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Abstract

This thesis explores the field of graph neural networks (GNN), a rapidly developing

subclass of deep learning models, designed for graph data. We investigate the

effectiveness of state-of-the-art GNN models in leveraging graph structure for graph

classification tasks. Specifically, two models, Graph Isomorphism Network (GIN)

and Deep Graph Convolutional Neural Network (DGCNN), are analysed on datasets

with and without node features and compared to a multilayer perceptron (MLP) as

a baseline. The results reveal that GIN consistently outperforms DGCNN. However,

there are datasets where the MLP baseline outperforms both GNN models. Further,

it is shown that the introduction of node degrees as node features in social datasets,

generally enhances classification accuracy. Additionally, our results indicate that

the performance consistency primarily depends on the dataset, rather than the

model or the presence of node features. Lastly, we identify potential underutilisation

of graph structure by GNN models, suggesting room for improvement. This study

provides insights for future research on improving the exploitation of graph structure

for graph classification tasks.
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Chapter 1

Introduction

Artificial intelligence (AI) is the branch of computer science concerned with creating

machines, that have the ability to think and act intelligently [1]. The intended intel-

ligence can either be modelled after human behaviour or after the general concept

of rationality, i.e., doing the “right thing” given the present information. To pass

the test of acting humanly a machine would have to be able to communicate (nat-

ural language processing), store its knowledge (knowledge representation), use its

knowledge to draw conclusions (automated reasoning), adapt to new circumstances

and recognise patterns (machine learning), perceive objects (computer vision) and

be able to move and manipulate objects (robotics) [1].

Machine learning (ML) as a subfield of AI focuses on the design and imple-

mentation of algorithms that allow machines to learn from and make decisions or

predictions based on data, effectively improving through experience [2]. ML inter-

sects the field of statistics, asking what principles rooted in statics, computation and

information theory regulate all learning systems. Many AI developers have recog-

nised that for various applications, letting a system learn from examples rather

than programming it manually, is easier. This in combination with the present

abundance of data and low-cost computation resources has led to ML becoming the

preferred approach to many AI applications [2].

A core task in Machine Learning is pattern recognition, the classification of input

values into different categories [3]. Some areas in which Pattern Recognition plays

an important role include machine vision, computer-aided diagnosis, speech recogni-

tion and data mining. The classification abilities can either be based on supervised

or unsupervised learning. In supervised learning, a machine learns from training

data with class labels and generalises the present knowledge to unknown cases.

However, labelled training data is not always available. In the case of unsupervised

learning a machine is presented with training data and the goal is to recognise

underlying patterns and group (or cluster) similar data points together [3].
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Deep learning is a subset of machine learning and a form of representation

learning [4]. The goal of representation learning is to learn the representations,

that are necessary for feature detection or classification, from raw data. Deep-

learning methods implement this by transforming the initial representation over

multiple layers, using simple, non-linear modules. Deep learning is especially well-

equipped to utilise the increasing availability of data and computation, due to its

key aspect of these layers of modules not being hand-engineered but rather learned

from data. Most applications of deep learning are implemented using artificial

neural networks (ANNs) [4]. ANNs, modelled loosely after the human brain, are

composed of interconnected nodes (or neurons) which take in input values, process

them based on a non-linear activation function and give out an output value [5].

Geometric deep learning, is a term used for emerging techniques, that attempt to

generalise deep learning methods to non-Euclidean data, like graphs [6]. A central

part of geometric deep learning is extending the concepts of convolutional neural

networks (CNNs) designed for grid-like data (like images) to more general types

of structures [6]. Graph representation learning on the other hand is concerned

with how to effectively represent graphs with vectors [7]. The goal is to encode

elements of a graph in such a way, that information about the graph can later be

reconstructed.

At the intersection of these two areas and an important part of both are graph

neural networks (GNNs). GNNs manage to leverage both node features and topo-

logical structure information in their learning mechanism [7]. They have become

one of the fastest-growing areas of deep learning in the last decade [8]. A wide

range of real-world data can inherently be modelled as graphs, which is why the

question of how those graphs can be analysed with machine learning has been of

increasing interest. Some examples include social networks, molecular structures,

citation networks, knowledge graphs or transportation networks. Some applica-

tions of GNNs are recommendation systems, social influence prediction, molecular

fingerprinting, chemical reaction prediction, protein interface prediction, text clas-

sification, visual reasoning and traffic forecasting [9]. GNN applications can be

categorised into node-level tasks like node classification, edge-level tasks like link

prediction and graph-level tasks like graph classification. For graph classification

tasks, GNNs learn a graph-level representation from node and structural informa-

tion [10]. Since most well-known GNN models are designed for node-level tasks and

the research field is still relatively young, the effectiveness of GNNs designed for

graph classification is a question open for investigation.
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The objective of this thesis is to investigate the effectiveness of current state-

of-the-art GNN models in exploiting graph structure for graph classification tasks.

The hypothesis is that current GNN models are not utilising the graph structure

to the fullest potential. To explore this hypothesis, two GNN models are chosen

for further analysis. The performance of the models is examined on graphs with

node features as well as on graphs with their node features removed, leaving only

the structural information. Additionally, the models are compared to a baseline

model, that only uses the node features to classify the graphs. Through this ap-

proach, it can be evaluated whether the GNN models utilise structural information

by comparing their performance when only structural information is available to

their performance when they have full access to both structural information and

node features. Additionally, by using a baseline model, their performance can be

compared to the performance without any structural information. On one hand,

this gives more insight into the models’ ability to utilise structural information and

on the other hand, it allows a general statement about their performance. The

results are then used to discuss the stated research question and hypothesis.

This thesis is organised as follows. Chapter 2 provides an introduction to the

theoretical context, explaining the basics of ANNs and graph theory. In Chapter 3

an overview of GNNs is given, describing different approaches and models. Chap-

ter 4 is dedicated to the experimental part of the thesis. The experiment setup as

well as its execution is described, and results are presented and discussed. The final

Chapter 5 wraps up the thesis with a conclusion, summarising the key findings and

looking into possible future work.
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Chapter 2

Theoretical Context

This chapter aims to embed the thesis in a theoretical context. In section 2.1 the

basic elements of artificial neural networks are explained. Terms like neuron, acti-

vation function, and backpropagation are clarified and the architecture of a neural

network in its simplest form is described. Section 2.2 serves as an introduction to

basic graph theory, explaining what a graph is and how it can be represented. It

then touches on the motivation for analysing graphs with machine learning.

2.1 Artificial Neural Networks

The introduction to artificial neural networks (ANNs) in this section follows the one

given by Liu and Zhou [11]. Neural networks are of great importance in the field of

machine learning. ANNs, consisting of many interconnected neurons, conceptually

stem from their biological counterparts. To learn, a neural network is initialised

with arbitrary weights and then iteratively adjusts them using backpropagation

until the model reaches a high level of accuracy. Neural network research primarily

focuses on refining learning methods using various algorithms and structures to

improve the generalisation capabilities of models.

Neurons are the fundamental units of ANNs. Their basic structure is illustrated

in Fig. 2.1(a). A neuron receives input values x0, x1, ..., xn either from the input

layer or from the previous layer of neurons. Each input value has a corresponding

weight wi, which is initialised randomly but is adjusted during training. The neuron

calculates the weighted sum y by multiplying each input value by its associated

weight, summing the products, and adding a bias term b.

y =

(
n∑

i=1

wixi + b

)
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The net input is then passed through an activation function f, which maps the

input to a value between 0 and 1 and represents the neuron’s activation. Common

examples of activation functions include the Sigmoid Function, the Tanh Function

and the Rectified Linear Unit (ReLU). The neuron’s output z is subsequently sent

to the next layer of neurons or serves as the network’s final output if it belongs to

the output layer.

z = f(y) = f

(
n∑

i=1

wixi + b

)
(2.1)

Backpropagation

Throughout the learning process, model parameters are typically optimised using

backpropagation, which consists of a forward pass and a backward pass. During

the forward pass, input data progresses through the network as described and an

output is produced. This output is then compared to the target value, resulting in

an error (also called loss). In the backward pass, the gradients of the loss relative to

the weights and biases are calculated using the chain rule. The gradients represent

the contribution of each weight and bias to the overall loss. With an optimisation

algorithm like gradient descent, the parameters are updated based on their gradient

to minimise the loss. The network undergoes iterations of forward and backward

passes until the loss is effectively minimised. This enables the ANN to learn patterns

and make predictions or classifications based on input data.

Neural Network Architectures

The simplest version of an ANN is a feedforward neural network (FNN). FNNs

are characterised by their hierarchical structure, connecting each layer of neurons

only to its neighbouring layers and not containing any loops. This type of network,

contains an input layer, one or several hidden layers and an output layer. Typically,

the layers are fully connected, meaning neurons are connected to all the neurons

of the previous layer. A fully connected FNN is also referred to as a multilayer

perceptron (MLP). An example architecture is shown in Fig. 2.1(b).

