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Abstract

This thesis presents VAGUE (Variational Autoencoder for Graph Understanding and Expan-
sion), a framework for synthetic graph data generation using Variational Autoencoders (VAEs).
The goal is to alleviate the scarcity of large-scale, high-quality graph datasets, particularly in
fields such as bioinformatics and chemistry.

VAGUE introduces a pipeline consisting of three main parts. A VAE for graph understand-
ing and embedding. A latent space interpolation approach to generate new graph samples,
which are then combined with existing data to augment training sets. And a downstream
evaluation suite to probe the effectiveness of these extended datasets.

The evaluation of the extended datasets demonstrates substantial improvements in per-
formance, even when only a small amount of synthetic data is added. This indicates that
interpolating in the latent space of graph VAEs can produce realistic and useful samples that
enhance model performance. The framework is designed to be general and model-agnostic
while incorporating node attributes.

The VAGUE pipeline provides a practical and extensible approach to graph dataset
augmentation and contributes to addressing the growing demand for rich, diverse graph data
in machine learning applications.
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1
Introduction

Machine learning and pattern recognition are fundamental tools for analyzing and understanding complex
data. Within this area, deep learning, a subfield of machine learning, has led to major breakthroughs in
domains such as natural language processing, computer vision, and bioinformatics. Similarly, pattern
recognition, including its graph-based subfield, aims to partially emulate human perception and cognition
while addressing the challenge of representing data in a structured and meaningful way. Combining these
approaches provides a powerful foundation for advancing the frontiers of modern computer science.

Traditional machine learning typically relies on data representations in Euclidean spaces, which are
well-suited for many applications. However, in domains such as social networks, molecular biology, or
transportation systems, data is more naturally represented as graphs. This has motivated a growing interest
in graph-based machine learning, which directly operates on graph structures, capturing both the attributes
of individual components and the relationships between them.

Graphs offer a excellent way to represent structured, relational data. Formally, a graph consists of a finite
set of nodes and edges, with optional node and edge attributes. Nodes represent entities, while edges
encode interactions or relationships between pairs of nodes. Graph-based representations introduce an
inductive bias that enables models to generalize better in scenarios where the data’s structure is essential.
They also allow for variable-sized, non-Euclidean input and support learning from both node features and
graph topology.

Despite their expressive power, graph representations come with challenges. Operations such as graph
matching [1] are computationally expensive, with the general graph edit distance [2] problem known to be
NP-complete. Many graph kernels [3] also suffer from high time complexity. Additionally, graph datasets,
particularly in specialized domains such as bioinformatics or chemistry, are often small. This data scarcity
can hinder the performance and generalization of deep learning models trained on graphs.
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CHAPTER 1. INTRODUCTION 5

Data augmentation is a well-established strategy for increasing dataset size and improving model general-
ization, especially in image and text domains. In image processing, for example, augmentation may involve
using cropped or mirrored versions of images during training. However, augmenting graph data is more
difficult due to the need to preserve semantic and structural properties. Nevertheless, graph augmentation
has been shown to improve the robustness and performance of graph-based models [4]. The increasing
interest in generative models such as Variational Autoencoders (VAEs) [5] and Generative Adversarial
Networks (GANs) [6] presents new opportunities to enrich graph datasets for downstream tasks such as
classification, link prediction, or regression.

Using VAEs for data generation is a well-explored approach [7], particularly because they provide
a principled framework for learning latent distributions and generating new samples. A VAE typically
consists of an encoder and decoder network that work together to map input data into a latent representation
and reconstruct it. When the dimensionality of the latent space is smaller than that of the original input, the
model is forced to retain only the most informative features. The regularized latent space of VAEs allows
for smooth interpolation, meaningful sampling, and the generation of new data from randomly sampled
latent vectors.

Previous work on data augmentation includes techniques in image [8] and text domains [9] as well as
more recent methods involving Large Language Models (LLMs) such as Grok [10], DeepSeek [11], and
GPT [12] for synthetic data generation [13]. In the graph domain, various augmentation strategies have
been explored [14], including specialized graph VAE architectures [15] and general-purpose VAEs used
for graph generation [16, 17].

In this thesis, we build upon the idea of using VAEs to augment graph datasets and evaluate the impact on
downstream tasks. Our contributions are threefold:

1. We implement a VAE with an auxiliary node label prediction head to facilitate latent space learning
on graphs.

2. We utilize a spherical linear interpolation sampling strategy for generating synthetic graphs from the
learned latent space.

3. We evaluate the effectiveness of the synthetic data by training a downstream classifier on an extended
dataset consisting of varying proportions of original and synthetic graphs.

These contributions are mirrored in the three parts of the Variational Autoencoder for Graph Understanding
and Expansion (VAGUE) pipeline, an overview over which is visualized in Figure 1.1:

VAE Training Synthetic Dataset
Generation

Downstream
Evaluation

Figure 1.1: Brief Overview over the VAGUE Pipeline
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This thesis is structured as follows:

Chapter 2 provides the necessary background on deep learning, graph-based pattern recognition, and
autoencoder architectures, with a particular focus on VAEs and their extensions to graph data. It also
surveys related work on data augmentation and generative modeling in the graph domain.

Chapter 3 introduces our proposed method, VAGUE, which leverages a VAE framework for graph data
augmentation. This chapter details the model architecture, including the encoder, decoder, and classification
head, and describes the sampling approach used to generate synthetic graphs. It also outlines the evaluation
setup using downstream tasks.

Chapter 4 presents our experimental setup and results. We evaluate the effectiveness of our augmentation
strategy both qualitatively and quantitatively, and include ablation studies to analyze individual components
of the model.

Finally, Chapter 5 concludes the thesis by summarizing key findings and discussing potential direc-
tions for future work. Supplementary and extended results can be found in Appendix A and additional
implementation details are documented in Appendix B.



2
Background and Prior Work

This chapter provides the theoretical foundation and situates this thesis within the context of existing
research. We begin by introducing the background of deep learning in Section 2.1. Section 2.2 explores
the domain of graph-based pattern recognition, including common representations and embeddings for
graphs, methods for graph classification, and the main challenges encountered in graph-based learning.
We then discuss autoencoders and variational autoencoders in Section 2.3, followed by their graph-specific
counterpart, the variational graph autoencoder, in Section 2.4. Finally, Section 2.5 reviews related work
on graph generation and graph-based data augmentation, highlighting how this thesis builds upon prior
approaches.

2.1 Deep Learning

Deep learning is a branch of machine learning that utilizes artificial neural networks composed of multiple
layers to identify patterns and learn representations directly from data. These representations are then used
to make predictions on previously unseen data. Inspired by the structure and behaviour of the human brain,
deep learning models are capable of automatically extracting features from raw input, thereby reducing the
need for manual feature engineering.

Advancements in deep learning have led to remarkable progress in various domains, including computer
vision, natural language processing, and biomedical research. A key factor behind the success of deep
learning models is the availability of large-scale datasets, which are essential for comprehensive training
and effective generalization [18]. The size and diversity of the training data strongly influence a model’s
performance, particularly its ability to make accurate predictions in real-world scenarios.
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Several prominent examples highlight the importance of data in deep learning:

Large Language Models: Models such as Grok [10], DeepSeek [11], and GPT [12], have shown
exceptional proficiency in understanding and generating human language. These models are trained on
extensive corpora of text data, including books, articles, and online sources such as Wikipedia. The
richness and variety of this data enables the models to produce context-aware responses and perform
complex language-related tasks, such as the cloze task [19].

Computer Vision Models: Image recognition systems used in applications like medical diagnostics [20]
and autonomous driving [21] rely heavily on large, often labeled, datasets. Convolutional Neural Networks
(CNNs) [22] achieve high accuracy in image classification and object detection when trained on datasets
such as ImageNet [23], which contains millions of annotated images. Without access to such comprehensive
datasets, these models would be significantly less effective during inference.

Speech Recognition Systems: Modern speech-to-text technologies, including those used in virtual
assistants, depend on deep learning techniques trained on vast datasets of spoken language [24]. Notable
examples of such speech-to-text models are OpenAI’s Whisper [25] or Mozilla’s DeepSpeech [26]. These
datasets must cover a wide range of accents, dialects, and background noise conditions to ensure the
robustness and adaptability of the models in diverse environments.

