g is a four-tuple g = (V,E, µ, ν), where

• V is the finite set of nodes,

• E ⊆ V × V is the set of edges,

• µ :→ LV is the node labeling function, and

• ν :→ LE is the edge labeling function.

For example, in the case of a molecular graph (a graph that represents a molecule),
the labels of the nodes would represent atoms and the edges the bonds between the
atoms. Then for a molecular graph g which contains the node v in its set V ,
µ(v) = H tells us that the node v is a hydrogen atom.
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Zurich

Bern

Lausanne

Geneva

(a) Undirected Graph

Me

Obama

Brother

(b) Directed Graph

Me

Obama

Brother

Stranger

(c) Not Connected Graph

Figure 2.1: Three examples for graphs showing the difference between di-
rected/connected and undirected/not connected graphs.

A distinction can be made between undirected and directed graphs. An edge
e ∈ E is represented as a pair of nodes (u, v), where u ∈ V represents the source
node and v ∈ V the target node for a directed edge, i.e., the edge is pointing from u

to v. Undirected graphs can be modeled by additionally inserting the reverse edge
(v, u) for every edge e into E. They receive the same label and so consequently
(u, v) = (v, u). Since every edge goes both ways, the direction can be ignored [11].
The difference between directed and undirected graphs is visualized in Figure 2.1.
The first Graph 2.1(a) is an undirected graph that represents roads that connect
Swiss cities. Since every road connects two cities in both ways we use undirected
edges. Graph 2.1(b) is directed and represents whether one person knows another.
For example, I know who Barack Obama is but he has never heard of me. Therefore,
this is represented as a one-sided connection (i.e. a directed edge) from myself to
Obama. Consider a scenario where my brother knows who I am and I know him
but he has never heard of Obama. We employ two directed edges representing the
connection between my brother and me, and not a single edge between my brother
and Obama since neither of them know each other.

The next definition is that of neighbors. If two nodes are connected to each other
with an edge, they are called neighbors or adjacent to each other. This information
can also be represented in the format of a matrix, known as the adjacency matrix.

Definition 2.2 (Adjacency Matrix [11]). Let g = (V,E, µ, ν) be a graph
with |g| = n. The adjacency matrix A = (aij)n×n of a graph g is defined by

aij =

1 if(vi, vj) ∈ E

0 otherwise
,

where vi and vj are nodes from g, i.e., vi ∈ V .

The next important definition is the degree of a node v, which is the number of
neighbors which that node has [12]. It will be referred to as deg(v). For example,
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in Graph 2.1(a) deg(Zurich) = 2 and deg(Bern) = 3.
A path is a sequence of nodes and edges in which nodes cannot appear more

than once. A path between u and v exists if there are nodes and corresponding
edges that form a connection between u and v. For example, in Graph 2.1(a) a
path from Zurich to Geneva exists. In fact, multiple different paths exist. Another
example of a path would be the one going from Zurich, to Bern, to Lausanne, to
Geneva. The shortest path for nodes u between v is the path with the smallest
number of edges necessary to form a connection between u and v. For nodes Zurich
and Geneva, one of the shortest paths could be Zurich, to Bern, to Geneva. The
distance between two nodes u and v in an undirected graph is the number of edges
in the shortest path and will be written as d(u, v) [12].

So far we have only presented examples of connected graphs. Examining Graph
2.1(b), it is observable that paths exist between all three nodes. This means that
these three nodes are connected to each other. Say we want to represent a stranger
who is mutually unknown to the three current people. To do this, a fourth node
with no edges connecting it to any of the first three nodes is added in Graph 2.1(c).
We assign the label "Stranger" to it. Although now a node exists that is not
connected to any of the other nodes, this still represents a single graph and not
two different ones. The Graph 2.1(c) containing all four nodes is now considered
to be not connected graph. Conversely, a graph is called a connected graph, if, for
an arbitrary node, there is a path to every other node [12]. Some of the descriptors
in Section 2.2 only make sense when considering connected graphs. Therefore, we
only use connected graphs for this thesis, and those that are not, are filtered out in
the preprocessing of the data sets.

2.2 Topological Descriptors

In this section, all the descriptors used for the graph embedding are listed and
defined. The choice of these descriptors is not contingent on any specific criteria
other than being topological descriptors (with the exception of the last three which
make use of edge or node labels). Hayat et al. [13] define a topological descriptor as
follows: “A topological descriptor/index (. . . ) is a numerical value associated with
chemical constitution for correlation of chemical structure/network with various
physical properties, chemical reactivity or biological activity.” The focus is not on
the interpretation or the real-world applications, and hence, such aspects are not
detailed in the list. For the following descriptors, we consider a graph g, where
g = (V,E, µ, ν) as defined in Definition 2.1.
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Nodes and Edges The first two descriptors are simply the number of nodes and
the number of edges of a graph g. Formally, the first descriptor is defined as

No(g) = |V |.

The second one is formally defined as

E(g) = |E|.

First Zagreb Index The first Zagreb index was first introduced in 1972 [14] and
for a graph g, is the sum of all squared node degrees. Formally, it is defined
as

Z1(g) =
∑
v∈V

deg(v)2.

Narumi-Katayama Index The Narumi-Katayama index (or simple topological
index ) was defined by Narumi and Katayama in 1984 [15]. The Narumi-
Katayama index of a graph g is the product of all node degrees. Formally, it
is defined as

NK(g) =
∏
v∈V

deg(v).

Polarity Number The polarity number was defined by Wiener in 1948 [16]. The
polarity number of a graph g is defined as the number of unordered pairs of
vertices u, v ∈ V that are at a distance of 3 from each other. Formally, it is
defined as

P (g) =
∑
v∈V

σ(d(u, v)),

where

σ(x) =

1 if x = 3

0 otherwise
.

Wiener Index The Wiener index was introduced in 1947 by Wiener [17]. The
Wiener index of a graph g is defined as the sum of the lengths of the shortest
paths (i.e. distances) between all pairs of nodes. Formally, it is defined as

W (g) =
∑
u∈V

∑
v∈V

d(u, v).
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Randić Index The Randić index (or connectivity index ) was introduced in 1975
by Randić [18]. For a graph g, it is formally defined as

R(g) =
∑
e∈E

1√
deg(u) · deg(v)

,

where e = (u, v).