An important variation of a FNN is a convolutional neural network (CNN).

CNNs, apart from containing fully connected layers, have some neurons that are

only connected to a limited number of neurons from the previous layer. This way

of preserving local connections is useful in areas like computer vision, where CNNs

can detect local patterns within an image, improving capabilities like scene under-

standing and image processing [11].
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Figure 2.1: Components of an ANN with the general structure of a neuron (a) and
a possible architecture of an MLP (b).

2.2 Graphs

Our motivation for understanding graphs is two-fold. On one hand, ANNs as ex-

plained in section 2.1 can be seen as graphs themselves, with the neurons being

nodes organised in layers with connections (or edges) going from one layer to the

next. On the other hand, a wide range of data from real-world applications can in-

herently be modelled as graphs [9]. Some examples include social networks, molecu-

lar structures, citation networks, knowledge graphs or transportation networks. Due

to this, the question of how these graphs can be analysed with machine learning

has been of increasing interest.

Basic Graph Theory

A graph G = (V,E) consists of a set of nodes V and a set of edges E ⊆ V × V

connecting pairs of nodes. An edge between node u ∈ V and node v ∈ V is denoted

as (u, v) ∈ E [7]. A relevant property of graphs is, that they are non-Euclidean

meaning they lack certain familiar properties like a standard coordinate system,

shared measurement system, vector space structure, or consistent location-based

patterns [6]. Another characteristic is that nodes are not organised in a specific

order [12]. Two graphs which contain the same nodes and edges between said nodes

are called isomorphic. As any function applied to a graph should not depend on the

order of nodes, it follows that the function applied to two isomorphic graphs should

lead to the same result. The described property is also referred to as permutation

invariance [7]. This can be written as f(PAP T ) = f(A) with A being the adjacency

matrix of a graph, P being a permutation matrix and f being the applied function.
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Representations of Graphs

The adjacency matrix A ∈ R|V |×|V | is one way to conveniently represent a graph [7].

For this, the nodes are arranged in a specific order, with each node corresponding

to a particular row and column in the matrix. The presence of edges is represented

as entries in the matrix.

Aij =

1 if (vi, vj) ∈ E and i ̸= j

0 otherwise

Additionally, graphs commonly have node-level labels or features associated with

them [7]. These features can be represented using a matrix of real values, denoted

by X ∈ R|V |×m, where m represents the number of attributes or features associated

with each node and the ordering of the nodes in the feature matrix X is consistent

with the ordering of the nodes in the adjacency matrix.

An extension of the adjacency matrix are Laplacian matrices, which are formed

through various transformations of the adjacency matrix and possess useful math-

ematical properties [11]. The most basic form of a Laplacian matrix is the unnor-

malised Laplacian L ∈ R|V |×|V |, defined as L = D–A where D and A are degree and

adjacency matrices respectively. The degree d(v) of a node v ∈ V is the number

of edges connected to v (i.e., its number of neighbour nodes). The degree ma-

trix D ∈ R|V |×|V | is a diagonal matrix, with the diagonal consisting of the nodes’

degrees. A commonly used variant of the Laplacian matrix is the symmetric nor-

malised Laplacian, defined as:

Lnorm = D− 1
2LD− 1

2 = I −D− 1
2AD− 1

2 (2.2)

with I ∈ R|V |×|V | being the identity matrix [11].

Analysing Graphs with Machine Learning

The motivation for analysing graphs with machine learning stems from the ad-

vancement of deep neural networks, especially CNNs, on one hand and from graph

representation learning on the other [9]. Graph representation learning is concerned

with how to effectively represent graphs with vectors [7]. The goal is to encode a

graph or its nodes or edges with a low-dimensional vector in such a way that it

can later be decoded and used to reconstruct certain information about the orig-

inal graph. Traditional approaches apart from GNNs include random-walk- and

factorisation-based methods [7]. While Deep Learning has progressed far in the

analysis of Euclidean data, the analysis of non-Euclidean data poses a new chal-
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(a) 2D convolution (b) Graph convolution

Figure 2.2: 2D vs graph convolution [8].

lenge [8]. In addition to there being no order to nodes, graphs in a dataset might

also vary in size, and nodes might vary by their number of neighbours. The attempt

of generalising existing deep learning models to non-Euclidean domains including

graphs is referred to as geometric deep learning [6]. As an example, CNNs have the

ability to extract local spatial properties but can only process Euclidean data such

as images which can be represented in Euclidean space as a 2D grid [9]. As shown

in Fig. 2.2(a) for 2D convolution, an image can be viewed as a graph with nodes

being pixels and neighbours being the pixels within the filter size [8]. The value of

a pixel is calculated by taking the weighted average pixel value of the pixel and its

neighbours. Similarly, graph convolution as shown in Fig. 2.2(b) can be modelled

after 2D convolution by taking the weighted average of a node and its neighbour

nodes. The difference is, that the neighbourhood of a node is unordered and can

vary in size.
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Chapter 3

Graph Neural Networks

This chapter serves as an introduction to graph neural networks (GNNs). In sec-

tion 3.1 an overview of the different approaches to GNNs is given and the message-

passing framework is introduced. In section 3.2 different GNN models are reviewed.

First, the most well-known models are introduced, and an example GNN model is

analysed to bridge the gap between graph convolution and MLPs. Later GNNs

specifically designed for graph classification tasks are described in more detail.

3.1 Approaches

Wu et al. provide an overview of different GNN approaches and implementations [8].

They describe the research on GNNs as having become one of the fastest-growing

areas of deep learning in the last decade. In an attempt to extend deep learning

techniques like the convolution from CNNs to graphs, different approaches have

been developed in parallel, with different frameworks trying to categorise them.

Graph convolutional neural networks are sometimes divided by their initial moti-

vation into spectral- and spatial-based approaches. The authors describe a general

spectral-based approach as having its foundation in graph signal processing and

using the Fourier transform. The graph convolution operation is defined in the

Fourier domain, utilising the eigendecomposition of the normalised Laplacian ma-

trix. A spatial-based approach, on the other hand, involves aggregating the feature

information of a node’s neighbour nodes and combining it with its own [8]. However,

these two categories can overlap and there are also approaches which unify existing

models under one general framework [10]. One popular framework categorises many

GNN models as being Message Passing Neural Networks (MPNN) [13]. MPNNs are

described as having a message-passing phase where each node is iteratively updated

based on the aggregated information from its neighbour nodes, and a readout phase

where node features are combined to produce a graph-level representation.
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Figure 3.1: Aggregation of a single node’s embedding in a two-layer message-passing
model as a tree-like structure [7].

3.1.1 Message-Passing Framework

As described in more detail by Hamilton [7], in the message-passing framework a

node u ∈ V in a graph G = (V,E) is initially represented with a hidden embedding

hu based on the node’s input features. The node’s hidden embedding h
(k)
u changes

based on the iteration k of the message-passing mechanism. The nodes belonging

to u’s neighbourhood are denoted with N(u). The iterative updating of the node

embedding can be described as follows:

h(k+1)
u = UPDATE(k)

(
h(k)u ,AGGREGATE(k)({h(k)v ,∀v ∈ N(u)})

)
(3.1)

= UPDATE(k)
(
h(k)u ,m

(k)
N(u)

)
(3.2)

UPDATE and AGGREGATE are differential functions and m
(k)
N(u) is the process of

aggregating the information from the neighbouring nodes described as a “message”

(Fig. 3.1). The UPDATE function combines the message with the node’s embedding

to form the next embedding h
(k+1)
u [7].

3.1.2 The three flavours of GNN layers

Bronstein et al. [12] further distinguish between three flavours of GNN layers with

a containment hierarchy: convolutional ⊆ attentional ⊆ message-passing (Fig. 3.2).

They describe the message-passing mechanism with ϕ being the updating function,⊕
being the aggregation function and ψ being a function to transform the features

from neighbour nodes. The convolutional type directly aggregates the features of

the neighbourhood nodes with fixed weights. With cuv being a constant that stands

for the importance of a neighbourhood node xv to the node xu, hu is calculated as:

10



Figure 3.2: The three flavours of GNN layers [12].

hu = ϕ

(
xu,
⊕
v∈Nu

cuvψ(xv)

)
(3.3)

In the attentional type, a learnable self-attention mechanism a is used. With a

computing the importance of xv implicitly, the weights depend on the features and

hu is calculated as:

hu = ϕ

(
xu,
⊕
v∈Nu

a(xu, xv)ψ(xv)

)
(3.4)

The attentional layer can be seen as a convolutional layer by implementing the

attention mechanism with a look-up table a(xu, xv) = cuv. For the most general

message-passing type, vectors are computed across edges. ψ is a learnable message

function, calculating the vector or “message” that is sent from v to u and hu is

calculated as:

hu = ϕ

(
xu,
⊕
v∈Nu

ψ(xu, xv)

)
(3.5)

Both convolutional and attentional layers can be understood as a form of message

passing with ψ(xu, xv) = cuvψ(xv) and ψ(xu, xv) = a(xu, xv)ψ(xv) respectively.