As deep learning continues to evolve, the demand for high-quality, large-scale datasets remains a central
challenge in improving model performance [27]. At the same time, ethical considerations, such as
data collection practices, bias mitigation, and the protection of user privacy, are becoming increasingly
important areas of focus in both academic research and practical applications.

2.2 Graph-Based Pattern Recognition

Graph-based pattern recognition is a subfield of machine learning that focuses on leveraging the expressive
power and structural flexibility of graphs. By representing entities as nodes and their interactions or
relationships as edges, graphs can effectively model complex dependencies across a wide range of domains.
This representation enables sophisticated analysis and learning tasks that go beyond traditional vector-based
approaches.

Typical tasks in graph-based pattern recognition include node classification [28], link prediction [29],
and graph classification [30]. This field has evolved significantly over time. Early research emphasized
methods such as graph matching [31] and graph clustering [32]. Later, the introduction of graph kernels [3]
allowed for more scalable comparisons between graphs by embedding them into a high-dimensional
feature space. More recently, advances in deep learning have led to the development of Graph Neural
Networks (GNNs) [33] and graph embedding techniques [34], which have shown strong performance in
various pattern recognition tasks.

2.2.1 Graph Representations and Embeddings

Graph embedding techniques aim to transform graph-structured data into continuous vector spaces. This
transformation allows for the use of conventional machine learning algorithms, which typically require
fixed-length input vectors and operate more naturally in Euclidean spaces. By learning embeddings that
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preserve the structural and relational information of the original graphs, these techniques enable effective
downstream learning.

There are two main approaches to graph embedding: shallow and deep learning-based methods.

Shallow methods, such as DeepWalk [35] and Node2Vec [36], use random walks to generate sequences
of nodes. These sequences are then processed by techniques like Word2Vec to produce low-dimensional
node embeddings. While these methods are computationally efficient and perform well on smaller graphs,
they could face limitations when applied to large or highly structured datasets.

Deep learning methods, such as Graph Convolutional Networks (GCNs) [37] and more general Graph
Neural Networks (GNNs) [38], offer a more powerful approach. These models learn node or graph-level
embeddings by recursively aggregating information from neighboring nodes. The hierarchical nature of
this message passing enables the models to capture both local and eventually global structural patterns
within the graph.

A central challenge in graph embedding lies in preserving the essential structural and semantic properties
of the original graph. Ensuring that the learned vector representations reflect the key relational patterns is
crucial for the success of downstream tasks such as classification, clustering, and link prediction.

2.2.2 Graph Classification

Graph classification is a fundamental task in machine learning on structured data, where the goal is to
assign labels to entire graphs based on their structural and attribute information. Applications range from
bioinformatics and chemistry to social network analysis and program verification. Several approaches have
been developed to tackle this problem, ranging from graph embedding techniques, often in combination
with general classifiers, to graph neural networks (e.g., GCN, GIN).

Among these approaches graph kernels have emerged as a powerful and interpretable class of models.
Graph kernels define similarity measures between graphs, effectively mapping them into an implicit
feature space without the need to explicitly compute feature vectors. This approach allows the use of
linear classifiers, such as Support Vector Machines (SVMs), on graph data without relying on deep neural
network architectures.

In the following subsections, we present a widely used graph kernel and a supervised learning classifier;
their combination serves as one strong example among many options of graph classification without deep
learning.

Weisfeiler-Lehman Kernel

The Weisfeiler-Lehman (WL) kernel [39] is among the most widely used and powerful graph kernels. It is
based on the one-dimensional Weisfeiler-Lehman test for graph isomorphism, which iteratively updates
node labels by aggregating the labels of neighboring nodes. This procedure captures increasing structural
information about the graph with each iteration.
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Formally, given a graph G = (V,E) with initial node labels X0(v), the node labels at iteration h are
updated as:

Xh(v) = hash (Xh−1(v), {Xh−1(u) | u ∈ N (v)})

where N (v) denotes the set of neighbors of node v, and the hash function ensures a unique encoding of
the combined label information. After H iterations, the graph is represented by a feature vector that counts
the occurrences of all node labels (i.e., subtree patterns) observed throughout the iterations:

ϕ(G) = [# occurrences of label σ in G over all h ∈ [0,H]]σ∈Σ

where Σ is the set of all unique labels encountered. These feature vectors can then be used with kernel-based
classifiers such as SVMs.

Support Vector Machines

Support Vector Machines (SVMs) [40] are supervised learning models commonly used for binary classifi-
cation. The objective is to find a hyperplane that best separates two classes by maximizing the margin
between them. Given a training dataset {(xi, yi)}ni=1 with binary labels yi ∈ {−1,+1}, the SVM solves
the following optimization problem:

min
w,b,ξ

1

2
∥w∥22 + C

n∑
i=1

ξi

subject to yi(w
⊤ϕ(xi) + b) ≥ 1− ξi, ξi ≥ 0, ∀i

Here, w is the weight vector, b is the bias term, ξi are slack variables to allow for misclassifications
(soft margin), and C is a regularization parameter controlling the trade-off between margin size and
classification error. The mapping ϕ(·) projects input data into a higher-dimensional feature space, typically
defined through a kernel function K(xi,xj) = ⟨ϕ(xi), ϕ(xj)⟩.

In the dual formulation, the decision function is expressed as:

f(x) = sign

(
n∑

i=1

αiyiK(xi,x) + b

)

Only a subset of the training points, known as support vectors, have non-zero Lagrange multipliers αi and
influence the position of the decision boundary.

2.2.3 Challenges in Graph-Based Learning

Despite recent advances, graph-based learning presents several challenges that impact performance,
generalization, and scalability.

A primary concern is computational complexity. Many graph operations, such as message passing in GNNs
or spectral transformations, scale poorly with increasing graph size. Operations involving adjacency matrix
manipulation or eigenvalue decomposition often become infeasible for large-scale graphs, necessitating
the use of approximation techniques or more efficient model architectures.
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Another critical issue is data sparsity and imbalance. Real-world graphs frequently exhibit a power-law
distribution [41], with a small number of nodes having many connections and a large number having very
few. Additionally, missing connections or underrepresented classes can result in biased learning outcomes,
where models fail to generalize to less common structures or patterns.

These limitations highlight the need for generative approaches that can address data sparsity and imbalance
without compromising scalability. One such approach involves the use of VAEs, which learn latent
representations of graph structures and can generate synthetic data to enhance model training. The
following section explores the role of VAEs in graph generation and augmentation in more detail.

2.3 Autoencoder and Variational Autoencoder

While graph embeddings offer effective low-dimensional representations of graph data, they are generally
designed to encode existing graphs. For data augmentation purposes, however, it is essential to generate
new, plausible graphs that preserve the structural characteristics of the original dataset.

Autoencoders [42] are a class of neural networks that learn efficient latent representations by encoding
input data into a lower-dimensional space and then reconstructing it. An autoencoder consists of an
encoder, which compresses the input into a latent vector, and a decoder, which attempts to reconstruct the
original input from this latent representation.

However, traditional autoencoders employ deterministic mappings and thus lack variability in their learned
representations. This limits their capacity to generate truly novel samples, as they are primarily focused on
reconstruction rather than generation.

Variational Autoencoders (VAEs) [5] address this limitation by providing a probabilistic framework for
both representation learning and data generation. Unlike standard autoencoders, VAEs learn a probabilistic
mapping between the observed data and a continuous latent space. This introduces variability into the
representations, enabling the generation of new samples that resemble the training data but are not identical
to it. This makes VAEs particularly suitable for generative tasks where the objective is not only to encode
original data but also to synthesize new examples.

The training objective of a VAE is to maximize the Evidence Lower Bound (ELBO), which serves as a
lower bound on the log-likelihood of the observed data [43]:

L(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]−DKL[qϕ(z|x) ∥ p(z)]

Here, x denotes the observed data, z is the latent variable, pθ(x|z) represents the decoder’s likelihood
function, qϕ(z|x) is the encoder’s approximate posterior, and p(z) is the prior over the latent variables,
typically assumed to be a standard normal distribution N (0, I). The term DKL denotes the Kullback-
Leibler divergence, which penalizes deviation of the learned posterior from the prior.