Estrada Index The Estrada index was introduced by Estrada in 2000 [19]. For a
graph g, it is formally defined as

EE(g) =
n∑

i=1

eλi ,

where λi are the eigenvalues of the adjacency matrix of g and n = No(g). Since
the goal is to embed the graph, we do not want a complex result, which may
occur due to the eigenvalues. Therefore, if the Estrada index is a complex
number, we estimate the Estrada index using an approximation [20]. The
approximation is defined as

EE∗(g) =
n · (ek − e−k)

2 · k
,

where n = No(g), m = E(g), and k =
√

6m
n

.

Balaban-J Index The Balaban-J index was proposed by Balaban in 1982 [21].
For a graph g, it is formally defined as

B(g) =
q

µ+ 1

n∑
i,j

1
√
si · sj

,

where n = No(g), q = E(g) and µ = q−n+1. si is defined as the sum of the
distances from node i to all other nodes. Formally, si =

∑
v∈V d(i, v).

Szeged Index The Szeged index was defined by Gutman et al. in 1995 [22]. For a
graph g, it is formally defined as

Sz(g) =
∑
e∈E

nv(e|g) · nu(e|g),

where e = (u, v) and nv(e|g) is the number of vertices lying closer to u than
v and respectively nu(e|g) is the number of vertices lying closer to u than v.
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Padmakar-Ivan Index The Padmakar-Ivan index was defined in by Khadikar in
2000 [23] and for a graph g, is formally defined as

PI(g) =
∑
e∈E

(neu(e|g) + nev(e|g)),

where neu(e|g) is the number of edges lying closer to vertex u than v and
respectively nev(e|g) is the number of edges lying closer to vertex v than u.
Note the key difference between the Padmakar-Ivan and the Szeged indices
lies in counting edges (rather than vertices) that lie closer to a vertex.

Molecular Topological Index The Schultz molecular topological index (MTI) was
proposed by Schultz in 1989 [24]. The MTI of a graph g is formally defined
as

MTI(g) =
n∑

i=1

n∑
j=1

deg(i) · (aij + d(i, j)),

where n = No(g), deg(i) is the degree of vertex i in g, and aij is the (i, j)-th
entry of the adjacency matrix A of g.

Modified Zagreb Index The modified Zagreb index was proposed by Manzoor et
al. in 2020 [25]. The modified Zagreb index of a graph g is formally defined
as

ReZG1(g) =
∑
e∈E

deg(u) + deg(v)

deg(u) · deg(v)
,

where e = (u, v).

Hyper Wiener Index The hyper Wiener index was proposed in 2012 by Khalifeh
et al. [26]. The hyper Wiener index of a graph g is formally defined as

WW (g) =
1

2

∑
u∈V

∑
v∈V

(d(u, v)2 + d(u, v)).

Neighborhood Impurity The neighborhood impurity is calculated following the
methodology used by Li et al. [27]. To define neighborhood impurity for a
graph, the neighborhood impurity (ni) for a node v needs to be defined first.

ni(v) = |µ(u) : u ∈ N(v), µ(u) ̸= µ(v)|,

where µ(v) is the node label of v and N(v) is the set of nodes which are
adjacent to node v. Formally, for a graph g, the neighborhood impurity can
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now be defined as
NI(g) =

1

k

∑
v∈V

ni(v) · σ(ni(v)),

where ni(v) is the neighborhood impurity for a node,

σ(x) =

1 if x > 0

0 otherwise
,

and k =
∑

v∈V σ(ni(v)).

Label Entropy The label entropy is calculated following the methodology used by
Li et al. [27]. Formally, for a graph g, the label entropy is defined as

H(g) = −
q∑

i=1

p(li) · log2(p(li)),

where g has q different labels: l1, l2, ..., lq, and p(li) is the probability of a node
having label li.

Average Edge Weight The graphs in the data sets used for this thesis all have
edge labels, where the edges are numerically encoded for the types of edges
that they represent (e.g. single, double, or tripple bonds). The average edge
weight (AEW) is calculated as

AEW (g) =
1

m

∑
e∈E

ν(e),

where m = E(g), e = (u, v), and ν(e) is the edge label of e.

2.3 Classifiers

Once the graph data sets are embedded, one can perform classification. Classifi-
cation is performed by training the classifiers on training data and then using the
trained classifier to perform predictions on the test data. As mentioned in Chap-
ter 1, there are many different classifiers that can achieve this. For this thesis,
three different classifiers are chosen: the k-NN model [28], the SVM [29], and the
ANN [30]. Since the classifiers are only tools to compare the classification methods
they are not the focus of the thesis. Therefore they are only presented briefly. For
more detailed information concerning the classifiers, refer to the work by Rjini et
al. [31]. Still, we summarize the key aspects that they mention in the list below.
When using classifiers, we typically follow two stages: the training stage and the
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testing stage. In the training stage, we use a batch of data, called X_train, and
its corresponding labels, y_train, to train the model. Following that, in the testing
stage, we present the test data, referred to as X_test, and assign a label to each
sample s in X_test.

k-NN The k-NN classifier is one of the simplest options and belongs to the super-
vised learning models. This means that the training data is correctly labeled
when training the model. It is said to achieve good results if the optimal k is
found. The labels are assigned to sample s in X_test by taking the majority
of the labels of the k nearest neighbors (the other samples in X_train) to s.

SVM The SVM is also a supervised learning classifier and achieves good accuracies
in various domains. It learns an optimal hyper-plane between the two classes
in the training step and then assigns the labels to the samples in X_test

based on which side of the hyper-plane they lie on.

ANN This classifier is a mathematical model. The following description is very
simplified, but essentially there are a number of elements that are organized
into layers and connected to each other. The connections are then tuned
during the learning process using backpropagation. The trained ANN returns
predictions of how high the probabilities of the sample belonging to each label
are. The label with the highest probability is then chosen as the assigned label.
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Chapter 3

Current Research

As mentioned in Chapter 1, we hypothesize that a TDE is an efficient classification
method and achieves competitive results despite it being a very simple approach.
This chapter covers relevant research and motivates our reason for posing this hy-
pothesis. The following section covers some alternative graph embeddings and graph
kernels in order to give an understanding of which other graph-based PR methods
exist (apart from the TDE method). In the second Section 3.2, we present the
paper of Li et al. [27] and their success with global topological predictors.

3.1 Graph Embeddings and Graph Kernels

This section is based on the review by Bunke et al. from 2012 [8] which covers
graph kernels and graph embeddings. In the review, they additionally show that
graph embeddings or graph kernels are potentially useful alternatives when applied
to graph-based document analysis. However, the objective here is to shed light on
other ways to perform graph-based PR, so that aspect of the paper is not presented.