The authors note that while it is useful, that most GNNs can be expressed with

message passing, the message-passing variant is typically harder to train and uses

an impractically big amount of memory [12].
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3.2 GNN Models

GNN models can be designed with different tasks in mind, which can be categorised

as node-, edge- or graph-level tasks [9]. Node-level tasks focus on attributes of

individual nodes and include node classification which aims to categorise nodes

into classes, node regression which predicts continuous values for nodes and node

clustering which is concerned with partitioning nodes into groups according to node-

similarity. Edge-level tasks on the other hand deal with analysing and predicting

relationships between nodes and include edge classification and link prediction.

Lastly, graph-level tasks require learned graph representations and include graph

classification, graph regression and graph matching [9].

3.2.1 Popular Models

It is important to note that most well-known models were primarily designed for

and evaluated on node-level tasks, typically node classification. Some of the most

cited GNN models1 include the following. The Spectral Neural Network (Spectral

CNN) [14] is an early model following a spectral approach. It was later extended

by the Chebyshev Spectral CNN (ChebNet) [15], which makes an approximation

using Chebyshev polynomials to reduce computational complexity. The Graph Con-

volutional Network (GCN) [16] further simplified the approach and is the most

well-known model to date. While its original motivation comes from a spectral

approach, it can also be considered a spatial method which aggregates feature in-

formation from neighbour nodes [8]. In terms of the three flavours of GNN layers,

GCN is the typical example for convolutional layers, as described in Eq. (3.3) [12].

The following models have their basis in spatial approaches. GraphSAGE [17]

addresses the issue that neighbourhoods of nodes can vary greatly in size, by sam-

pling a fixed number of neighbour nodes to aggregate information. It suggests and

evaluates three different types of aggregators. On the other hand, the key feature

of the Graph Attention Network (GAT) [18], is using an attention mechanism to

determine the relative weights between nodes as described in the attentional flavour

of GNN layers in Eq. (3.4) [12].

3.2.2 Bridging the Gap between GNNs and MLPs

As an example, the GCN model is further analysed to connect the introduced

knowledge about the MLP architecture from section 2.1 with what we have learned

so far about GNN models. The GCN model defines the propagation rule for a

1See Appendix A, Table A.1 for an overview of citation count and original publishing year.
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convolutional layer as follows [16]:

H(k+1) = f
(
D̃− 1

2 ÃD̃− 1
2H(k)W (k)

)
(3.6)

With Ã = A+ I being the adjacency matrix with added self-connections and D̃ii =∑
j Ãij being the degree matrix with the added self-connections. H(k) is the matrix

of activations (i.e., node embeddings) at the kth layer, W (k) is a trainable weight

matrix and f is the activation function [16]. The added self-connections, in terms

of message passing, can be understood as the nodes being updated, not only based

on the node embeddings of their neighbours, but also their own.

If we define a modified version of the symmetric normalised Laplacian (Eq. (2.2))

as:

Lmod
norm = D̃− 1

2 (A+ I)D̃− 1
2 = D̃− 1

2 ÃD̃− 1
2 (3.7)

We can then rewrite Eq. (3.6) as:

H(k+1) = f
(
Lmod
normH

(k)W (k)
)

(3.8)

The previously defined output of a fully connected FNN layer z (Eq. (2.1)) can be

written with a matrix-vector multiplication as:

z = f

(
n∑

i=1

wixi + b

)
= f (Wx+ b) (3.9)

with W being the trainable weight matrix, x being the vector of inputs, b being the

bias vector and f being the activation function.

In this way, by comparing Eq. (3.8) and Eq. (3.9) the similarities between lay-

ers in an MLP and a GCN become more apparent, the main difference being the

Laplacian matrix representing graph structural information in the GCN. To further

illustrate the similarities of the structure of MLPs (as shown in Fig. 2.1(b)) with

the structure of GNNs, Figure 3.3 shows how the graph structure itself determines

the connections in a GNN rather than the graph only being an input. The GNN

layers represent the calculation of node embeddings at the respective layer.

3.2.3 GNNs for Graph Classification

Wu et al. describe the general approaches to graph classification, comparing graph

kernels to GNNs [8]. Historically, graph classification tasks have been solved with

graph kernels. Graph kernels use kernel functions to measure the similarity be-
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Figure 3.3: Structure of a two-layer GNN, with the graph structure determining
the connections in the network [19].

tween graph pairs, allowing kernel-based algorithms like support vector machines

to be used for supervised learning. Due to graph kernel methods suffering from

a considerable computational load, GNNs can be an attractive and more efficient

alternative for graph classification tasks.

The authors state that for graph classification, GNNs commonly employ convo-

lutional layers to obtain node embeddings, graph pooling layers to down-sample and

a readout layer to derive a fixed-size graph representation. Finally, an MLP and

a softmax layer can be applied for the classification task (Fig. 3.4). The softmax

layer produces a probability distribution over the possible classes, where the sum

of the probabilities equals one [8]. In terms of pooling, the readout layer can also

be considered direct or global pooling, which only considers node features, while

in comparison hierarchical pooling considers structural information and is applied

by layer [9]. Another related term, sometimes used interchangeably with pooling

and readout function, is graph coarsening, which refers to reducing the number of

nodes in a graph to less or even one final node [10]. A simple and computation-

ally inexpensive way of pooling is mean, max and sum pooling [8]. By reducing

the size of graph representations, pooling layers help avoid overfitting and reduce

computational complexity.

Hierarchical Pooling

One of the earlier variants of hierarchical pooling is Edge-Conditioned Convolution

(ECC) [20], which uses a recursive down-sampling method for pooling [9]. It weighs

the node aggregation based on edge parameters [21]. A popular hierarchical pooling

model is Differential Pooling (DiffPool) [22]. It uses a learnable cluster assignment

matrix for every layer based on node and structural information [8]. DiffPool can

be combined with any type of convolutional layer, but the original paper suggests

combining it with GraphSAGE with the mean aggregator and incorporating a pool-
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Figure 3.4: A general convolutional GNN with pooling, a readout layer and an MLP
a softmax layer for final classification [8].

ing layer after every two convolutional layers [22]. The downside of DiffPool is its

high computational complexity [8]. The Graph U-Nets model (g-U-Nets) [23] uses

graph pooling (gPool) and its inverse un-pooling (gUnpool). The gPool layer uses

scalar projection scores to select nodes, and form a smaller graph, while the gUn-

pool layer restores the original structure [23]. In comparison to DiffPool, g-U-Nets

saves storage complexity by using a vector instead of a matrix per layer. However,

the graph structure is not taken into account [9]. Self-Attention Graph Pooling

(SAGPool) [24] on the other hand also uses node as well as structural informa-

tion like DiffPool but uses a self-attention mechanism resulting in a lower time and

storage complexity [9].

Sorting Methods and the Weisfeiler-Lehmann Algorithm

A method based on assigning labels to nodes and ordering them is PATCHY-SAN

(PSCN) [25]. The labels are assigned as a score based solely on graph structure

(e.g., node degree, centrality, or Weisfeiler-Lehmann (WL) colour). For each node,

a fixed number of neighbour nodes are selected based on their label. Because of the

uniform size, the result can then be passed to a traditional 1D CNN [8]. Similarly

to PSCN the Deep Graph Convolutional Neural Network (DGCNN) [26] uses an

assigned ordering of nodes by sorting nodes according to their structural role and

applying 1D CNNs [9]. In comparison to PSCN, DGCNN sorts all nodes of a graph

rather than sorting the respective neighbourhoods of nodes [10]. In the mecha-

nism called SortPooling DGCNN first uses spatial convolutions on the unordered

nodes to determine their structural importance before selecting the top-k nodes

for a fixed-size representation [8]. As described by the original authors, the graph

convolution of DGCNN uses a propagation matrix similar to GCN [26]. They draw

the connection to the WL subtree kernel which uses the WL algorithm to extract
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features for graph classification. The authors argue that their convolution is a closer

approximation of the WL algorithm than GCN. The idea of the WL algorithm is

to update a node’s colour, i.e., its assigned label, based on a concatenated version

of the node’s colour with the colours of its one-hop neighbours. Ordering nodes by

WL colour results in nodes with similar structural roles in different graphs being

assigned a similar relative position. DGCNN aims to approximate WL colours and

shows that the output of the graph convolution layers equates to a continuous ver-

sion of WL colours and can thus be used for sorting [26]. The Graph Isomorphism

Network (GIN) [27] was proposed based on further analysis of the relationship of

the WL algorithm and GNNs. It was shown that GNNs cannot be better at dis-

tinguishing graph structures than the WL graph isomorphism test which is based

on the same WL algorithm as the WL kernel [10]. GIN introduces a parameter

ϵ, which can be learnable or a fixed scalar, as a weight for the target node in the

aggregation step [27]. In addition, a readout function is proposed where summed

node features are concatenated for each iteration. Combined with the use of an

MLP it is shown that GIN reaches the maximum possible discriminative power a

GNN can have [27]. See Appendix A, Table A.2 for an overview of citation count

and original publishing year of the described GNN models.
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Chapter 4

Experiment

This chapter describes the conducted experiment. Section 4.1 outlines the experi-

ment setup. It explains the decision process for which GNN models were chosen,

how the experiment was designed and what evaluation framework was used. Addi-

tionally, the used datasets and hyperparameters are described. In section 4.2 the

execution of the experiment is described. The architectures of the used models are

presented in detail and the code implementation is explained.