To encourage disentangled and more interpretable latent representations, a generalization of the VAE
known as the β-VAE [44] introduces a scaling factor β to the KL divergence term in the ELBO:

Lβ(θ, ϕ;x) = Eqϕ(z|x)[log pθ(x|z)]− βDKL[qϕ(z|x) ∥ p(z)]

This modification enables the model to trade off reconstruction accuracy against latent space regularization,
allowing more control over the generative properties of the model.
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2.4 Variational Graph Autoencoder

The Variational Graph Autoencoder (VGAE) [45] extends the VAE framework to graph-structured data.
In this setting, the encoder maps both the graph structure and node features into a latent space, and the
decoder reconstructs the graph, typically in the form of an adjacency matrix and optionally node labels.

The VGAE objective mirrors that of the standard VAE but is adapted to graphs. Let G = (V,E) denote a
graph, where V is the set of nodes and E the set of edges. The goal is to learn a variational distribution
qϕ(z|G) over latent graph representations. The ELBO for the VGAE is given by:

LV GAE(θ, ϕ;G) = Eqϕ(z|G)[log pθ(G|z)]−DKL[qϕ(z|G) ∥ p(z)]

Here, pθ(G|z) denotes the graph decoder’s likelihood, qϕ(z|G) is the approximate posterior inferred by
the graph encoder, and p(z) is typically chosen as a standard normal prior N (0, I).

The encoder learns a probabilistic mapping from the graph G to a latent representation z:

qϕ(z|G) = N (z;µϕ(G), σ2
ϕ(G))

The decoder then reconstructs the graph from the latent code:

pθ(G|z) =
∏

(u,v)∈V×V

pθ(euv|z)

Variational Graph Autoencoder models enable not only the reconstruction of observed graphs but also the
generation of new graphs sampled from the learned latent space, making them a valuable tool for data
augmentation and exploration of structural variations within graph datasets.

2.5 Related Work

Data augmentation is a widely used technique to improve model performance by artificially increasing
the diversity of training data through transformations or the generation of synthetic samples. In computer
vision, standard augmentation techniques include image rotation, scaling, and flipping, which help models
generalize by introducing controlled variations to the input data [8].

In contrast, data augmentation for graph-structured data poses unique challenges due to the non-Euclidean
nature and discrete topology of graphs. Conventional augmentation methods in this domain include
node feature masking, edge perturbation (e.g., adding or removing edges), and subgraph sampling [4].
These techniques aim to inject variability while maintaining the underlying structural semantics, thereby
enhancing the robustness and generalization capabilities of graph neural networks (GNNs). For instance,
adversarial edge dropping [46] has been shown to prevent overfitting by encouraging the model to rely on
more general patterns rather than memorizing specific connectivity details.

Variational Autoencoders have been successfully applied across various domains for data augmentation
tasks. In computer vision, VAEs are commonly used to generate synthetic images [8], expanding training
datasets in domains such as medical imaging, where acquiring labeled data is costly and time-consuming.
In natural language processing, VAEs have been utilized to generate diverse sentence structure [9],
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contributing to improvements in machine translation, text classification, and sentiment analysis. These
examples highlight VAEs’ strength in modeling complex data distributions and generating realistic,
high-fidelity samples.

The application of VAEs to graph data has also gained increasing attention. Notable early work includes
the contributions by Ma et al. [16] and Simonovsky et al. [17], who employed VAE-based architectures
for the generation of small graphs. These models were evaluated using standard metrics derived from the
ELBO, establishing a foundational framework for generative modeling in the graph domain.

Beyond VAEs, other generative models such as GANs have also been explored for data augmentation.
Techniques like the Synthetic Minority Over-sampling Technique (SMOTE) [47] address class imbalance
by generating synthetic samples for underrepresented classes, improving classification performance in
imbalanced datasets. While GANs have shown success in continuous domains such as images, their
adaptation to graphs remains more complex due to the discrete nature of graph structures.

Recent work has also examined the impact of different interpolation strategies within the latent space
of generative models. In particular, spherical linear interpolation (SLERP) [48] has been explored as a
method to better preserve the geometric properties of the latent manifold compared to standard linear
interpolation for graph data. Highlighting how interpolation choice can significantly influence the quality
and diversity of generated samples [49], especially in models like VAEs that rely on a structured latent
space.

In the context of graph-based learning, a line of work focuses specifically on data augmentation to
improve downstream task performance. Strategies include topological modifications, node or edge feature
perturbations, and the application of generative models to synthesize entire graphs. Recent developments,
such as the AutoGDA framework [50], propose automated augmentation strategies tailored to node
classification tasks. These approaches aim to alleviate challenges such as data scarcity and class imbalance
by learning optimal augmentation policies directly from the data.



3
VAGUE Method

This chapter outlines the methodology developed and used in this thesis. We start with a high-level
overview of the full pipeline in Section 3.1. Section 3.2 presents the core component of the pipeline, our
VAE, including details on the encoder, decoder, node label classifier, and the loss function used during
training. Section 3.3 describes the data augmentation procedure based on interpolations in latent space.
The final component, the downstream evaluation, is introduced in Section 3.4, where we compare the
performance of a deep learning-based classifier with a graph-based classifier to assess the quality of the
generated synthetic data.

3.1 Overview

The Variational Autoencoder for Graph Understanding and Expansion (VAGUE) pipeline comprises two
key components: a VAE for learning structured graph representations and a data augmentation strategy for
generating synthetic graphs. These synthetic samples are subsequently used to enhance the performance of
a downstream graph classification task.

14
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Figure 3.1: Overview of the VAGUE pipeline.

Figure 3.1 contains a overview over VAGUE. The overarching goal is to take an original dataset (yellow)
and generate additional synthetic datasets (light blue) which then improve the performance of a given
downstream task (light grey). The named components of VAE Training, Synthetic Dataset Generation and
Downstream Training are laid out in detail in the following sections.

3.2 Variational Autoencoder

Figure 3.2 provides a more detailed visualization of the VAE training process, and the following subsections
elaborate on each component of the model.

D
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Adj. Matrix Reconstruction +

KL Divergence +
Label Reconstruction

Encoder Decoder

Variational Autoencoder for Class y 
VAE Training

Graph Dataset of Class y

Figure 3.2: Overview of the Variational Autoencoder architecture used in VAGUE.

For each dataset and class, an individual VAE model is trained, enabling class-conditional generation
of synthetic graphs without relying on an auxiliary classifier. The VAE architecture follows a standard
encoder–decoder approach and is extended with a classifier to predict node labels.
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Let A ∈ {0, 1}n×n denote the adjacency matrix of a graph with n nodes, flattened to an input vector
a ∈ Rn2

, and let X ∈ {0, . . . , C}n denote the associated node label vector, where C refers to the number
of node classes.

In the following, we provide a detailed explanation of each component of the VAE used in this thesis.
A comprehensive overview and visualization of the complete VAE architecture is available in Appendix
Section B.1.

3.2.1 Encoder

The encoder maps the input vector a into a latent representation z. It consists of two fully connected layers
with batch normalization and ReLU activations:

h1 = ReLU(BN2(W2 · ReLU(BN1(W1a+ b1)) + b2))

The encoder outputs the parameters of a multivariate Gaussian distribution in the latent space:

µ = Wµh1 + bµ

log σ2 = Wlog σ2h1 + blog σ2

To enable backpropagation through the sampling step, the reparameterization trick is applied:

z = µ+ σ ⊙ ϵ, ϵ ∼ N (0, I)

The resulting vector z represents the learned latent encoding of the input A→ a, encapsulating the key
information the model derives from the input graph G.

3.2.2 Decoder

The decoder pθ(a | z) reconstructs the input adjacency matrix using three fully connected layers with
dropout, batch normalization, and ReLU activations:

â = σ(W5 · Drop(ReLU(BN(W4 · Drop(ReLU(BN(W3z + b3))) + b4))) + b5)

The output â ∈ [0, 1]n
2

is reshaped into Â ∈ [0, 1]n×n, representing the reconstructed adjacency matrix.