The mathematical details can be found in the paper and are not presented here,
rather the key aspects of graph kernels are presented to give a rough understanding
of this alternative. The basic idea behind graph kernels is that they compute the
similarity between pairs of graphs based on some common patterns that they share.
Graph kernels are used due to their capability of coping with non-linear data and
complex data structures like graphs. It is possible to compute the geometrical prop-
erties of graphs in an implicitly existing feature space without having to compute
the mapping to it. This allows graph kernels to cope with the lack of mathematical
structure in the domain of graphs. Two examples of graph kernels are presented in
the following list.

Convolution Kernels To calculate the similarity between a pair of graphs, the
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Figure 3.1: An overview of different graph-based PR methods, divided into graph
kernels and graph embeddings.

convolution kernels first decompose the graphs into smaller parts. This is
to simplify the graphs. The similarity product is then calculated for all the
smaller parts and finally, the products are all summed up.

Random Walk Kernels These kernels make use of Markov chains which are used
to define random walks. The mathematical background for random walks can
be found in the paper by Lovász [32]. The idea is that for two graphs, the
number of random walks which contain all or some of the same labels are used
to measure the similarity between them.

The alternative to graph kernels is graph embeddings. Similarly to graph ker-
nels, the goal of embedding graphs is to simplify graphs in order to apply more
efficient algorithms, while retaining the structural properties of graphs. However,
unlike graph kernels, a graph embedding explicitly maps the graph into the real
vector space Rn, effectively transforming a graph into a vector. This allows for the
use of standard algorithms which require vectorial data. Some examples of graph
embeddings would be:

Spectral Methods This approach uses the eigenvalues of the adjacency or Lapla-
cian matrix in order to try and characterize the structural properties of graphs.
However, this approach is limited in its flexibility and robustness since it is
not able to cope with graphs with extensive label alphabets or data sets with
a large amount of noise.
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Graph Edit Distance (GED) For this approach, the similarity of two graphs is
measured by calculating how expensive it is to turn the first graph into the
second one. Graph operations like deletions, insertions, and substitutions are
given a price. The more of these operations that need to be performed to
make the graphs isomorphic (i.e. equal), the higher the GED of that graph
pair is. It has the advantage of being applicable to many different graphs
(directed and undirected, with and without node/edge labels) and is a flexible,
robust method of embedding graphs. However, its major drawback is the
computational complexity needed to calculate the GED between two graphs.

Topological Descriptors As mentioned in Chapter 1, the TDE is a type of em-
bedding. The details are presented in Chapter 4, Section 4.1.

3.2 Similar Research

In their paper, Li et al. [27] present the classification of graphs using global topo-
logical and label attributes with an SVM. Using 20 different descriptors, graph
embedding is performed on a total of 19 different data sets. Four of the descriptors
used by Li et al. overlap with the set of descriptors selected in this thesis (number of
nodes/edges, neighborhood impurity, label entropy). The data sets contain chemi-
cal compounds (i.e. molecules), proteins, and cell graphs. In total, seven data sets
containing chemical compounds are chosen and we will only focus on these seven
data sets here. After performing the embedding Li et al. normalize their data sets
and perform the classification. Their approach using the topological descriptors
will be referred to as graph feature embedding (GF). They compare GF to numer-
ous kernels (fast geometric random walk, shortest path, Weisfeiler-Lehman subtree
(WL), graphlet, Ramon-Gärtner subtree, CORK).

Li et al. achieve statistically significant accuracy improvements on the MUTAG,
and PTC_MR data sets by applying GF with a z-normalization. Additionally, they
achieve the best accuracy when using GF combined with a range normalization on
the PTC_FR data set. However, this accuracy is not significantly better. On the
other four chemical data sets the WL kernel performs significantly better. They be-
lieve it may be due to the tree-like data sets. Since the WL kernel is a subtree kernel,
it is well suited for those data sets. Although the WL kernel outperforms the GF
for those approaches, it does so at the expense of significantly longer computation
times.

For the chemical compounds, Li et al. show that GF is one to three orders of
magnitude faster on every data set when compared to the other kernels. Regarding
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the training time, they show that only CORK manages to compete with GF. By
performing a scalability study they show that the runtime for the GF topological
features extraction is linear to the number of graph instances.

Li et al. also perform the classification after omitting the labels and show that it
barely has an impact on the GF approach. They believe that GF may therefore rely
mainly on topological features. In contrast, WL suffers from performing classifica-
tion without labels. To find out how important each feature is, an SVM-wrapper
FS method is performed. The chosen features are found to depend on the normal-
ization and data sets and that simple topological features are typically enough to
retain the structural information and properties of graphs.
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Chapter 4

Embedding by Topological
Descriptors

In this section the details of the employed method are presented and explained.
First, the process of embedding a graph data set is explained, second, the var-
ious data sets are introduced and third, the steps used for the classification are
addressed. Finally, the reference systems used for results comparison and the tech-
nical framework are presented.

4.1 Embedding a Graph

Embedding a graph describes the action of taking a graph and mapping it to a new
n-dimensional feature space. In this thesis, this is done by calculating 14 different
topological and three different label descriptors (so n = 17) for each graph. These
descriptors are then used to create a feature vector for the graph. Each descriptor
is represented in a different entry of the vector. By doing this, a graph is effectively
transformed into a feature vector. This means that if given a graph g, the graph
can be represented as a single point in the 17-dimensional space R17. From here
on out g1 is the notation we will use for the value resulting from calculating the
first descriptor on graph g and gm will refer to the m-th graph of a data set. After
performing the embedding, every graph has the same descriptor in the respective
dimension. This means that given graphs gi and gj with i ̸= j, gi1 and gj1 store the
result of the first descriptor calculated on graphs i and j, respectively. This allows
us to compare the graphs after the embedding. A sketch is provided to visualize the
process in Figure 4.1. The times it takes to compute these embeddings are saved
so they can be analyzed.
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Figure 4.1: This sketch illustrates the process of embedding and classifying a graph
data set. On the left, a data set with m graphs is given. The first arrow represents
the process of embedding each graph by calculating the 17 different descriptors.
The middle part represents the newly embedded data set which now contains m
different feature vectors, each representing a graph. The second arrow represents
the classification step where a class is assigned to each sample. Two different classes
are visualized using red and blue.