4.1 Experiment Setup

The goal of the experiment is to investigate the effectiveness of current state-of-

the-art GNNs in exploiting graph structure for graph classification tasks. The

hypothesis is that current GNN models are not utilising the graph structure to the

fullest potential. An important point of reference for this thesis is the paper titled,

A Fair Comparison of Graph Neural Networks for Graph Classification by Errica et

al. [21], which criticises the model evaluation practises of different works and offers a

standardised evaluation framework. To explore our hypothesis, two widely-known

GNN models, GIN [27] and DGCNN [26], are tested on three chemical datasets

(MUTAG, NCI1 and PROTEINS) and two social datasets (IMDB-BINARY and

IMDB-MULTI). The performance of the models is examined on graphs with node

features as well as on graphs with their node features removed, leaving only the

structural information. Additionally, the models are compared to a baseline MLP

model, that only uses the node features to classify the graphs. The experiment was

implemented using PyTorch Geometric [28] for its deep learning model implemen-

tations, PyTorch Lightning [29] for structure and readability and Optuna [30] for

hyperparameter optimisation.
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GNN Model Selection

For the selection of GNN models to evaluate, several criteria are taken into account:

• Citation count

• Code availability

• Differences in architecture

• Test results in the original paper

• Test results in the reference paper by Errica et al. [21]

The citation count is considered, as a reflection of the impact and recognition of

the models in the research community. The availability of the original code as

well as a PyG implementation is checked to ensure reproducibility. The differences

in the models are examined to ensure there is some diversity in the investigated

architectures. In the original papers, the overall performance of the models is

considered as well as the availability of results on social and chemical datasets.

Lastly, the results in the reference paper are reviewed. As the paper provides a

fair and objective comparison of the performance of different models, it serves as a

strong indicator of the suitability of the models for this thesis. By considering these

criteria, the GIN [27] and DGCNN [26] models were chosen for further investigation.

Datasets

The used graph classification datasets1 are some of the most used benchmark

datasets and they are publicly available [31]. They include three chemical (MU-

TAG [32], NCI1 [33], PROTEINS [34]) and two social (IMDB-BINARY, IMDB-

MULTI[35]) datasets. The chemical datasets are node-labelled, while the social

datasets are not. The datasets pose binary classification tasks except for the IMDB-

MULTI dataset which is a multi-class classification problem with three classes.

The MUTAG dataset represents nitroaromatic compounds, labelled as muta-

genic or non-mutagenic Nodes represent atom types in a one-hot encoding. The

NCI1 dataset contains graphs of chemical compounds screened for cancer activity,

with one-hot encoded atom types. The PROTEINS dataset contains graphs of pro-

teins, classified as enzymes or non-enzymes, with nodes representing amino acids.

The IMDB-BINARY dataset includes graphs of movies, classified into action or ro-

mance genres, with nodes as actors and edges as collaborations. The IMDB-MULTI

dataset follows the same concept as IMDB-BINARY but uses three genres instead.

1Dataset statistics in Appendix A Table A.3.
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Experiment Design

The purpose of the experiment is to investigate how effective the two selected models

are at exploiting the input graphs’ structural information. Three different variants

of the experiment are designed:

• 1. Experiment: graphs with node features classified with GNN.

• 2. Experiment: graphs without node features classified with GNN.

• 3. Experiment: node features classified with an MLP.

In the first experiment, the maximum amount of information is used. The

node features are kept and by classifying the graphs with a GNN the structural

information is used. In the case of chemical datasets, the node labels are one-hot

encodings, resulting in vectors of 0/1 elements. For the social datasets, which are

unlabelled (i.e., have no node features), one-hot encodings of the node degrees are

used as their features. In the second experiment, the graphs are stripped of their

node features by replacing them with a single value of one. By then classifying them

with a GNN, only the structural is leveraged. In the third experiment, the graphs’

structural information is discarded. Only the node features are used to classify the

graphs with an MLP.

For the MLP, used as a baseline to compare the GNN performance to, the

implementation by Errica et al. [21] is followed. For chemical datasets, the so-called

Molecular Fingerprint technique is used, which uses global sum pooling followed by

a single-layer MLP with ReLU. For social datasets, a single-layer MLP followed by

global sum pooling and another single-layer MLP is used.

Evaluation Framework

As previously stated, Errica et al. criticise the model evaluation of several GNN

model proposals. The authors focus their criticism on the usage of data splits for

training, validation, and testing as well as the availability of code, especially for

model selection and not only model assessment. For example, for the GIN [27]

model the original paper explicitly states that the validation accuracy of a 10-fold

cross-validation (CV) is reported. For DGCNN [26] the model was evaluated using

a 10-time repetition of a 10-fold CV. The hyperparameters were tuned once using

one random fold. However, the average of the 10 final scores was reported as the

result instead of the overall average, which lowered the variance. The code for

model selection is not provided from either GNN model.
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Errica et al. propose an evaluation framework to use when comparing GNNs,

and they also share their code2 and all hyperparameters that are tuned and their

respective values. Their process consists of using a 10-fold CV, where for each fold

they use a holdout technique with a 90%/10% split to further split the training

folds into training and validation sets. The data splits are stratified, meaning class

proportions are represented accurately in the split sets. They optimise hyperparam-

eters on the validation set and select the best model. The selected model is then

retrained on the entire set of training folds and tested on the test set, repeating the

process three times. However, in the retraining step, they again split the training

set to use 10% for early stopping.

In our experiment, the proposed evaluation framework was slightly altered. A

10-fold CV and inner holdout technique with a 90%/10% split was also used, with

splits being stratified. However, once the best model was selected it was directly

tested on the test set. The 10-fold CV was additionally repeated 10 times. In

Appendix B a visual representation of the procedure (Fig. B.1) and the algorithms

for model assessment (Alg. 4) and model selection (Alg. 5) can be found.

Hyperparameters

The training mechanism has several parameters, that can be tuned to optimise the

process [36]. These parameters are referred to as hyperparameters to distinguish

them from basic parameters like weights and biases. They can be tuned manu-

ally, with grid or random search, or using Bayesian methods to predict the next

hyperparameter configuration in a series of trials [36].

For the GIN model, the original authors mention tuning the number of hidden

channels, the batch size and the dropout ratio [27]. Errica et al. [21] additionally

tune the number of layers. For the DGCNN model, the original authors mentioned

tuning only the learning rate [26] while Errica et al. additionally tune the number

of layers and the number of hidden channels. In our experiment, the extended list

of hyperparameters of Errica et al. was loosely followed. For the baseline MLP

model, they tune batch size, number of hidden channels learning rate and weight

decay. A full overview of the used values for each hyperparameter can be found in

Appendix B Table B.1.

Witten et al. [36] provide detailed explanations for the hyperparameters that

are set or tuned during the training process. Batch size refers to the number of

graphs that are used for training a model in one iteration before the parameters are

updated. The learning rate determines how much parameters are changed, after

2The code is available at: https://github.com/diningphil/gnn-comparison
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Figure 4.1: Typical curves for training with a validation set. Once the validation
loss starts to increase, the training should be stopped [36].

each calculation of the loss. It can be a fixed value or can be adjusted over time

with a learning rate scheduler (as is the case for the GIN model [27]). Weight

decay is a regularisation technique that encourages the model to minimise weights.

Dropout is a method that randomly removes some nodes during training to prevent

overfitting. By creating a multitude of networks with some connections missing,

the model cannot rely too heavily on specific features. Overfitting refers to a model

performing well on training data but losing its ability to generalise to unseen data.