3.2.3 Node Label Classifier

A classifier is incorporated to predict the node labels based on the latent representation z:

X̂ = reshape(W7 · Drop(ReLU(W6z + b6)) + b7)

The output X̂ ∈ Rn×C contains the logits for each node.
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3.2.4 Loss Function

The total training loss for the VAE model combines three components: (1) a reconstruction loss for
the adjacency matrix entries using binary cross-entropy (BCE), (2) a Kullback–Leibler (KL) divergence
between the approximate posterior and a unit Gaussian prior, and (3) a classification loss for node label
prediction using cross-entropy:

Lrecon = BCE(â, a) = −
n2∑
i=1

(ai log âi + (1− ai) log(1− âi))

LKL = −1

2

dz∑
j=1

(
1 + log σ2

j − µ2
j − σ2

j

)

LCE = CrossEntropy(X̂,X) =

n∑
i=1

−x̂i,Xi
+ log

 C∑
j=1

ex̂i,j


Ltotal = Lrecon + β · LKL + α · LCE

The weighting parameter β is gradually annealed from 0.1 to 1.0 over the course of training, allowing
the model to initially prioritize structural reconstruction before emphasizing latent regularization. The
classification weight α is set equal to β, encouraging a similar progression of focus from structure to
semantics.

3.3 Data Augmentation

The goal of this step is to create a synthetic dataset that closely reflects the original data distribution.
Figure 3.3 highlights the process to obtain a new synthetic sample by interpolation between two existing
samples in latent space.

Graph Dataset of Class y Synthetic Graph Dataset of 
Class y

Variational Autoencoder for Class y 

Encoder Decoder

Slerp

Interpolated z

Synthetic Dataset Generation

Figure 3.3: Overview of the data augmentation step used in VAGUE
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We encode all samples from a given class y into their respective latent representations and interpolate
between pairs of different latent vectors zi, zj to obtain representations for synthetic samples:

synthetic sample zs = slerp(zi, zj , t), with i ̸= j and ∀t ∈ {0.25, 0.5, 0.75}

A simplified visualization of this approach can be found in Fig. 3.4.

Figure 3.4: Slerp used to obtain new
synthetic samples in purple

For interpolation, we apply spherical linear interpolation (slerp),
commonly used in computer graphics [48]:

slerp(p0, p1; t) =
sin[(1− t)Ω]

sinΩ
p0 +

sin[tΩ]

sinΩ
p1,

where p0 and p1 are the latent vectors of two original samples, and
Ω is the angle between them with cosΩ = p0 · p1. As Ω→ 0, this
expression converges to the standard linear interpolation.

Using a geodesic interpolation method instead of a linear one
allows for more natural sampling of latent representations. This
improves the quality of the generated data, as samples remain
closer to the true data distribution learned by the decoder.

Pseudo code for the generation of synthetic samples in a batched
manner can be found in Alg. 2 in Section B.2 of the appendix.

3.4 Downstream Evaluation Model

To evaluate the impact of our synthetic data, we train both a traditional graph-based classifier and a deep
learning-based evaluation model. This dual setup enables us to compare classical and modern learning
paradigms, ensuring that observed improvements are not biased toward a particular model family. The
graph-based method relies on kernel-based similarity and structural properties, whereas the deep learning
model assesses how well the synthetic data integrates into end-to-end representation learning. By analyzing
performance gains in both settings, we validate the usefulness and generality of our augmentation approach.

Percentage
Based

Dataset
Concatenation

Synthetic Graph Dataset

Adjacency
Matrix

Node
Labels

Graph
Label

Original Graph Dataset

Adjacency
Matrix

Node
Labels

Graph
Label

Downstream Model

Cross-Entropy
Loss

Predicted

Groundtruth y

A & X

Downstream Training

Figure 3.5: Overview of the downstream evaluation step in VAGUE
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Figure 3.5 higlights the combination of the original and synthetic dataset into an extended dataset as well
as the general classification training setup used to evaluate the quality of the data.

To construct the extended dataset, we add a specified number of synthetic graphs, balanced across all
classes:

# synthetic samples =
% of added data ·# original samples

# graph classes

Figure 3.6 shows this procedure of concatenating both original and synthetic datasets to gain extended
datasets with different levels of added synthetic data.

Figure 3.6: Combining original and synthetic samples to form the extended dataset

For example, in the case of the MUTAG dataset, adding 100% synthetic data results in 188 additional
samples. These are evenly split between the two classes: 94 graphs from the Synth. MUTAG Cl. 0 dataset
and 94 from the Synth. MUTAG Cl. 1 dataset. The resulting extended dataset would therefore contain
188 + 188 = 376 samples.

3.4.1 Deep Learning-Based Classifier

The deep learning model is a lightweight feedforward classifier. The input consists of the flattened
adjacency matrix a ∈ {0, 1}n×n concatenated with the node label vector X ∈ {1, . . . , C}n, resulting in
an input x of dimension n× n+ n.
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Flattened Adjacency Matrix a
(n× n)

Node Labels X
(n)

Concatenate (n× n+ n)

Linear + ReLU

BatchNorm1d

Dropout

Linear

Log Softmax
(Output: C classes)

Figure 3.7: The CLHeader classification head used to predict graph-level labels.

The classifier, displayed in Fig. 3.7, is composed of two fully connected layers, with batch normalization
and dropout applied between them to improve generalization and training stability. The resulting output of
this classification head is formally given as:

ŷ = log Softmax (W2 ·Dropout (BN (ReLU (W1 · x+ b1))) + b2)

3.4.2 Graph-Based Classifier

For the traditional graph-based method, we use the Weisfeiler-Lehman subtree kernel in combination with
a Support Vector Machine for graph classification. This method enables the use of kernel-based learning
algorithms on structured graph data by mapping graphs into a high-dimensional feature space defined by
subtree patterns.

After mapping graphs to feature vectors ϕ(G), we compute a kernel matrix K(Gi, Gj) = ⟨ϕ(Gi), ϕ(Gj)⟩
and train a SVM on it. The classifier finds a decision boundary that maximizes the margin between classes
in this space, enabling robust graph-level classification.



4
Experiments

This chapter presents the experimental evaluation of the proposed VAGUE framework and the resulting
synthetic datasets. Section 4.1 outlines the experimental setup, including details on dataset preprocessing
and preparation as well as the training configurations and model parameters. The results are reported in
Section 4.2, starting with a qualitative assessment of the generated graphs and latent space organization,
followed by a quantitative evaluation of downstream classification performance with and without data
augmentation. Finishing with ablation studies examining the influence of different augmentation strategies,
node label information, and variations of the β-VAE training regime on overall performance.

4.1 Setup

This section provides an overview of the experimental setup used to evaluate the extended datasets.
Subsection 4.1.1 details the choice of datasets, their relevant statistics, and the preprocessing steps applied
to prepare them for training and evaluation. Subsection 4.1.2 describes the model architecture, the selected
hyperparameters, and other training configurations used throughout the experiments.

4.1.1 Dataset Setup

The data used in this work is derived from the TU Dataset collection [51]. We select four datasets listed in
Tab. 4.1, each split into a fixed 85/15 training and testing partition. These datasets differ in several key
metrics, including total size, average number of edges, and, most importantly, the number of classes. This
diversity enables a meaningful comparison and evaluation of the synthetic data.

21
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Dataset Total Size Avg. # Nodes Avg. # Edges # Classes

MUTAG 188 17.93 19.79 2
PROTEINS 1113 39.06 72.82 2
NCI1 4110 29.87 32.30 2
ENZYMES 600 32.63 62.14 6

Table 4.1: Statistics of the benchmark graph datasets used in our experiments.

MUTAG, PROTEINS and NCI1 are all binary graph classification problems:

MUTAG [52] is a dataset of 188 mutagenic aromatic and heteroaromatic nitro compounds. Each graph
represents a molecule, with vertices denoting atoms and edges representing chemical bonds. The task
is to classify compounds based on their mutagenicity on the Salmonella enterica serovar Typhimurium
bacterium.

The PROTEINS [53] dataset contains graphs derived from protein structures. Nodes represent secondary
structure elements, and edges indicate neighborhood relations. Each graph is labeled as either an enzyme
or a non-enzyme in the context of protein function prediction.