4.2 Data Sets

In total, eight different graph data sets have been chosen from the collection of
the TUdata sets [33]. The chosen data sets all contain chemical compounds that
are stored as graphs. The eight different data sets are: PTC_MR, PTC_MM,
PTC_FM, PTC_FR, MUTAG, Mutagenicity, ER_MD, and DHFR_MD. The
compounds in the PTC data sets are labeled according to the carcinogenic effect
they have on rodents. They are divided into male mice (MM), male rats (MR),
female mice (FM), and female rats (FR) [34]. The MUTAG data set contains
aromatic and heteroaromatic nitro compounds that are labeled based on their mu-
tagenic effect on the bacterium Salmonella typhimurium [35]. The samples of the
Mutagenicity data set are encoded on whether the molecular structures are muta-
genic or not [36]. In the context of this data set, mutagenicity is a property of a
chemical compound that reduces its potential of becoming a marketable drug [37].
The chemical compounds in the MD data set are activities. They are labeled based
on which spline descriptor an activity is assigned to. The DHFR data set contains
dihydrofolate reductase inhibitors and the ER data set contains estrogen receptor
ligands [38].

To give a more technical overview, Table 4.1 shows some basic descriptors on the
data sets. Some key observations can be made from the table. The MUTAG data
set is the smallest and contains small graphs. The PTC data sets also contain small
graphs. Mutagenicity is the biggest data set and contains bigger graphs than the
previously mentioned data sets, it has a very similar average degree value though.
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The two MD data sets are the most complex ones as they have the highest number
of nodes and edges. They hold a roughly 10 times higher average degree than the
other data sets.

Attributes Size ∅ Nodes ∅ Edges ∅ Node Degrees Max. Nodes Max. Edges

MUTAG 188 17.93 19.79 2.19 28 33
Mutagenicity 40461 30.32 30.77 2.04 417 112

ER_MD 446 21.33 234.85 22.87 39 741
DHFR_MD 393 23.87 283.02 20.33 43 903
PTC_MR 344 14.29 14.69 1.98 64 71
PTC_MM 336 13.97 14.32 1.97 64 71
PTC_FM 349 14.11 14.48 1.98 64 71
PTC_FR 351 14.56 15.00 1.99 64 71

Table 4.1: This table contains some basic descriptors calculated on the data sets.
The first column contains the number of graphs per data set. The ∅ denotes the
average for the number of nodes, edges, and average node degrees that the graphs
in the respective data set have. The max. nodes or edges denote the highest number
of nodes or edges that a single graph has in the data set.

4.3 Methodological Steps for Classification

Preliminary data preprocessing is carried out prior to classification. We perform a
z-normalization on the data sets. That means that every sample is transformed by
subtracting the mean and dividing it by the standard deviation. For each feature,
this centering and scaling process is executed independently due to the significant
differences in variances across features. For instance, the Narumi-Katayama index
values on the ER_MD dataset range from 81 to multiple trillions, whereas the label
entropy ranges from 0 to 1.7. The z-normalization performs the best (compared to
the range normalization or none at all) in the paper of Li et al. [27].

Two FS algorithms are applied in this thesis, the first one being the minimum
redundancy - maximum relevance selection (mRMR) [39], and the second one is
the sequential forward selection (SFS) [40]. The mRMR selection is independent
of the classifier. The goal of the mRMR selection is to only select the minimal-
optimal features and therefore, we choose to only pick five features per data set.
Each new feature is chosen by considering the relevance it has with the labels and
the redundancy of the already-picked features with the new one. These scores per
feature are calculated on the data set before the train and test splits are created.

1The Mutagenicity data set originally contains 4337 graphs, however, 291 of them are not
connected so they are filtered out. This is because some descriptors (e.g. the Wiener index) result
in infinity if the graphs are not connected.
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Classifier Parameter Grid

k-NN
metric euclidean, manhattan, cosine

k 1 - 31

SVM
C 0.001, 0.01, 0.1, 1, 10, 100
γ 0.001, 0.01, 0.1, 1, 10, 100

kernel radial basis function, sigmoid

Table 4.2: This table contains the different hyperparameters per classifier on which
the gird searches are performed.

SFS on the other hand needs a classifier (k-NN, SVM, or ANN) to select features
and therefore the features are selected separately for each classifier. SFS selects
features in a greedy fashion. It starts with an empty feature set and one by one adds
features by assessing the score of the previously selected features combined with a
new feature. The score of a potential new set is attained using cross-validation
(CV) on the training set2 and the set that scores the highest is then selected to
continue. This iterative process continues until 10 features are selected. Pseudocode
for mRMR and SFS algorithms is provided in Appendix A. The selected features
and their scores are saved, so they can be analyzed once the classification is finished.

Before we perform the FS, the data sets are divided into train and test splits.
The train splits consist of 80% of the samples. The test splits are not touched until
the final predictions are made. These predictions are used to measure the achieved
accuracies of a data set and classifier.

Next, for the k-NN and SVM models, a grid search is applied to find the optimal
hyperparameters per data set. For this, a 10-fold CV is used. The grids for the
different hyperparameters are presented in Table 4.2. For more detail on the indi-
vidual hyperparameters, the scikit-learn documentation can be consulted [41]. No
hyperparameter selection is performed on the ANN. Instead, its hyperparameters
are chosen based on intuition and set as follows: input dimension (ID): number
of selected features, output dimension (OD): 2, hidden layers: average of ID and
OD, epochs: 300, loss: cross-entropy, batch-size: 32, optimizer: stochastic gradient
descent, scheduler: cyclic learning rate policy.

Once training is finished for the different classifiers, the labels are predicted
and the accuracies are reported. They are then compared to the accuracies that
the respective reference system achieves and the significance is calculated using the
Z-test. The results are presented in Chapter 5.

2For the k-NN and SVM classifiers, a five-fold CV is used. For the ANN a three-fold CV is
used in order to reduce computation time.
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4.4 Reference Systems

The reference systems are used to calculate accuracies, against which the accuracies
from the TDE methods are compared. Three reference systems are used in this
thesis, one for each classifier. Each reference system is designed to use a classifier
that is the same as or similar to its TDE counterpart to ensure comparable results.
For the k-NN and SVM models, the reference system employs the GED3. We use the
GED because it is commonly used in practice. For the k-NN reference, we compute
a distance matrix that contains the distances for all pairs of graphs and feed it into a
k-NN model. The classification process is very similar to the TDE k-NN. Instead of
calculating the distances using a metric (e.g. Euclidean), the precalculated distance
matrix now supplies the distances. For the SVM we calculate a similarity kernel (a
negative distance matrix) and supply this to an SVM classifier. More detail on how
the GED is incorporated into kernel functions can be found in the book by Neuhaus
et al. [42]. After computing the kernels, the hyperparameter selection is performed.
The same hyperparameter grid which is used for the TDE is supplied with the
exception of the metric and algorithm. These are replaced by an additional α

parameter, which is used for the computation of the GED. It ranges from 0.05 to 0.85
with steps in between increasing by 0.2. The third reference system, employed for
comparing the accuracies of the ANN, is a graph convolutional network (GCN) [43].
This is used because it is another common way of classifying graphs and because
the ANN and GCN are both deep learning models. We use a simple GCN and do
not perform a hyperparameter selection on it. We use the same hyperparameters
that the ANN uses.