One way to help avoid this is by using a validation set for early stopping. The

validation loss is observed alongside the training loss and once the validation loss

starts to increase while the training loss keeps decreasing, the training is stopped.

Figure 4.1 illustrates at which point early stopping should occur [36]. Additional

hyperparameters to set include the number of epochs, an epoch being one pass over

the entire training set, and the number of trials for hyperparameter optimisation,

meaning how many configurations to try.

For optimisation, PyTorchs implementation of the Adam algorithm [37] is used

following the original implementations of both GIN and DGCNN as well as Errica et

al. For hyperparameter tuning Optuna’s TPE (Tree-structured Parzen Estimator)

sampler3 is used which is a Bayesian method. The chosen number of trials is oriented

on the maximum number of hyperparameter combinations. A full list of the used

hyperparameters can be found in Appendix B Table B.1.

3Documentation for the TPE sampler at: https://optuna.readthedocs.io/en/stable/

reference/samplers/generated/optuna.samplers.TPESampler.html
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4.2 Experiment Execution

4.2.1 Model Architecture

GIN

In the following the architecture of the GIN model is presented following the de-

scription of the original authors Xu et al. [27]. For the convolutional layers, the

following propagation rule is proposed:

h(k+1)
u = MLP(k+1)

(1 + ϵ(k+1) · h(k)u +
∑

v∈N(u)

h(k)v

 (4.1)

with ϵ being either a learnable parameter or a fixed scalar representing the impor-

tance of a node’s own features h
(k)
u in comparison to those of its neighbour nodes.

The weighted node features are added to the sum of the neighbour node features

h
(k)
v | v ∈ N(u). Finally, the aggregated features are passed to an MLP to create

a more expressive feature representation. The reader is referred to Eq. (3.2) to

observe that Eq. (4.1) represents a message-passing mechanism. For graph classifi-

cation tasks where a readout layer is needed, the following function is proposed to

obtain a graph representation:

hG = CONCAT
(
READOUT

(
{h(k)u | u ∈ G}

)
| k = 0, 1, . . . , K

)
(4.2)

It is suggested that for the READOUT function, all nodes of the same iteration

are summed up. The implementation is further described as using five GNN layers

including the input layer, and all MLPs having two layers (excluding the input layer

according to the original code4). Additionally, batch normalisation is applied on

every hidden layer and the final dense layer (i.e., single fully connected layer) has a

dropout layer. From the original code, it can be gathered that ReLU was used as

the activation function.

To summarise: After each convolutional layer, the node embeddings are summed

up to get a representation of the graph at that particular iteration. In the final step,

the graph representations from the different iterations are concatenated to form a

final graph representation which reflects information from all layers. This can then

be passed to a final classifier.

4The code is available at: https://github.com/weihua916/powerful-gnns
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DGCNN

In the following, the architecture of the DGCNN model is presented following the

description of the original authors Zhang et al. [26]. They describe the graph

convolution as:

H(k+1) = f
(
D̃−1ÃH(k)W (k)

)
(4.3)

with Ã = A+ I being the adjacency matrix with added self-connections and D̃ii =∑
j Ãij being the degree matrix with the added self-connections. H(k) is the feature

matrix, W (k) is a trainable weight matrix and f is the activation function. The

convolution is very similar to the convolution in the GCN model in Eq. (3.6), the

difference being the normalisation with the modified degree matrix with D̃−1Ã

rather than D̃− 1
2 ÃD̃− 1

2 . The DGCNN architecture is further described as containing

the following layers, as illustrated in figure 4.2:

• 3 graph convolution layers with 32 output channels and tanh as activation

function.

• 1 graph convolution layer with 1 output channel used for sorting and tanh as

activation function.

• SortPooling with k so that 60% of graphs have more than k nodes.

• 1D convolution layer with 16 output channels and ReLU as activation func-

tion.

• MaxPooling layer with filter size 2 and step size 2.

• 1D convolution layer with 32 output channels, filter size 5, step size 1 and

ReLU as activation function.

• Dense layer with 128 hidden channels, dropout rate 0.5 and ReLU as activation

function.

Based on the original code5 the filter and step size of the first 1D convolution

layer is equivalent to the total latent dimension D:

D = (number of layers− 1) · output channels+ 1

The calculation of the input dimension of the dense depends on the output size

of the last 1D convolution layer. This output size is in turn determined by the first

1D convolution layer and the max pooling layer.

5The code is available at: https://github.com/muhanzhang/pytorch_DGCNN
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Figure 4.2: The structure of the DGCNN model, with node features visualised as
colours. Graph convolution layers are followed by a SortPooling layer, traditional
1D convolution and a final dense layer [26].

• 1D convolution layer 1: Starting from the first 1D convolution layer, the

input size depends on the output size of the SortPooling layer, which is k.

The original code also uses k as an approximation for the output size of the

first 1D convolutional layer. So, let’s denote the output size of the first 1D

convolution layer as O = k.

• MaxPool layer: Next, the output size of the MaxPool layer can be calculated

using the formula:

O′ = (((W ′–F ′)/S ′) + 1) = floor((O − 2)/2) + 1) = floor(O/2)

Where the input size W ′ is equal to the output size O of the previous layer,

and the filter size (F ′) and step size (S ′) are 2

• 1D convolution layer 2: Finally, the output size of the second 1D convolu-

tion layer can be calculated similarly, with the additional multiplication with

C ′′ for the number of output channels:

O′ = (((W ′′–F ′′)/S ′′) + 1) · C ′′ = (((O′–5)/1) + 1) · 32 = (O′–4) · 32

Here the input size W ′′ is equal to the output size of the previous layer, in

this case O′. The filter size (F ′) and step size (S ′) are 5 and 1 respectively.

The number of output channels is 32.

• Dense layer: By inserting the previous formulas, we get the following input

dimension of the dense layer O′′:

O′′ = (floor(O/2)–4) · 32 = (floor(k/2)–4) · 32 (4.4)
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4.2.2 Code

For the implementation6 of the experiment, several machine learning libraries were

used. PyTorch Geometric (PyG) [28] and PyTorch Lightning (PL) [29] are both li-

braries built on top of PyTorch [38]. PyG provides implemented GNN architectures

and methods, as well as common benchmark datasets and tools for handling graph

data. PL simplifies complex training pipelines by abstracting boilerplate code, thus

making it more readable. It also manages training loops and data handling. Op-

tuna [30] is a library designed for hyperparameter optimisation and provides an

interface for managing and tracking optimisation trials.

Key Elements

The GNN architectures are implemented as PyTorch Modules. They are then

wrapped by one general PL.LightningModule which initialises the specific GNN

model based on user input and defines the training, validation and testing steps as

well as the optimiser. The data is handled by a PL.LightningDataModule which

ensures that the data is pre-processed and split into training, validation, and test

sets for model training and evaluation. The hyperparameter optimisation is organ-

ised by an optuna.Study object which optimises based on an objective function.

The optuna.Trial object is one single execution of the objective function. The

objective function returns the validation accuracy for one hyperparameter configu-

ration. The training is handled by the PL.Trainer object, which can be configured

with several callback and logging functionalities. The used callbacks are early stop-

ping, trial pruning and model checkpoint. The early stopping is set up to monitor

validation loss. The loss was chosen because the loss curve is usually smoother

than the accuracy curve, and at the point of early stopping the increase in loss is

more distinct than the decrease in accuracy. The trial pruning monitors validation

accuracy and prunes unpromising trials. The model checkpoint saves the parame-

ters of the model at the time of maximum validation accuracy. The main function

involves setting up arguments for running the script, and running the main training

and evaluation loop for the specified number of repetitions and folds. The user

can specify various parameters such as the model, dataset and experiment type

as well as the number of folds, repetitions, epochs, and trials for hyperparameter

optimisation.

6Full code available at: https://github.com/C8XY66/GNN_TrainingFramework
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Implementation

Three elements of the code are discussed in more detail and illustrated with pseu-

docode to provide an overview of the learning pipeline: the GraphDataModule class,

the objective() function, and the main() function.

An overview of the structure of the GraphDataModule class is provided in Algo-

rithm 1. The prepare_data() method (line 2) is called once per run. It handles the

data loading and any necessary node feature transformations. If the dataset is of

the social type, it adds a one-hot encoding of node degrees as features (line 5). If the

experiment type is without node features, it neutralises the features (line 9). The

setup_rep() method (line 11) is called once per repetition. It shuffles the dataset

deterministically based on a repetition-specific seed and splits it into stratified folds.

The setup() method (line 15) is called once per fold. It makes a stratified split

of the train folds into a train and validation set based on a fold-specific seed. The

seeds are set up this way to ensure some level of randomness, but make it possible

to continue a run from a specific repetition and fold or run folds in parallel on

separate CPUs.