NCI1 [54] is a subset of the National Cancer Institute’s screening data, comprising over 4,000 chemical
compounds screened for activity against non-small cell lung cancer. Each compound is represented as a
graph, with atoms as nodes and bonds as edges. The task is to classify compounds as active or inactive
based on their ability to inhibit cancer cell growth.

In contrast to these binary problems we also work with a multi-class graph classification problem like
ENZYMES, which allows us to evaluate the quality of the synthetic data on variety of slightly different
graphs and a more challenging task.

The ENZYMES [55] dataset consists of 600 protein graphs categorized into six enzyme classes, following
the Enzyme Commission classification. Each node corresponds to a secondary structure element, and
edges encode spatial closeness. In this dataset the task is to classify enzymes into one of the six top-level
EC classes, each representing a distinct type of catalyzed chemical reaction.

We preprocess each dataset by cropping or padding the adjacency matrices A ∈ [0, 1]n×n to a uniform size
of n = 100, such that A ∈ [0, 1]100×100 throughout this work. Similarly, node label vectors are resized or
padded from [n,C] to [100, C], where C denotes the number of node classes present in the dataset.

4.1.2 Model Setup

The VAE model is configured with max num nodes set to 100, this is corresponding to an accepted input
adjacency matrix of shape 100× 100 and a node label vector of length 100. This value was selected based
on an analysis of the original datasets, ensuring that over 90% of graphs are retained in their entirety to
minimize unnecessary truncation.

We further trained the VAE with a latent dimension of latent dim = 64 and a hidden layer size of
hidden dim = 1024. Training is conducted for a maximum of 1000 epochs, with early stopping enabled
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and evaluation occurring every 100 epochs. The batch size train batch size varies by dataset,
ranging from 16 to 256.

For the data augmentation step, we interpolate between the latent representations of pairwise distinct
original samples. Three interpolated samples are generated for each pair at t values of t ∈ {0.25, 0.5, 0.75}.

The downstream deep learning-based classifier, referred to as CLS-DS, uses the same input representation
and a hidden dimension of hidden dim = 64. In addition, we employ a graph kernel-based classifier
using the Weisfeiler-Lehman kernel with n iter = 3 iterations and a VertexHistogram kernel.

Pseudo code for training of both the VAE as well as the downstream classifier CLS-DS can be found in
Appendix B.2.

4.2 Results

In this section, we present and analyze the outcomes of our experiments to evaluate the performance of
the VAGUE framework. Subsection 4.2.1 explores qualitative results, showcasing visual and structural
properties of generated graphs. Subsection 4.2.2 follows with a quantitative evaluation, measuring the
downstream classification performance of models trained on datasets augmented using our method. Finally,
Subsection 4.2.3 provides ablation studies that examine the impact of individual components of our
approach, such as different augmentation strategies, the use of node labels, and the effect of varying the β
parameter in the VAE objective.

4.2.1 Qualitative Results

This subsection presents qualitative results evaluating the performance of different VAEs within the
VAGUE framework and visualizes some of their limitations. Specifically, we analyze two VAE models
trained on the NCI1 dataset, one for class 0 and one for class 1.

Graph reconstructions are generated by encoding an original graph Gi to obtain its latent representation zi
using the VAE encoder, followed by decoding zi with the decoder to produce the reconstructed graph Ĝi.
Additionally, we visualize the learned latent space by applying Principal Component Analysis (PCA) [56]
to reduce the dimensionality from 64 to the two leading components.
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Figure 4.1: Qualitative test set results of the VAE model trained on NCI1 Class 0.

Figure 4.1 displays samples from the NCI1 class 0 test set alongside their reconstructed counterparts.
While Graphs 2 and 4 are reconstructed accurately, others reveal minor discrepancies. For instance, Graphs
1 and 3 include an extra node that was not present in the original graph. Conversely, in Graph 5, node 21 is
missing in the reconstructed graph Ĝ, despite being present in the original input.

Figure 4.2: Visualization of the latent space learned by the VAE model for NCI1 Class 0. Blue: training
data; red: test data.

The latent space visualization in Fig. 4.2 illustrates the distribution of training and test samples. The
KL divergence objective encourages the latent distribution to approximate a standard Gaussian N (0, I)
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by minimizing µ → 0 and σ2 → 1. The zero-mean property is achieved, while the observed variance
greater than one may result from PCA transformation and the inherent variability of the learned latent
representations.

Figure 4.3: Qualitative test set results of the VAE model trained on NCI1 Class 1.

Similarly, Fig. 4.3 presents reconstructed samples from the NCI1 class 1 test set. In this case, all
reconstructed graphs Ĝ exhibit some level of deviation from the originals. These include incorrect edge
connections (e.g., Graph 1), mismatched self-loops (e.g., Graphs 2 and 3), and added or omitted nodes
(e.g., Graphs 4 and 5).

Figure 4.4: Visualization of the latent space learned by the VAE model for NCI1 Class 1. Blue: training
data; red: test data.
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The latent space corresponding to class 1, shown in Fig. 4.4, displays a qualitatively similar behavior.
However, the first principal component appears to capture more variance than the second, leading to a
distribution that is more elongated and less spherical.

Visualization of one Interpolation Step

To qualitatively assess the quality of the generated synthetic samples, we visualize an interpolation between
two graphs from the NCI1 Class 0 training dataset. Specifically, we encode both graphs, Gi and Gj , into
the latent space using the VAE encoder.

Following the same procedure used for generating synthetic samples, we interpolate between their latent
representations zi and zj at interpolation factors t ∈ {0.25, 0.5, 0.75}. The results are shown in Fig. 4.5,
where the original graphs Gi and Gj , along with their reconstructions Ĝi and Ĝj , are presented. Between
these, the reconstructed graphs corresponding to the interpolated latent vectors at each t value are displayed,
illustrating the smooth transition between the two original graphs.

Figure 4.5: Visualization of Interpolated Synthetic Graphs between two Original Graphs

In summary, these results serve as a qualitative proof of concept for the VAGUE pipeline and its potential
in data augmentation for graph-based learning tasks. Although there remains room for improvement in
the visual quality and structural consistency of the generated graphs, the current outputs are already of
sufficient quality to yield measurable benefits. This is shown by the improved performance of downstream
models trained on the augmented data, as will be demonstrated in the quantitative evaluation presented in
the following subsection.

4.2.2 Quantitative Results

In this subsection, we present a detailed quantitative evaluation of the proposed method. First we assess
the performance of deep learning-based downstream models on the augmented datasets. Next, we evaluate
the same datasets on a graph-based classifier and finally we present a visualization of the extended testset
to further explain the positive contribution of the extended dataset.
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Deep Learning-Based Evaluation

Table 4.2 presents the test accuracies of downstream classifier models trained on varying amounts of added
synthetic data, as introduced in Section 3.3. The amount of synthetic data ranges from 0% (using only the
original dataset) to 1500% (meaning the synthetic data was 15 times the size of the original dataset).

For each percentage, a separate classifier was trained using identical configurations, differing only in the
quantity of training data. The test set always comprised only the original test data to ensure consistency
and to avoid overrepresenting synthetic samples in the evaluation.

Table 4.2: Test Accuracies for Deep Learning (DS-CLS) Evaluation

Percentage of Added Synthetic Data

0% 100% 250% 500% 750% 1000% 1250% 1500%

MUTAG 82.1 92.9 89.3 92.9 89.3 92.9 85.7 89.3
PROTEINS 74.1 80.7 88.0 87.4 88.6 92.2 89.8 91.0
ENZYMES 46.7 73.3 78.9 74.4 78.9 73.3 82.2 81.1

D
at

as
et

NCI1 65.6 81.5 84.7 87.3 89.6 89.1 89.8 90.8

Figure 4.6 summarizes the results shown in Tab. 4.2, displaying performance across the four datasets with
increasing synthetic data:

Figure 4.6: Evaluation of DL Downstream Classifier

Incorporating synthetic data into the training set consistently leads to improved test accuracy across all
evaluated scenarios. While the inclusion of such data may introduce some outliers or less representa-
tive graphs, this variability promotes greater model robustness, which is advantageous for real-world
applications as the model is able to generalize more accurately to unseen data.
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The degree of improvement varies by dataset. This is partly due to differences in dataset size. For example,
MUTAG contains only 188 samples (with 160 used for training), whereas NCI1 contains 4110 samples
(3494 used for training). The negative effect of the added data to the NCI1 dataset is interesting as it does
not carry over to the test set. This interaction may stem from the fact that the NCI1 dataset contains more
variability and MUTAG is more tightly controlled in structure. Additionally, the average graph size differs:
MUTAG graphs have roughly 10 fewer nodes than those in NCI1. Combined with better VAE performance
on MUTAG, this may explain the different trends.