Once the final accuracies are computed, we perform statistical tests to find out
whether our results are statistically significant. An accuracy difference is deemed
statistically significant (either superior or inferior) if the computed Z-test score
falls below the specified significance level (α = 0.05). It is assumed that the two
methods of calculating the accuracies are equally as good. The Z-test then tells us
what the probability of getting the compared accuracies is, given this assumption.
If this probability is sufficiently small, the difference in accuracies is statistically
significant. For example, assume the Z-test is 0.03 when comparing a TED method
to the reference system. This would mean that there is a 97% chance that the
two methods being compared are not the same, therefore we say that the difference
in accuracy is statistically significant. Various times are logged and saved for the
reference systems to later be compared to those of the TDE approach.

3Note that this is not a valid GED embedding as mentioned in Section 3.1.
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4.5 Technical Framework

The implementation of the code of the thesis relies on the following technical com-
ponents. The selected coding language is Python [44]. Amongst others, the main
libraries chosen are NumPy [45], pandas [46], scikit-learn [41], PyTorch [47], and
PyTorch Geometric (PyG). The following list presents the main purposes of the
libraries for the thesis:

NumPy It makes it possible to compute descriptors more efficiently, particularly
when it comes to executing matrix calculations.

Pandas It is used for data manipulation and for storing and reading the embed-
dings in comma-separated values (CSV) files.

scikit-learn It provides the SVM and k-NN models, as well as numerous other
methods used for the classification. For example, train-test split or grid search
methods are available.

PyTorch It provides the ANN model and related methods and objects.

PyG It is a library built on PyTorch and provides access to the graph data sets,
as well as the GCN model and graph-related methods.
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Chapter 5

Experimental Evaluation

This chapter lays out the outcomes of our experimental work. The focus lies on
the comparison of accuracies, so they are presented first in Section 5.1.1. Subse-
quently, we present the results of our feature study in Section 5.1.2 and the recorded
computation times of our experiments in Section 5.1.3. The critical discussion of
the presented results follows in Section 5.2. The hyperparameters which are chosen
during the classification process are not presented but can be found in Appendix
B. We choose not to present them explicitly because they are technical details and
would need further explanation, while potentially not being crucial to our discov-
eries. Rather we focus on presenting the key findings.

5.1 Results

5.1.1 Classification

In Table 5.1 the achieved accuracies for all data sets are displayed. The accuracies
are grouped per classifier and per data set. The results for the different FS methods
(SFS, mRMR, no FS) compared to the respective reference system are visible. No
FS means that no FS is applied to the data set. The accuracy of the methods which
score the highest is marked in bold. Statistically significant improvements over
the reference system are marked with ① and statistically significant deteriorations
are marked with ❶. Five runs are performed for both the ANN and GCN. The
average accuracy is deemed significant if the majority of these runs are statistically
significant. Additionally, for the ANN, we display the standard deviations over the
five runs.

For the MUTAG data set our approach achieves a statistically superior accuracy
when applying the k-NN classifier combined with either SFS or without any FS. Al-
though not statistically significant, the SVM classifier shows the same pattern that
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MUTAG Mutagenicity ER_MD DHFR_MD PTC_MR PTC_MM PTC_FM PTC_FR

k-NN

Reference 86.84 72.28 75.56 77.22 63.77 63.24 60.00 59.15
SFS 97.37 ① 71.29 83.33 ① 70.89 53.62 58.82 60.00 54.93

mRMR 89.47 70.42 74.44 70.89 55.07 57.35 58.57 52.11
No FS 97.37 ① 70.30 82.22 77.22 62.32 64.71 51.43 54.93

SVM

Reference 89.47 66.46 68.89 68.35 56.52 64.71 60.00 56.34
SFS 94.74 72.65 81.11 ① 77.22 63.77 60.29 61.43 54.93

mRMR 89.47 72.65 75.56 70.89 62.32 66.18 60.00 56.34
No FS 94.74 73.27 80.00 ① 75.95 ① 63.77 72.00 ① 61.43 57.75

ANN

Reference 82.63 ± 1.44 76.14 ± 0.46 61.78 ± 1.27 70.38 ± 3.05 61.16 ± 1.21 76.76 ± 1.61 60.29 ± 3.26 60.85 ± 1.18
SFS 72.63 ± 4.78 61.23 ± 0.56 58.89 ± 0.00 68.60 ± 0.57 60.29 ± 0.79 64.71 ± 0.00 ❶ 59.71 ± 0.64 56.34 ± 0.00 ❶

mRMR 71.58 ± 3.87 ❶ 63.96 ± 0.42 60.22 ± 1.09 68.60 ± 0.51 59.71 ± 1.69 64.71 ± 0.00 ❶ 59.71 ± 0.64 58.29 ± 2.28 ❶

No FS 83.68 ± 4.32 63.34 ± 0.29 57.34 ± 2.02 68.86 ± 0.70 64.06 ± 2.38 64.71 ± 0.00 ❶ 59.71± 0.64 56.34 ± 0.00 ❶

Table 5.1: This table presents the achieved accuracies (in %) of the eight data sets
depending on which methods and classifiers are applied. The three FS methods of
the TDE (SFS, mRMR, no FS) are compared to the reference system. ①/❶ marks a
statistically significantly superior/inferior result compared to the reference system
(Z-test using α = 0.05). The highest accuracies per data set and classifier are
marked in bold.