Algorithm 1 GraphDataModule Class

Require: DataSet Ds, DatasetType Dt, Experiment Ex, Folds F
1: class GraphDataModule:
2: def prepare data():
3: pre transform ← None
4: if Dt = social then
5: pre transform ← OneHotEncoding(degree)
6: end if
7: dataset ← TUDataset(Ds, pre transform)
8: if Ex = WithoutNF then
9: neutralise node features(dataset)
10: end if
11: def setup rep(rep):
12: seedr ← rep+ 1
13: dataset ← shuffle(Ds, seedr)
14: train test splits[ ] ← stratified k fold(dataset, F )
15: def setup(fold):
16: seedf ← fold+ 1
17: train set, test set ← train test splits[fold]
18: train set, val set ← stratified split(train set, ratio, seedf )
19: end class
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Next the objective() function of the Study object is illustrated with Algo-

rithm 2. It first loads the config file (line 1) and initialises the hyperparameters

with default values (line 2). It then checks the file for the hyperparameters to be

tuned and suggests a hyperparameter configuration (line 4). The configuration is

then used to initialise the GNNModel (line 6). Next a Trainer object is created

(line 7). The hyperparameters are logged (line 8) and finally, the trainer is used to

train the initialised model with the trainer.fit() method (line 9). The method

primarily returns the validation accuracy, as this is the value that is to be max-

imised by the study object. However, the validation loss is used to break ties if two

trials report the same validation accuracy.

Algorithm 2 Objective Function

Require: Model M , DataModule Dm, DatasetType Dt, Trial t, Epochs Ep
1: config ← load config file(M)
2: hyperparameters ← default values
3: for param, values in config.items() do
4: hyperparameters[param] ← t.suggest(param, values)
5: end for
6: model ← GNNModel(M,Dt, k, hyperparameters)
7: trainer ← create trainer(t, Ep)
8: trainer.log(hyperparameters)
9: val acc, val loss ← trainer.fit(model, Dm)

10: return val acc, val loss

Lastly the main() function as illustrated with Algorithm 3 is responsible for

running the main experiment loop. Before the loop, the function sets up a folder

to save all logs and results (line 1) and initialises a GraphDataModule with the

name of the dataset and experiment type (line 2). It handles the data modules

as described: prepare_data() (line 3) once per run, setup_rep() (line 5) once

per repetition and setup() (line 8) once per fold. It also creates a log folder for

every fold (line 7). Next, it creates a Study object for every fold (line 9) and uses

the study.optimise() function to optimise the specified number of trials with an

objective() function for each trial (line 10). The model of the best trial, at its best

validation accuracy, is then accessed via its saved checkpoint (line 11). A Trainer

object is initialised in training mode, meaning no callbacks are used (line 12). Fi-

nally, the trainer is used to test the best model with the trainer.test() method

(line 13) and the test accuracy is saved to an SQLite database (line 14).

27



Algorithm 3 Main Function

Require: ModelName Mn, DataSet Ds, DatasetType Dt, Experiment Ex,
Repetitions R, Folds F , Trials T , Epochs Ep

1: create parent dir()
2: datamodule ← GraphDataModule(Ds,Ex)
3: datamodule.prepare data()
4: for r = 1 to R do
5: datamodule.setup rep(r, F)
6: for f = 1 to F do
7: create sub dir(r, f)
8: datamodule.setup(f)
9: study ← optuna.create study()

10: study.optimise(trial: objective(trial, Mn,Dm,Dt,Ep), T )
11: best model ← study.best trial.checkpoint
12: trainer ← create trainer(testing)
13: test acc ← trainer.test(best model)
14: save test result(test acc)
15: end for
16: end for

For the GIN and DGCNN models, the architecture was implemented as de-

scribed by the original authors and elaborated on in Sections 4.2.1 and 4.2.1

respectively. The full code for the GIN and DGCNN model implementation can

be found in Appendix B. For the GIN model GINConv , PyGs implementation of

GINs convolutional layer was used. For the DGCNN model SortAggregation ,

PyGs implementation of SortPooling was used. Additionally, for DGCNNs graph

convolution layer the implementation by Errica et al. [21] was used. For the MLP

baseline models, their implementation was followed. All calculations were per-

formed on UBELIX7, the HPC cluster at the University of Bern. An overview of

the computation times can be found in Appendix B Table B.2.

7UBELIX: http://www.id.unibe.ch/hpc
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Model MUTAG PROTEINS NCI1 IMDB-B IMDB-M
E
x
p
e
ri
m
e
n
t GIN wNF 84.0± 8.3 74.2± 4.2 80.7± 2.2 73.4± 3.8 49.7± 3.8

GIN woNF 85.9± 8.1 72.5± 4.3 75.1± 2.5 71.9± 4.5 48.7± 3.9

DGCNN wNF 80.5± 9.5 72.7± 3.7 67.0± 2.3 71.6± 5.1 47.8± 3.3
DGCNN woNF 80.8± 9.7 71.7± 3.8 62.4± 2.4 50.9± 4.1 36.4± 3.2

MLP wNF 80.4± 9.7 75.1± 4.6 69.5± 2.2 72.1± 4.9 50.5± 3.8
MLP woNF 81.7± 10.2 71.1± 3.9 62.3± 2.2 50.1± 4.4 36.0± 3.5

E
rr
ic
a
e
t
a
l. GIN wNF - 73.3± 4.0 80.0± 1.4 71.2± 3.9 48.5± 3.3

GIN woNF - - - 66.8± 3.9 42.2± 4.6

DGCNN wNF - 72.9± 3.5 76.4± 1.7 69.2± 3.0 45.6± 3.4
DGCNN woNF - - - 53.3± 5.0 38.6± 2.0

MLP wNF - 75.8± 3.7 69.8±2.2 70.8± 5.0 49.1± 3.5
MLP woNF - - - 50.7± 2.4 36.1± 3.0

O
ri
g
.

GIN wNF 89.4± 5.6 76.2± 2.8 82.7± 1.6 75.1± 5.1 52.3± 2.8

DGCNN wNF 85.8± 1.7 75.5± 0.9 74.4± 0.5 70.0± 0.9 47.8± 0.9

Table 4.1: Results on chemical and social datasets with mean accuracy and standard
deviation as percentages. Best performance within a group in bold.

4.3 Results and Discussion

Our experiments evaluated the effectiveness of the GIN [27] and DGCNN [26] mod-

els for graph classification tasks, both with and without node features (wNF/woNF).

In addition, the performance of the models was compared to the classification ca-

pabilities of an MLP, which did not utilise graph structure. The performance was

defined as a model’s test accuracy. The results were compared to those from the

original papers, and those reported by Errica et al. [21]. Table 4.1 shows the com-

pared results, test accuracies are given as percentages.

Our results show, that GIN consistently outperformed DGCNN, scoring higher

test accuracies on all datasets with and without node features. The MLP base-

line managed to outperform the GNNs on the PROTEINS and the IMDB-MULTI

dataset. The biggest difference in performance was on the NCI1 dataset where GIN

scored 80.7 ± 2.2 while DGCN scored 67.0 ± 2.3. The overall best accuracy was

scored on the MUTAG dataset where GIN reached 84.0 ± 8.3, DGCNN reached

80.5 ± 9.5 and MLP reached 80.4 ± 9.7. Noticeably, the standard deviation (SD)

was higher on the MUTAG dataset than on the others. Additionally, each of the

three models scored lower on graphs with node features than without. However,

one should note that MUTAG is by far the smallest dataset with 188 graphs, the

second-smallest being IMDB-BINARY with 1000 graphs (App. A, Tab. A.3). With
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Figure 4.3: Box plots comparing the models’ median test accuracies (horizontal
line). The box represents the interquartile range (IQR). The whiskers extend up to
1.5 times the IQR, with outliers marked as circles.

our evaluation framework, the MUTAG dataset only had roughly 19 graphs in its

test sets and roughly 2 in its validation sets. This could account for the bigger SDs

and might lead to unstable results. On the IMDB-BINARY dataset, what stands

out is that DGCNN and MLP lost their ability to effectively classify the graphs,

both reaching an accuracy of around 50%. This equates to a random choice for

a binary classification tasks. On the IMDB-MULTI dataset, which distinguishes

between three classes, a similar trend could be observed. GIN on the other hand

reached much more similar accuracies with and without node features on both of

the social datasets. Figure 4.3 shows a box plot of our median test accuracies. The

y-axis is fixed to allow a visual comparison of the models across all datasets. The

boxes represent the interquartile ranges (IQRs), with the lower and upper edges in-

dicating the 25th and 75th percentiles, respectively. The whiskers show variability

outside the lower and upper quartiles, extending to the minimum and maximum

within 1.5 times the IQR. Outliers are marked by circles. The box plots show where

the majority of the data points lie. By comparing them, we can evaluate the per-

formance consistency of the models. Smaller boxes and whiskers represent a more

consistent performance. Our results suggest that performance consistency mostly

depended on the dataset rather than the model or the presence of node features.