Notably, doubling the training data (100% added synthetic data) consistently yields higher test accuracy
compared to the baseline (0% added synthetic data). This improvement stems from increased data diversity
and reduced variance, allowing the downstream model to better estimate parameters and generalize more
effectively. Proving the success of our VAGUE approach in the field of generative graph-data augmentation.

Graph-Based Evaluation

To assess whether the improvements in downstream performance are consistent or merely coincidental,
we re-evaluate the same downstream task using a graph-based classification approach. Table 4.3 presents
the performance of a graph kernel classifier based on the Weisfeiler-Lehman kernel. These results further
support the contribution of synthetic data in enhancing model performance, consistent with the findings
from the deep learning-based evaluation.

Table 4.3: Test Accuracies for Graph-Based (Weisfeiler-Lehman) Evaluation

Percentage of Added Synthetic Data

0% 100% 250% 500% 750% 1000% 1250% 1500%

MUTAG 82.1 89.3 92.9 92.9 92.9 92.9 92.9 96.4
PROTEINS 77.1 83.1 87.4 88.0 89.2 90.4 90.4 91.6
ENZYMES 52.2 54.4 56.7 57.8 58.9 56.7 55.6 57.8

D
at

as
et

NCI1 84.3 84.9 86.9 89.8 * * * *

Due to the large size of the NCI1 dataset and hardware constraints, evaluations with ≥ 750% synthetic
data could not be completed and are marked with asterisks (*).

Figure 4.7 visualizes the results of Tab. 4.3 and provides a useful cross examination to the deep learning-
based results discussed above:
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Figure 4.7: Evaluation of Downstream Classifier using Weisfeiler-Lehman Kernel

Compared to deep learning models, the WL classifier appears more sensitive to the quality of training data
and less scalable with increasing dataset size. While deep learning models may better generalize from
high-variance data, WL-based methods rely more directly on exact structural similarities.

In the binary classification tasks, MUTAG, PROTEINS and NCI1, both the deep learning classifier and
WL kernel combined with SVM achieve strong performance because the decision boundary between two
classes is relatively simple and fixed feature representations are often sufficient. However, in multi-class
settings with more classes in the ENZYMES dataset, the deep learning model outperforms the WL kernel
+ SVM approach as it can learn task-specific, hierarchical features optimized end-to-end. This adaptability
enables it to capture more complex and subtle patterns necessary to distinguish between multiple classes,
whereas WL kernel features remain fixed and may lack the expressiveness required for fine-grained
multi-class discrimination.

Visualization of the Extended Dataset

To better understand the improvements in Fig. 4.6 and 4.7, we visualize the extended test set. Each graph
G or Ĝ is represented by flattening its adjacency matrix A ∈ [0, 1]n×n and concatenating it with the
corresponding node label vector, resulting in a vector representation x ∈ Zn2+n

≥0 . We compute pairwise
Euclidean distances between these vectors and display them in Fig. 4.8.

In Fig. 4.8, samples 0–165 correspond to the original PROTEINS test set. Indices 166–248 correspond to
synthetic samples of class 1, and the remainder belong to class 0.

The distances indicate that the synthetic graphs are similar in structure to the original graphs, corroborating
the earlier findings that the VAE successfully generated valid samples. This is consistent with the
performance gains observed in both deep learning and graph kernel-based classifiers.
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Figure 4.8: Euclidean Distance Between Graph Representations in Extended PROTEINS Test Set

The visual separation between synthetic class 1 and class 0 samples may be attributed to training separate
VAEs for each class, resulting in slightly different generative behavior due to different encoder–decoder
weights based on the different train sets.

Based on these findings, we conclude that incorporating synthetic data into existing datasets has a
significant and consistently positive impact on the performance of downstream models. The augmented
data complements the original samples, leading to improved model robustness across all dataset sizes, a
variety of graph structures, and different numbers of classes.

To better understand the source of these performance gains, the following subsection examines specific
components of the VAGUE pipeline in greater detail. We conduct ablation studies to isolate the contri-
butions of individual elements, providing further insight into the mechanisms that drive the observed
improvements.

4.2.3 Ablation Studies

This subsection presents a series of ablation studies designed to assess the individual contributions of
key components in the proposed approach. Specifically, we investigate the impact of different graph
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augmentation strategies, evaluate the role of node labels in classification performance, and examine the
influence of varying the β parameter in the β-Variational Autoencoder framework.

Augmentation Strategies

To assess the impact of different augmentation strategies, we generated new datasets based on the four
techniques introduced in Section 3.3:

random Sampling latent vectors randomly from the prior: zr ∼ N (0, I).

linear Linear interpolation between an encoded graph and a random latent vector:
zl = t · zi + (1− t) · zr, where zi = Encoder(Gi) and t ∈ {0.25, 0.5, 0.75, 1}.

slerp Spherical linear interpolation between an encoded graph and a random latent vector:
zs1 = slerp(zi, zr, t), with zi = Encoder(Gi) and t ∈ {0.25, 0.5, 0.75, 1}.

slerp2 Spherical linear interpolation between two distinct encoded graphs (default strategy in this
thesis):
zs2 = slerp(zi, zj , t), where zi, zj = Encoder(Gi),Encoder(Gj), with i ̸= j and
t ∈ {0.25, 0.5, 0.75}.

A simplified overview over these latent space-based interpolation techniques can be found in Fig. 4.9:

Figure 4.9: Simplified Visualization of Augmentation Strategies
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The performance of these augmentation strategies on the PROTEINS dataset is illustrated in Fig. 4.10.

Figure 4.10: Comparison of Augmentation Strategies on PROTEINS Dataset

Figure 4.10 displays the test accuracy for both the complete extended test set and the subset containing
only the original test data. As expected, the accuracy on the extended test set is higher, as shown by the
performance of CLS-DS on PROTEINSslerp2 compared to CLS-DS on PROTEINSslerp2 only original
test data. This discrepancy arises mainly because the synthetic data outweighs the original test samples
significantly.

Among the augmentation methods, the slerp2 strategy consistently outperforms linear and slerp, and
marginally surpasses the random baseline. This effect becomes even more pronounced when focusing
solely on the performance on the original test data, which is the primary focus of our evaluation. This
is because the original test samples may otherwise be overshadowed by the additional synthetic test
data. The performance gap is especially notable when using a relatively small amount of additional data,
such as 1000% of the original dataset. A likely reason for this advantage is the slerp2 method’s strong
reliance on actual data samples during interpolation, which better preserves structural properties and outlier
characteristics of the original dataset compared to sampling from the prior.

Node Labels

To investigate the role of node labels, we trained one model using the PROTEINS dataset with node labels
and another without. The results are presented in Fig. 4.11.
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Figure 4.11: Ablation Study on the Inclusion of Node Labels

As shown in Fig. 4.11, the inclusion of node labels significantly improves classification accuracy on the
original test set. However, the improvement diminishes when evaluating on the extended dataset. This
suggests that the predicted node labels in the synthetic graphs are not sufficiently informative to yield
consistent performance gains, and may even hinder the model’s accuracy when evaluating only the original
data.

β-Variational Autoencoder

In accordance with the β-VAE framework, we conducted an ablation study using three configurations on
the PROTEINS dataset:

CLS-DS The default model, in which β is annealed linearly from 0.1 to 1 during training:

β(e) = 0.1 +
(1− 0.1)

E − 1
· (e− 1)

where e is the current epoch and E is the total number of epochs.

CLS-DS2Beta A variation of the default model, where β increases from 0.1 to 2 over training.