the k-NN classifier does. For the ANN model, we achieve the best result when using
the TDE without FS. The combination of the ANN with mRMR seems particularly
weak, resulting in the only statistically lower accuracy of a TDE application on
the MUTAG data set. We achieve further significant improvements when using the
TDE on the ER_MD and DHFR_MD data sets with the SVM and k-NN models.
Conversely, the reference system beats the ANN both times. The PTC data sets
do not profit much from the application of the TDE overall. Over the four data
sets and three TDE methods, only a single accuracy is significantly better than the
reference system. As is the case with the MD data sets, the ANN does not pair well
with the TDE on these data sets. In fact, we can observe a significant deterioration
in half the PTC data sets. This combination consistently yields small standard
deviations. For the PTC_MM and PTC_FM data sets the results are equal for
all the TDE applications for the five ANN runs. This may be because for these
data sets the ANN learns the weights and biases in a manner that ends up with the
same results, no matter which method of TDE is applied. Although the reference
system outperforms the TDE in combination with ANN, the TDE combined with
an SVM scores higher than its reference system every time. Overall, our compar-
ison of different methods reveals that applying the reference system and the TDE
without FS outperform the others, achieving the best results in approximately half
of all cases each (11/24 and 10/24 times). SFS does not lag far behind, performing
the best eight times. Conversely, mRMR consistently underperforms, establishing
it to be the least effective FS method.
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5.1.2 Feature Study

During the classification we also track which features are selected in the FS process.
Figure 5.1 illustrates how important a feature is per FS method. The higher the
points, the more important we believe it to be. The points are calculated based on
our ranking system that takes into account in which order the features are selected
and if they appear in the selection at all. For SFS 10 features are selected in a
sequential manner per data set. For each data set, the first feature is awarded 10
points, the second nine, and so on until the final selected feature is awarded one
point. The other features which are not selected receive zero points. The same
pattern is used for the mRMR where five points are awarded to the first feature
and one point to the final one (since we only select five features for mRMR per
data set). The points per feature are then summed up over all data sets to get the
total points for a feature per FS method. When comparing the plots, note that SFS
plots all have a y-axis with a maximum of 75 points, whereas the maximum for the
mRMR plot is set to 25 points.

In the k-NN SFS plot, the polarity number and the Padmakar-Ivan index stand
out, scoring high with 57 and 56 points, respectively. Other descriptors, including
Narumi-Katayama, Balaban-J, and Estrada indices, follow closely. In the SVM SFS
plot, we can see a very similar pattern to the k-NN plot. The top five features are
the same, followed by the same descriptors in the exact order from rank six to 11.
Consequently, the two classifiers also share the bottom four descriptors. The SVM
SFS plot has the highest variances of the three SFS plots with the Balaban-J index
taking the lead at 70 points, clearly outperforming the other features by 15 or more
points. The only feature scoring zero points in all three SFS plots is the modified
Zagreb index. In the ANN SFS plot, the distribution of points among features
is relatively even. Similar to the SVM SFS plot, the Balaban-J index remains at
the forefront with 53 points. The Narumi-Katayama index and polarity number are
among the top five once more. For the mRMR plot we once again see the Balaban-J
and Narumi-Katayama indices in the top five. Other than that, the mRMR differs
substantially in the selected features when compared to the others.
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Figure 5.1: The bar plots show the number of points each feature is awarded by
our ranking system. The higher the points, the more important a feature is. The
features are grouped per classifier for the SFS and the points are summed over
the eight data sets. The mRMR is also shown here but it has its own scale since
only five features are selected in mRMR and therefore the distribution of points is
slightly different. Since mRMR does not distinguish between classifiers only one
plot is necessary to present the points for this method. Feature names are denoted
by using their formula names from Chapter 2.2.
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GED vs. TDE Time [h:m:s]
Data set Kernelization Data Set Embedding

MUTAG 00:00:24 00:00:03
Mutagenicity 05:47:41 00:01:15

ER_MD 00:04:48 00:00:55
DHFR_MD 00:04:39 00:00:53
PTC_MR 00:01:08 00:00:04
PTC_MM 00:01:05 00:00:04
PTC_FM 00:00:53 00:00:04
PTC_FR 00:00:58 00:00:04

Table 5.2: This table presents the times it takes to calculate the GED kernels and
compute the embeddings per data set.

ANN Time [m:s]
Data set Reference SFS No FS

MUTAG 00:17 01:40 00:05
Mutagenicity 16:38 29:02 01:34

ER_MD 02:15 03:21 00:23
DHFR_MD 01:05 02:58 00:13
PTC_MR 00:33 03:01 00:11
PTC_FM 00:28 02:54 00:09
PTC_MM 00:27 02:35 00:14
PTC_FR 00:28 12:10 00:09

Table 5.3: This table presents the total time it takes to perform the classifications
for the reference system, SFS and no FS.

5.1.3 Computation Times

The final two tables give us an impression of the computation times it takes when
applying the different classification methods. Table 5.2 presents the times it takes
to compute the GED kernels and the embeddings per data set1. For each data
set, the GED kernelization time is a multiple of the time it takes for the descriptor
computation. With Mutagenicity being the largest data set, it exhibits the most
notable difference with the factor being about 278. For the other data sets, kernel-
ization takes five to 17 times longer than the embedding computation. Computing
the embedding is substantially faster than computing the kernels needed for the
GED alternative for all data sets.

1The times presented in this table are to be seen as approximations only since the computational
capability of the high-performance computing cluster is not something we can control perfectly.
However, although the times may vary slightly from run to run, they are generally consistent.
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Table 5.3 shows the different computational times it takes to perform the clas-
sification of the data sets with either the ANN or GCN. One can see that the ANN
without FS is the fastest approach. However, if FS is applied, then the GCN ends
up being faster than the ANN. Note that the embedding time for the two TDE ap-
proaches is not included in this table, since the embedding is done beforehand. So
if the complete approaches are to be compared, the respective seconds from Table
5.2 would need to be added to the times in the table.

5.2 Discussion

Due to the observations made in Section 5.1 we believe that the TDE proves itself
to be a potential alternative to other modern graph classification approaches when
combined with a k-NN or SVM classifier and either SFS or no FS is performed. It
achieves statistically equal or better results and manages to do so in significantly less
time due to its computational simplicity. The TDE seems to perform exceptionally
well when combined with an SVM. Given the comparisons to the reference system,
it seems that the TDE coupled with an ANN does not yield optimal results, as the
GCN outperforms it in six out of eight instances. We generally observe statistically
significant deteriorations compared to the reference systems when a TDE method
combined with an ANN is applied. Not once does the mRMR emerge as the top
method, which suggests that this FS technique is not suitable for the TDE. Since
with SFS and no FS we use 10 and 17 features, we believe the poor performance
of mRMR may be caused by the lack of available features (only five are used for
mRMR, resulting in a much smaller amount of data for classification). Considering
the small size of most of the data sets, it is worth noting that the resulting accuracies
might vary based on the chosen train-test split. This is due to our chosen method
of using the test split at the very end and not applying CV to the entire data set.
The splits may by chance be especially easy or hard to classify for the models.