30



Figure 4.4: Mean accuracy and standard deviation of testing and validation, plotted
with the results from Errica et al. [21] and the respective original sources of the
models [27] [26].

Comparing our results with those presented by Errica et al. [21], the models over-

all showed similar performance, with each dataset having the same top-performer

model for both sets of results. On chemical datasets, our results were higher for

GIN and lower for DGCNN and MLP. On social datasets, our results were higher

for all models on graphs with node features. Overall, on datasets with node fea-

tures, our results never deviated more than 2.4% from their reported mean, except

for DGCNN’s performance on the NCI1 dataset. Our experiments showed an ac-

curacy of 67.0± 2.3 on the NCI1 dataset by DGCNN while Errica et al., reported

an accuracy of 76.4 ± 1.7. The difference in the performance of DGCNN might

be explained by slight differences in the implementation. Errica et al. for example

used a concatenation of the outputs from the graph convolution layer rather than

just using the last channel as the original source did, which we followed. They

also deviated from the original GIN model by only using a 1-layer MLP instead of

a 2-layer MLP (excluding the input layer). Regarding the SDs, Figure 4.4 shows

that in general our differences between datasets matched those of Errica et al., e.g.,

PROTEINS leading to larger SDs than NCI1. We can also see that in our imple-

mentation, the pattern of results on IMDB-MULTI more closely matched the one on
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IMDB-BINARY. The range of accuracies is lower, because of IMDB-MULTI posing

a multi-class classification problem, instead of a binary one. The results of Errica

et al. show their implementation of GIN woNF being an outlier, while the other

results also match the pattern on IMDB-BINARY. One thing that we evaluated,

which Errica et al. did not, was the performance of the MLP baseline on chemical

datasets without node features. The performance was clearly above random levels,

reaching an accuracy of 71.1± 3.9 on the PROTEINS dataset.

Our implementation of the models consistently reached lower results than those

reported by the original sources. In Figure 4.4 our validation accuracy is plotted

alongside our test accuracy to compare them to the results by Errica et al. and

the original source. In the case of the GIN model, the original source reported

the validation accuracy rather than the test accuracy (Sec. 4.1). However, rather

than matching our validation accuracy, their reported results lie in between our

test and validation accuracies. In the case of DGCNN, it is important to note

that the average of the 10-time repetition of the CV was reported, rather than the

overall average, which accounts for the small SDs (Sec. 4.1). Regarding the original

results being higher than the ones achieved by us, there is no obvious explanation.

However, the model is more complex to implement and steps like the calculation of

the input dimension from Section 4.2.1 were not documented in detail.
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Chapter 5

Conclusions and Future Work

In this thesis, an examination of graph neural networks (GNNs) was performed. A

thorough introduction to GNNs was given, starting with the theoretical background

before introducing different approaches and GNN models. The models were both

unified under the framework of message passing and divided according to the task

they were designed for. In addition, the thought process behind the experimental

setup, as well as its execution, was shared in detail.

From our experiment, we learned the following key points. The GIN model

outperforms the DGCNN model on the used datasets. There are both chemical and

social datasets (PROTEINS and IMDB-MULTI), where an MLP baseline model

can outperform GNN models, specifically designed for graph classification tasks.

On social datasets, the addition of node degrees as node features generally benefits

the performance of the model. However, while the DGCNN and MLP models

need the added degrees to have any classification abilities, GIN manages to score a

similar performance with and without node features. The performance consistency

primarily depends on the dataset, rather than the model, or the presence of node

features. By adding experiments using the MLP baseline on chemical datasets

without node features, we extend the question of how the performance of GNN

models should be assessed and what they should be compared to.

In addition, by being able to mostly reproduce the results by Errica et al. [21] we

show that their attempt at setting up a uniform evaluation framework for GNNs has

been successful. However, while they state that they followed the original papers

(over the original code if there were discrepancies), they made alterations to the

theoretical specifications without explanation. In addition, more information about

how they chose the additional hyperparameters to use for optimisation would have

been interesting. By choosing to add the MUTAG dataset specifically for its differ-

ence in size, we saw that the evaluation framework, or at least its execution, might

need to be altered for smaller datasets. A starting point would be to use a 5-fold
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CV instead of a 10-fold CV to increase the validation and test set size. Additionally,

the model from the best trial could be retrained on the entire training set, however,

in contrast to Errica et al., instead of using a validation set for early stopping, the

number of epochs from the best trial could be used for the retraining. Regarding

further changes to the evaluation framework, an inner CV could be used for hyper-

parameter optimisation, instead of the implemented holdout technique. This could

reduce the variance; however, a substantial amount of additional computing power

would have to be available.

Regarding the question of whether GNNs leverage graph structure for classifi-

cation tasks and the hypothesis that they do not to their fullest potential, no final

answer was found. However, the claimed success of the evaluated models, DGCNN

in particular, was pulled further into question. During the process of trying to an-

swer our research question, a new question arose, specifically as posed by Errica et

al. [21]: If GNN performance is similar to our structure-agnostic baseline, should

we conclude that the GNN models are not exploiting graph structure adequately, or

should we ask if the task does not need topological information to be solved effec-

tively? They explain that this question can easily be answered by domain-specific

human expertise. However, in light of the MLP performing adequately on chemical

datasets without node features, it is still interesting to see what such a “simple”

model can achieve with only the information of the number of nodes available.

It serves as a reminder that MLPs, despite their simplicity, can model complex

functions, given enough neurons and layers.

The question of depth also arises in the context of GNNs. Most GNN models

have relatively shallow structures because adding more layers would lead to over-

smoothing. However, there is a very recent attempt at adapting the success of deep

CNNs for GNNs. Zhou et al. [39] propose a novel Deep Graph Convolutional Neural

Network (DGCNNII), which is up to 32 layers deep and based on the DGCNN

model. They introduce a trick to eliminate over-smoothing and report superior

results on most chemical datasets. However, while they do report using a 10-time

repetition of a 10-fold CV and describe their used hyperparameters, they do not

provide their code. This unfortunately led to a failed attempt at implementing their

proposed architecture. There are also other lesser-known and some newer GNN

models, which report good results in classification tasks. An extensive overview is

provided in Appendix C Table C.1 and C.2.

In the future, there will hopefully be more rigorous comparisons of GNN models,

including a bigger range of models. As this research area is still in its infancy, there

is reasonable hope that the research will become more standardised in the future,

leading to more credible comparisons and reproducible proposals.
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Appendix A

GNN Models and Datasets

Model Citations Year

GCN [16] 23’362 2016
GraphSAGE [17] 10’007 2017
GAT [18] 9’657 2017
ChebNet [15] 6’981 2016
Spectral CNN [14] 4’742 2013

Table A.1: Citation count of popular GNN models. The year refers to the original
year of publishing (source: Google Scholar 09.05.2023).

Model Citations Year

GIN [27] 4’637 2018
PSCN [25] 2’170 2016
DGCNN [26] 1’244 2018
DiffPool [22] 1’194 2018
ECC [20] 1’173 2017
SAGPool [24] 803 2019
g-U-Nets [23] 797 2019

Table A.2: Citation count of GNN models for graph classification tasks. The year
refers to the original year of publishing (source: Google Scholar 09.05.2023).