CLS-DSNoBeta A baseline model with a fixed β = 1 throughout training.
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Figure 4.12: Ablation Study on Different β Values

Figure 4.12 shows that the β parameter had only a minor impact on model performance, possibly due to
the simplicity of the VAGUE architecture. Although the strategy of initially focusing on reconstruction
and gradually emphasizing the KL divergence (to enforce a Gaussian latent distribution) has theoretical
merit, the results did not show significant benefits.

It is important to note that the node label loss coefficient α in this implementation was directly dependent
on β, meaning that changes to β also influenced the training of node label prediction. Consequently,
variations in β indirectly affected final classification performance as well.



5
Conclusions and Future Work

In this work, we explored the use of VAEs for the generation of synthetic graph data. We proposed
and evaluated a framework that integrates novel latent space interpolation techniques and assessed the
impact of the generated data on downstream classification tasks. This work addresses the growing data
demands of deep learning models in combination with the challenges associated with collecting large-scale,
high-quality graph datasets. Challenges that are especially prevalent in domains such as bioinformatics,
social networks, and chemistry.

The proposed approach consists of three major components. First, a VAE is trained on a limited but high-
quality graph dataset. Second, the latent space of the trained VAE is sampled using a novel interpolation
technique to generate new synthetic graphs. Lastly, these synthetic graphs are combined with the original
data and the resulting extended dataset is evaluated on a downstream classifier. This evaluation was
conducted on different sized datasets, highlighting the potential for generalization, as well as graphs of
different structures.

The results are promising: even a relatively small amount of generated data leads to a substantial perfor-
mance boost in classification accuracy. This demonstrates that interpolating in the latent space of graph
VAEs can yield useful and realistic samples, which complement and enrich the original training data. Our
method offers a flexible, model-agnostic approach to dataset augmentation, applicable across a variety of
graph types.

However, the current work also has limitations. The architecture employed is relatively basic and was
designed with generalizability in mind rather than task-specific optimization. While this makes the
approach broadly applicable, it may not capture the full performance potential for specific graph domains.
Moreover, the current VAE implementation is limited in its ability to handle graphs of variable sizes and
does not leverage node attributes during encoding.

35
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Future research could address several promising directions.

A key area of improvement lies in the use or development of more advanced encoder and decoder
architectures akin to the VGAE, particularly those leveraging GNNs. Using a graph-based encoder could
enable the model to capture structural dependencies more effectively, improving the quality and diversity of
generated graphs. This would also allow the model to scale to larger graphs and potentially handle graphs
of varying sizes more naturally. Additionally, incorporating node features or labels during encoding could
enrich the latent representation and lead to more semantically meaningful generations. This would allow
the synthetic data to better mirror real-world distributions, especially in datasets where node attributes play
a critical role.

It would also be of great interest to test the proposed augmentation method on downstream tasks involving
deep learning models tailored for graphs, such as GNN-based classifiers. Evaluating the performance
improvements in such settings would provide deeper insights into the utility of the synthetic data for
modern graph learning pipelines.

Finally, applying this framework to real-world use cases would serve as a valuable validation of its
practical benefits. Such deployment could also reveal new challenges not encountered in proof-of-concept
experiments.

As a whole, this work presents a step towards dynamic graph dataset augmentation using VAEs. By
offering a flexible and extensible framework, it further opens the door to research in synthetic graph
data generation and its impact on downstream tasks. We believe this work contributes to bridging the
gap between data scarcity and the growing demand for high-quality graph data in the machine learning
community.



A
Full Evaluation Results

This appendix presents the complete evaluation results that support the analyses and conclusions discussed
in the main body of the thesis. It begins with the VAE-training evaluation results (Section A.1), which
report the final training and test losses, providing a concise summary of the model’s reconstruction
performance at the end of training. This is followed by the downstream evaluation results (Section A.2),
where the effectiveness of the generated graph data is assessed through the performance of classifiers
trained on both the original and augmented datasets. Lastly, ablation results are presented in more detail in
Section A.3 to analyze the contribution of key components within the VAGUE pipeline.

A.1 VAE-training Evaluation Results

Table A.1 gives us insight into the training and test accuracies of all VAE models which were trained
following the description in Sections 3.2 and 4.1.2.

37



APPENDIX A. FULL EVALUATION RESULTS 38

Table A.1: Train and Test VAE Losses for Different Models

Model Train Loss Test Loss

EncModelCl0 ENZYMES 28.08 45.46
EncModelCl1 ENZYMES 32.56 29.89
EncModelCl2 ENZYMES 31.08 40.40
EncModelCl3 ENZYMES 36.28 44.54
EncModelCl4 ENZYMES 37.67 24.26
EncModelCl5 ENZYMES 25.27 32.96
EncModelCl0 MUTAG 3.24 1.75
EncModelCl1 MUTAG 9.54 5.06
EncModelCl0 NCI1 36.18 157.01
EncModelCl1 NCI1 40.44 213.34
EncModelCl0 PROTEINS 51.13 362.35
EncModelCl1 PROTEINS 38.01 96.47

As is visible in the Tab. A.1 the model still has some room for improvement as there are outliers in
performance but the results are satisfactory for the VAGUE usecase. The difference in performance
between two models on the same dataset but different classes stems from the imbalance of the original
dataset in respect to the amounts of samples per class as the class distribution is not always even.

A.2 Downstream Evaluation Results

The following Subsection contains all main results of the VAGUE pipeline discussed in Sections 4.2.1
and 4.2.2 in Tab. A.2.

Table A.2 documents all results for the main contribution of the VAGUE pipeline. The qualitative
Evaluation of these results can be found in Section 4.2.1 and the associated quantitative results can be
found in Section 4.2.2.
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Table A.2: Train and Test Accuracies for Deep Learning (DL) and Graph-based WL Evaluation on DS-CLS

Dataset Added Data (%) DL Train DL Test WL Train WL Test

0 99.38 82.14 100.0 82.14
100 100.0 92.86 99.69 89.29
250 99.82 89.29 99.64 92.86
500 99.79 92.86 99.38 92.86MUTAG 750 99.78 89.29 99.34 92.86
1000 99.83 92.86 99.66 92.86
1250 99.86 85.71 99.68 92.86
1500 99.88 89.29 99.77 96.43

0 100.0 74.10 99.79 77.11
100 99.95 80.72 99.89 83.13
250 99.91 87.95 99.94 87.35
500 99.95 87.35 99.91 87.95PROTEINS 750 99.90 88.55 99.86 89.16
1000 99.99 92.17 99.88 90.36
1250 99.86 89.76 99.89 90.36
1500 99.91 90.96 99.89 91.57

0 100.0 46.67 100.0 52.22
100 100.0 73.33 100.0 54.44
250 99.94 78.89 100.0 56.67
500 99.74 74.44 100.0 57.78ENZYMES 750 99.82 78.89 100.0 58.89
1000 99.95 73.33 100.0 56.67
1250 99.74 82.22 100.0 55.56
1500 99.83 81.11 100.0 57.78

0 99.71 65.75 99.77 84.25
100 98.84 81.49 99.80 84.90
250 97.47 84.74 99.57 86.85
500 96.84 87.34 99.41 89.77NCI1 750 97.10 89.61 * *
1000 96.22 89.12 * *
1250 95.05 89.77 * *
1500 96.22 90.75 * *

A.3 Ablation Results

This subsection contains the results of the ablation studies discussed in Section 4.2.3 and documented in
Tab. A.3, A.4 and A.5 respectively.
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Table A.3: Train and Test Accuracies for Deep Learning-Based Augmentation Strategies Ablation on PROTEINS
Dataset

Percentage of Added Synthetic Data

CLS-DS on: 0% 100% 500% 1000% 2500% 5000% 7500%

Train Acc. 100.00 99.79 99.91 99.78 99.95 99.98 99.96PROTEINSrandom Test Acc. 73.49 85.24 93.17 94.80 96.78 97.76 98.30

Train Acc. 100.00 99.95 99.96 99.90 99.99 99.99 99.99PROTEINSlinear Test Acc. 70.48 84.64 95.78 97.54 98.80 99.07 99.27

Train Acc. 100.00 99.74 99.84 99.77 99.82 99.77 99.74PROTEINSslerp Test Acc. 70.48 86.14 94.48 96.50 97.29 98.49 98.58