It is worth noting that between the two FS methods mRMR and SFS, the
method with the best accuracies is SFS combined with an SVM or k-NN classifier.
ANN and SFS, or mRMR combined with any classifier of the classifiers, perform
very similarly to each other and not as well. Looking at the FS results, the se-
lected features of k-NN SFS and SVM SFS are very similar. They have the top
five features in common (Balaban-J index, polarity number, Padmakar-Ivan index,
Estrada index, and Narumi-Katayama index). This seems to indicate that some
features are generally more important than others. Our ranking system seems to
show that certain features, such as the mentioned top five features, have an impact
on achieving higher accuracies. It seems that choosing the right features is im-
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portant for more accurate classifications. In fact, these features may be important
enough to always select them regardless of which classifier is used. This would be
interesting to test by using the same five features for the ANN and see whether
the results align with this assumption. These top five features are all topological
descriptors and this may be an indication that important structural properties of
graphs are preserved in the embedding process by the topological features. The
extent of this preservation seems to be sufficient to achieve good classification ac-
curacies. A possible flaw in our ranking system may be that there are four PTC
data sets. There are only two MD and two mutagenic data sets. Performing ag-
gregations over these imbalances may skew the results. However, when analyzing
the features selected in the cases of SFS k-NN and SFS SVM, the top five features
mentioned before are also heavily represented in the MD and mutagenic data sets.
Due to this, we believe the results may only be skewed slightly, if at all. A further
critique could be that we only employ our own ranking system and other ranking
systems have not been explored. We acknowledge this, however, the FS study is not
our primary focus in this thesis and therefore we do not investigate further options.
Nevertheless, we believe it would be interesting to evaluate the features with other
ranking systems. Additionally, focusing more on the data sets themselves, instead
of aggregating them, could also be investigated further.

The times we present give some insight into the relationship between the compu-
tational complexity of the two approaches. However, testing shows that sometimes
the computational time varies for exactly the same tasks (which is an unexpected
phenomenon). This is due to having to use the servers provided by the university
which we cannot fully control. Since this thesis mainly focuses on the accuracy
comparison between the two approaches, and the time comparison is a subgoal, we
do not investigate this further and present the times to give a rough understanding.
Thus, while these times provide a valuable perspective and indicative overview, they
should not be considered absolute values and must be interpreted with caution. A
separate study focusing on this in more detail would need to be conducted to form
precise conclusions. Additionally, a scalability study could be done. Despite this
uncertainty, it seems that the TDE is a significantly faster approach compared to
the GDE. It seems that the bigger the data set the more the computational time
differs, as the difference is by far the biggest on the Mutagenicity data set. Re-
garding the comparison of SFS on the ANN model to the GCN, the GCN seems to
perform faster, therefore negating the TDE’s main benefit if FS is applied.

The proposed method exhibits some further potential limitations. Some graphs
transform into the same feature vectors despite being different (e.g. in the PTC_MR
and DHFR_MD data sets, there are 22 or 74 non-unique graphs, respectively). This
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could imply that information may be lost due to the embedding. However, it could
also be that useless information is discarded by performing the embedding. This
aspect is not thoroughly explored, and it would be insightful to determine which of
the two possibilities applies. Another limitation is encountered during the embed-
ding of the Mutagenicity data set. Some descriptors cannot deal with not connected
graphs (e.g. the Wiener index results in infinity). One approach to fixing this could
be applying the descriptors to the different components of the not connected graphs
and using their average. Despite these limitations, we believe that the TDE proves
its potential and we believe our hypothesis (the TDE can compete with modern clas-
sification methods while being computationally faster) proves itself to be partially
true. It shows its strength when going up against the GED, achieving comparable
accuracy while offering a substantial increase in speed.

Several of our results are comparable to those of Li et al. [27]. The five data
sets that both this thesis and their paper have in common are the PTC data sets
and the MUTAG data set. We need to be wary of some key differences in the
experiment methods. The embedding they perform uses 20 descriptors and only
four of them overlap with our 17. This difference in descriptors may have an impact
on the accuracies. They only use an SVM instead of three different classifiers, and
rather than reporting one accuracy for their performance assessment, they report
the average accuracy and standard deviation over a tenfold CV run for each data
set. With these differences in mind, we now compare our accuracies to theirs. Just
as in our study, they achieve a statistically significant improvement on the MUTAG
data set, further strengthening our belief that this method can be a competitive
and perhaps even a stronger alternative to GED in some cases. On the PTC data
sets, we are better four out of four times with the TDE method, whereas they are
only better one out of four times (with z-normalization). The WL kernel beats
their embedding the other three times. Therefore, we believe it may be interesting
to compare our TDE to a WL kernel and see how the TDE compares to it. The
GED may have a weakness in these types of data sets and it would be interesting
to compare the TDE to a stronger reference system. When comparing their feature
study to ours, different features seem to be picked more frequently than in our
feature study. When analyzing the top five features selected by our SVM with
SFS, we find very little variance. Only seven different features make up the top
five over all five data sets. In comparison, 13 different features appear in the top
five in their study. We believe they might experience higher variance in the top five
features because they use more features, and their features might be more uniformly
significant compared to ours.
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Chapter 6

Conclusions and Future Work

This chapter contains a summary of the method and the most relevant results. We
form our conclusions and present some limitations of the thesis, before touching on
possible future work. The author presents his personal opinion in the last paragraph.

The proposed embedding method belongs to the graph-based PR methodolo-
gies. It uses 14 different topological and three different label descriptors to perform
an embedding of graph data sets, turning them into data sets containing vectors in
the feature space R17. Three models are used (k-NN, SVM, and ANN) for classi-
fication. The reference systems for the k-NN and SVM models employ the GED,
while a GCN is used as a reference for the ANN. Furthermore, the application of
two FS methods (SFS and mRMR) in combination with TDE is studied. After
z-normalization and a potential FS, TDE achieves statistically superior or compa-
rable accuracies when the models SVM and k-NN are used. It accomplishes this
with significantly reduced computational time. The ANN model combined with
our approach does not perform as well. Not only are there statistically inferior
accuracies when compared to the GCN, but the main benefit of using the TDE
(less computational complexity) is less prominent as with the other two models or
is even eliminated (when SFS is combined with the ANN). Therefore, we conclude
that the proposed embedding seems to be an alternative approach to the reference
systems applying GED due to its lower computational complexity and competi-
tive or improved accuracies. Conversely, the GCNs prove themselves stronger than
the TDE combined with an ANN. Consequently, we conclude that our hypothesis
is partially verified. While our approach can compete with a modern classification
method (GED) when certain models are applied (k-NN or SVM), the approach does
not seem to be able to compete across all types of methods (e.g. neural networks).