Dataset # Graphs # Classes # Node labels

MUTAG 188 2 7
PROTEINS 1’113 2 3
NCI1 4’220 2 37
IMDB-BINARY 1’000 2 -
IMDB-MULTI 1’500 3 -

Table A.3: Statistics of the used datasets (https://chrsmrrs.github.io/
datasets/docs/datasets/). If the graphs have no labels, the node degrees can be
added as labels.
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Appendix B

Experiment

Evaluation Framework

Dataset

fold1 foldkfold2 fold3

Test Trainout

TrainoutTest
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performance over
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Figure B.1: Visual representation of the evaluation framework.
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Algorithm 4 Model Assessment (k-fold CV)

Require: Dataset D, set of configurations Θ, number of repetitions R
1: for r ← 1 to R do
2: Shuffle D
3: Split D into k folds F1, . . . , Fk

4: for i← 1 to k do
5: traink, testk ← (

⋃
j ̸=i

Fj), Fi

6: bestmodel ← Select(traink,Θ)
7: perfk ← Eval(bestmodel, testk)
8: end for
9: perfr ←

∑k
i=1 perfi/k

10: end for
11: perf ←

∑R
r=1 perfr/R

12: return perf

Algorithm 5 Model Selection

Require: traink, Θ
1: valid←R 10% ∗ traink

2: train← traink \ valid
3: bestmodel ← None
4: bestperf ← −∞
5: for all θ ∈ Θ do
6: model← Train(train, θ)
7: perf ← Eval(model, valid)
8: if perf > bestperf then
9: bestperf ← perf

10: bestmodel ← model
11: end if
12: end for
13: return bestmodel

In Algorithm 4, ”Select” refers to Algorithm 5. ”Train” and ”Eval” represent

the training and testing phases respectively. After each model selection, the best

model is used to evaluate the external test fold. Performances are averaged across

the k folds and R repetitions of the CV.
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Hyperparameters

Model Layers Batch Size Learn. Rate Hidden Ch. Weight Decay Dropout

MLP - 32 1.00E-01 32 1.00E-02 -
128 1.00E-03 128 1.00E-03

1.00E-06 256 1.00E-04

GIN 5 32 1.00E-02 32 - 0.0
128 64 0.5

DGCNN 3 50 1.00E-04 32 - 0.5
4 1.00E-05 64
5

Model Agg. Epochs Patience Trials Optimiser LR Scheduler

MLP sum 1000 100 50 ADAM -

GIN sum 1000 100 50 ADAM step: 50, gamma: 0.5

DGCNN mean 1000 100 50 ADAM -

Table B.1: Hyperparameter configurations for model selection.
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Code Implementation

class GINMLPModel(nn.Module):

def __init__(self, in_c, out_c):

super().__init__()

self.mlp = nn.Sequential(

nn.Linear(in_c, out_c), nn.BatchNorm1d(out_c), nn.ReLU(),

nn.Linear(out_c, out_c), nn.BatchNorm1d(out_c), nn.ReLU(),

nn.Linear(out_c, out_c))

def forward(self, x):

x = self.mlp(x)

return x

class GINModel(nn.Module):

def __init__(self, in_c, out_c, hid_c,

num_layers, dropout, train_eps):

super().__init__()

self.dropout = nn.Dropout(dropout)

self.layers = nn.ModuleList()

# GRAPH CONVOLUTION

self.layers.append(GINConv(GINMLPModel(in_c, hid_c), train_eps))

self.layers.append(nn.BatchNorm1d(hid_c))

for _ in range(num_layers - 2):

self.layers.append(GINConv(GINMLPModel(hid_c, hid_c), train_eps))

self.layers.append(nn.BatchNorm1d(hid_c))

self.layers.append(GINConv(GINMLPModel(hid_c, hid_c), train_eps))

# DENSE LAYER

self.fc1 = nn.Linear(num_layers * hid_c, hid_c)

self.fc2 = nn.Linear(hid_c, out_c)

def forward(self, x, edge_index, batch):

summed_layer_outputs = []

for i in range(0, len(self.layers), 2):

x = self.layers[i](x, edge_index)

if i + 1 < len(self.layers):

x = F.relu(self.layers[i + 1](x))

summed_layer_outputs.append(global_add_pool(x, batch))

x = torch.cat(summed_layer_outputs, dim=-1)

x = F.relu(self.fc1(x))

x = self.dropout(x)

x = self.fc2(x)

return x

Python implementation of the GINModel. Type hints, keyword arguments and

comments were removed and variable names were shortened.
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class DGCNNModel(nn.Module):

def __init__(self, in_c, out_c, hidden_c, num_layers, dropout, k):

super().__init__()

self.k = k

self.dropout = nn.Dropout(dropout)

self.graph_conv_layers = nn.ModuleList()

# GRAPH CONVOLUTION

self.graph_conv_layers.append(DGCNNConv(in_c, hidden_c))

for _ in range(num_layers - 2):

self.graph_conv_layers.append(DGCNNConv(hidden_c, hidden_c))

self.graph_conv_layers.append(DGCNNConv(hidden_c, 1))

# SORT POOL

self.sort_pool = SortAggregation(self.k)

# 1-D CONVOLUTION

self.tot_lat_dim = (num_layers - 1) * hidden_c + 1

self.conv1D_1 = nn.Conv1d(1, 16, self.tot_lat_dim, self.tot_lat_dim)

self.max_pool = nn.MaxPool1d(2, 2)

self.conv1D_2 = nn.Conv1d(16, 32, 5, 1)

# DENSE LAYER

dense_input_dim = (int(self.k / 2) - 4) * 32

self.fc1 = nn.Linear(dense_input_dim, 128)

self.fc2 = nn.Linear(128, out_c)

def forward(self, x, edge_index, batch):

for layer in self.graph_conv_layers:

x = torch.tanh(layer(x, edge_index))

x = self.sort_pool(x, batch) # SortPool

padding_size = self.k * self.tot_lat_dim - x.size(1)

if padding_size > 0:

padding = torch.zeros((x.size(0), padding_size), device=x.device)

x = torch.cat((x, padding), dim=1)

x = torch.unsqueeze(x, dim=1)

x = F.relu(self.conv1D_1(x))

x = self.max_pool(x)

x = F.relu(self.conv1D_2(x))

x = x.view(x.size(0), -1)

x = F.relu(self.fc1(x))

x = self.dropout(x)

x = self.fc2(x)

return x

Python implementation of the DGCNNModel. Type hints, keyword arguments and

comments were removed and variable names were shortened.
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Computation Time

Model MUTAG PROTEINS NCI1 IMDB-B IMDB-M

E
x
p
e
ri
m
e
n
t GIN wNF 00 : 31 02 : 21 04 : 06 01 : 47 01 : 14

GIN woNF 00 : 35 01 : 52 04 : 39 01 : 57 02 : 23

DGCNN wNF 00 : 32 02 : 49 09 : 23 02 : 03 02 : 16
DGCNN woNF 00 : 39 04 : 48 12 : 09 03 : 41 05 : 00

MLP wNF 00 : 12 00 : 37 01 : 42 00 : 54 00 : 57
MLP woNF 00 : 09 00 : 30 02 : 00 00 : 48 00 : 48

Table B.2: Computation time for dataset per fold (in format hh:mm). For total
computation time: value · 100.
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Appendix C

Conclusion

Overview of GNN Models for Graph Classification

Model MUTAG PTC PROTEINS D&D NCI1 ENZYMES

GIN [27] 89.4± 5.6 64.6± 7.0 76.2± 2.8 - 82.7± 1.7 -
DGCNN [26] 85.83± 1.66 58.59± 2.47 75.54± 0.94 79.37± 0.94 74.44± 0.47 -
PSCN [25] 92.63± 4.21 60.00± 4.82 75.89± 2.76 77.12± 2.41 78.59± 1.89 -
DiffPool [22] - - 76.25 80.64 - 62.53
ECC [20] 89.44 - - 73.65 83.80 50.00
SAGPOOL [24] - - 70.04± 1.47 76.19± 0.94 74.18± 1.20 -
g-U-Nets [23] - - 77.68 82.43 - -
DEMO-Net [40] 81.4 57.2 70.8 - - 27.7
DGCNNII [39] 94.44 76.47± 2.94 82.88± 0.83 83.33± 1.29 80.32± 0.76 -
S2S-N2N-PP [41] 89.86± 1.10 64.54± 1.10 76.61± 0.50 - 83.72± 0.40 -
MA-GCNN [42] 93.89± 5.24 71.76± 6.33 79.35± 1.74 81.48± 1.03 81.77± 2.36 -
EigenPooling [43] - - 76.60 78.60 77.00 -
struc2vec [44] 88.28 - - 82.22 83.72 61.10
NEST [45] 91.85± 1.57 67.42± 1.83 76.54± 0.26 78.11± 0.36 81.59± 0.46 -
GCAPS-CNN [46] - 66.01± 5.91 76.40± 4.17 77.62± 4.99 82.72± 2.38 61.83
CapsGNN [47] 86.67± 6.88 - 76.28± 3.63 75.38± 4.17 78.35± 1.55 54.67

Table C.1: Results on chemical datasets with mean accuracy and standard deviation
as percentages. Best performance within a group in bold.

Model COLLAB IMDB-BINARY IMDB-MULTI REDDIT-BINARY REDDIT-MULTI

GIN [27] 80.2± 1.9 75.1± 5.1 52.3± 2.8 92.4± 2.5 57.5± 1.5
DGCNN [26] 73.76± 0.49 70.03± 0.86 47.83± 0.85 - -
DiffPool [22] 75.48 - - - -
g-U-Nets [23] 77.56 - - - -
GCAPS-CNN [46] 77.71± 2.51 71.69± 3.40 48.50± 4.10 87.61± 2.51 50.10± 1.72
CapsGNN [47] 79.62± 0.91 73.10± 4.83 50.27± 2.65 - 52.88± 1.48

Table C.2: Results on social datasets with mean accuracy and standard deviation
as percentages. Best performance within a group in bold.
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