The feature study we conduct indicates that features play essential roles in classi-
fication. We believe that certain descriptors may capture vital structural properties
of graphs (e.g. the Balaban-J index) and if these descriptors were to be further
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investigated or even modified and improved, this could consequently improve the
performance of TDE. Although we believe it is likely that descriptors exhibit vary-
ing influences rather than being of universally equal importance (they may depend
on the classifier or data set), our study seems to indicate that certain descriptors
may be universal to some extent. Certain descriptors might be universally effective
for specific types of graph data, such as molecular data sets, given that our feature
study indicates that certain descriptors benefit all the examined data sets.

Despite the promise shown by our proposed method it is important to acknowl-
edge its limitations. While our method demonstrates competitive performance
across various data sets, it is not yet clear how it would perform on data sets that
are fundamentally different or more complex than molecular ones. The adaptability
to such scenarios and the scalability of our method remain unanswered questions.
Furthermore, the effectiveness of our method seems to depend on which descriptors
are used, which may be a difficult factor to optimize. Additionally, this thesis only
compares fairly simple classification models that could be optimized more. One
could perform experiments using state-of-the-art models for both the TDE and the
GED reference to assess if TDE still manages to achieve comparable or better re-
sults in such a setting. Since both the GED and TDE models were always equally
optimized we do not expect the results to change fundamentally.Additional future
work could include exploring how versatile this method is. We believe that this
approach may apply to other types of graph data sets since it proves itself to be
competitive across eight different data sets in this thesis. The FS methods indicate
that certain features are more important than others. Therefore, one may simply
be able to modify or remove the badly performing descriptors entirely, as long as
enough other descriptors are still available. We believe this to be an opportunity
for this approach. However, as of now this is just an assumption and would need
further investigation. Exploring this flexibility could also be done by applying it to
new types of graph data sets, not only molecular ones. Furthermore, it would also
be interesting to compare this method to other methods (e.g. Weisfeiler-Lehman
kernel) with the SVM and k-NN classifiers.

In this final paragraph I would like to briefly present my thoughts and assump-
tions. I think that the proposed method is a valid alternative to other approaches
which tackle the classification problem in PR, especially when computational effi-
ciency is of the essence. I believe it makes sense to pair it with a simple classifier
like k-NN. Since a substantial advantage of the TDE is its capability to handle large
amounts of data efficiently, it could be advantageous to make use of this method as
a baseline method. It could compute minimal first accuracies on data to provide
insights, before employing other more complex models. This way it could be used to
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filter or categorize data as a first step. I believe this way TDE may find applications
in the real world. Furthermore, it seems to me that using the optimal descriptors
is key to achieving high accuracies and improving them could lead to even better
results. This belief is influenced by an unexpected finding: an initial error in the
Balaban-J index implementation which, interestingly, boosted the accuracy across
all classifiers and data sets. It was only a minor modification that seemed to have
a significant impact. That is why I believe further investigation of the descriptors
and understanding them in more detail could improve this method even further,
making it even more viable.
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Appendix A

Algorithms

A.1 mRMR Algorithm

Algorithm 1 mRMR Algorithm
Input: X: Data, y: Labels, k: number of features
Output: selected_features[ ]

1: selected_features = [ ]
2: not_selected_features = X.features.to_list()
3: for i = 1, ..., k do
4: f_scores = [ ]
5: for feature f ∈ not_selected_features do
6:
7: f_score = relevance(X[f ],y)

redundancy(X[f ],X[selected_features])

8:
9: f_scores.append(f_score)

10: end for
11: best_feature = not_selected_features[f_scores.argmax()]
12: selected_features.append(best_feature)
13: not_selected_features.remove(best_feature)
14: end for
15: return selected_features

A.2 SFS Algorithm
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Algorithm 2 SFS Algorithm
Input: X: Data, y: Labels, clf: classifier k: number of features
Output: selected_features[ ]

1: selected_features = [ ]
2: not_selected_features = X.features.to_list()
3: for i = 1, ..., k do
4: f_scores = [ ]
5: for feature f ∈ not_selected_features do
6: f_score = cv_score(clf, X, y)
7: f_scores.append(f_score)
8: end for
9: best_feature = not_selected_features[f_scores.argmax()]

10: selected_features.append(best_feature)
11: not_selected_features.remove(best_feature)
12: end for
13: return selected_features
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Appendix B

Hyperparameters

The radial basis function is abbreviated with RBF in the following tables.

B.1 Reference Hyperparameters Results

Classifier Metric MUTAG Mutagenicity ER_MD DHFR_MD PTC_MR PTC_MM PTC_FM PTC_FR

k-NN
α 0.35 0.05 0.45 0.35 0.35 0.45 0.05 0.25
k 18 1 1 2 5 15 23 4

algorithm brute brute brute brute brute brute brute brute

SVM
α 0.45 0.45 0.45 0.45 0.45 0.15 0.25 0.35
C 0.1 0.01 0.01 0.001 0.1 0.001 0.001 0.001

Table B.1: Reference Hyperparameters Results

B.2 TDE Hyperparameters Results

Classifier Metric MUTAG Mutagenicity ER_MD DHFR_MD PTC_MR PTC_MM PTC_FM PTC_FR

k-NN
k 1 9 1 5 3 8 8 4

metric euclidean cosine manhattan euclidean manhattan euclidean manhattan cosine
algorithm brute brute brute brute brute brute brute brute

SVM
C 100 1 10 10 100 100 1 10
γ 0.1 1 100 1 10 1 100 10

kernel RBF RBF RBF RBF RBF RBF RBF RBF

Table B.2: TDE Hyperparameters Results with FS
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Classifier Metric MUTAG Mutagenicity ER_MD DHFR_MD PTC_MR PTC_MM PTC_FM PTC_FR

k-NN
k 1 12 2 3 1 6 8 16

metric euclidean cosine cosine cosine manhattan cosine euclidean manhattan
algorithm brute brute brute brute brute brute brute brute

SVM
C 100 100 100 10 10 1 1 1
γ 0.01 0.1 10 100 10 100 100 100

kernel RBF RBF RBF RBF RBF RBF RBF RBF

Table B.3: TDE Hyperparameters Results without FS
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