Train Acc. 99.89 99.95 99.96 99.96 99.89 99.90 99.83PROTEINSslerp2 Test Acc. 71.69 91.57 96.59 97.37 98.77 99.14 99.33

PROTEINSrandom Train Acc. 100.00 99.79 99.91 99.78 99.95 99.98 99.96
(original test data) Test Acc. 73.49 78.92 83.13 87.35 89.16 91.57 92.17

PROTEINSlinear Train Acc. 100.00 99.95 99.96 99.90 99.99 99.99 99.99
(original test data) Test Acc. 70.48 72.89 84.94 87.95 90.36 89.16 90.96

PROTEINSslerp Train Acc. 100.00 99.74 99.84 99.77 99.82 99.77 99.74
(original test data) Test Acc. 70.48 81.33 89.16 90.36 90.96 90.96 89.16

PROTEINSslerp2 Train Acc. 99.89 99.95 99.96 99.96 99.89 99.90 99.83
(original test data) Test Acc. 71.69 85.54 89.16 90.96 91.57 91.57 92.77

Table A.3 contains the results of the Ablation Study on the different interpolation strategies for latent
space data augmentation. As previous in this work we introduce different percentages of added synthetic
data to the original dataset and evaluate how the downstream classifier performed on different types of
augmented data. This means the strategy for the latent space interpolation was the only changing factor in
this evaluation as described in Section 4.2.3.

Table A.4: Train and Test Accuracies for Deep Learning-Based Node Labels Ablation on PROTEINS Dataset

Percentage of Added Synthetic Data

0% 100% 250% 500% 750% 1000% 12500% 1500%

Train Acc. 99.68 99.84 99.88 99.84 99.88 99.82 99.81 99.85CLS-DS-nonodes Test Acc. 67.47 89.46 93.28 96.79 97.59 97.59 97.77 97.89

CLS-DS-nonodes Train Acc. 99.68 99.84 99.88 99.84 99.88 99.82 99.81 99.85
(original test data) Test Acc. 67.47 82.53 86.14 92.17 90.96 89.16 88.55 90.96

Train Acc. 100.0 99.89 99.94 99.89 99.90 99.96 99.97 99.97CLS-DS Test Acc. 72.89 90.66 95.00 97.69 97.30 98.03 98.12 98.42

CLS-DS Train Acc. 100.0 99.89 99.94 99.89 99.90 99.96 99.97 99.97
(original test data) Test Acc. 72.89 83.73 87.95 90.36 89.16 89.76 89.16 89.76

Table A.4 documents the results of the node label ablation where the nonodes dataset was built from a
VAE model which did not use node labels when decoding latent space vectors as well as a downstream
classifier which ignored any node labels (if present) entirely in the prediction process. The (original test
data) results mark the evaluation on only the original data test set while the other results take the entire
test partition of the extended dataset as the test set.
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Table A.5: Train and Test Accuracies for Deep Learning–Based β-VAE Ablation on PROTEINS Variants

Percentage of Added Synthetic Data

0% 100% 250% 500% 750% 1000% 1250% 1500%

Train Acc. 100.00 99.89 99.94 99.89 99.90 99.96 99.97 99.97CLS-DS on PROTEINS Test Acc. 72.89 90.66 95.00 97.69 97.30 98.03 98.12 98.42

CLS-DS on PROTEINS Train Acc. 100.00 99.89 99.94 99.89 99.90 99.96 99.97 99.97
(original test data) Test Acc. 72.89 83.73 87.95 90.36 89.16 89.76 89.16 89.76

Train Acc. 99.89 99.89 99.94 99.95 99.80 99.94 99.94 99.87CLS-DS-2Beta on PROTEINS2Beta Test Acc. 73.49 88.55 93.45 95.88 97.30 97.54 98.30 98.12

CLS-DS on PROTEINS2Beta Train Acc. 99.89 99.89 99.94 99.95 99.80 99.94 99.94 99.87
(original test data) Test Acc. 73.49 80.72 83.73 87.35 87.35 90.36 93.98 88.55

Train Acc. 99.79 100.00 99.94 99.93 99.90 99.89 99.92 99.95CLS-DS-NoBeta on PROTEINSNoBeta Test Acc. 74.70 90.36 94.48 96.99 97.45 97.26 98.04 98.31

CLS-DS-NoBeta on PROTEINSNoBeta Train Acc. 99.79 100.00 99.94 99.93 99.90 99.89 99.92 99.95
(original test data) Test Acc. 74.70 83.73 87.35 91.57 89.16 90.36 90.36 92.17

Table A.5 documents the results of the β-VAE ablation study. The synthetic dataset created originated
from different VAE decoders. Each VAE was trained with a different value for β in the loss term. Parallel
to the approach above the (original test data) results mark the evaluation on only the original data test set
while the other results take the entire test partition of the extended dataset as the test set. This Ablation can
be found in Section 4.2.3.



B
Additional Implementation Details

This chapter provides extended visualizations of the Variational Autoencoder (Section B.1) and pseudo
code outlining the implementation of key components (Section B.2). These supplementary elements aim
to offer deeper insights and enhance the reproducibility and transparency of the presented work.

B.1 Extended Visualization of VAE

The following section contains a extended visualization of the VAE model architecture as introduced in
Section 3.2.
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Figure B.1: Visualization of Message Passing in our Version of the VAE

Figure B.1 contains a visualization of the model architecture used for the VAE in VAGUE. The model is
based on a simple encoder/decoder architecture with an auxiliary node label classifier to predict the node
labels.
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B.2 Pseudo Code of Major Parts

The following section contains the code of the three main parts of VAGUE as introduced in Section 3.1.

Starting with Alg. 1 highlighting the training of the first step in the VAGUE pipeline (Section 3.2). Followed
by Alg. 2 documenting the data augmentation in latent space using slerp as detailed in Section 3.3. Finishing
with Alg. 3 capturing the standard training approach of the deep learning-based downstream models used
for the dataset evaluation as introduced in Section 3.4.

Algorithm 1 Training loop for one epoch in VAE training

1: function TRAIN ONE EPOCH(model, dataloader, optimizer, loss fn, epoch, total epoch)
2: model.eval()
3: total loss← 0
4: β ← min(1.0, 0.1 + 0.9 · epoch−1

total epochs )
5: α← β
6: for each (data batch, node labels batch) in dataloader do
7: Move data to device
8: optimizer.zero grad()
9: (recon adj, label pred, µ, logvar)← model(data batch)

10: loss← loss fn(recon adj, data batch, µ, logvar, label pred, node labels batch, α, β)
11: loss.backward()
12: Clip gradients
13: optimizer.step()
14: total loss← total loss + loss
15: return total loss / dataset size

Algorithm 1 contains minor amendments to the standard training loop of any deep learning model. Lines 4
and 5 highlight the implementation of the process to anneal both β as well as α parameters of the loss
function. Additionially line 12 notes the use of gradient clipping and lines 3, 14 and 15 allow for average
loss reporting over the entire dataset.

Algorithm 2 encapsulates the process of sampling the latent space between two samples in a batched
manner using slerp as described in Section 3.3. For this we encode original datasamples to get their latent
representation which is processed in lines 9 and 10. Lines 11, 12 and 13 allow for pair wise distinct
interpolations by setting up a upper triangular matrix with a 0 diagnoal. In line 14 through 18 we then
interpolate between two latent vectors and get a new vector in latent space. This new latent vector is then
decoded to a graph and added to the synthetic dataset in lines 19 through 23.

The training of the downstream described in Alg. 3 is straight forward and does not deviate from the
standard model training process. The model used is described in Section 3.4 and the results can be found
in Chapter 4.



APPENDIX B. ADDITIONAL IMPLEMENTATION DETAILS 45

Algorithm 2 Create New Samples via SLERP

1: function CREATENEWSAMPLESSLERP2(vae, encoder data, data, device, batchsize, threshhold←
0.5)

2: data new← CustomDataset()
3: vae.eval()
4: dataloader← DataLoader(data, batch size = int(batchsize), shuffle = True, drop last = True)
5: with no gradient:
6: for each (batch, node labels, graph labels) in dataloader do
7: Move data to device
8: x← reshape(batch, [−1, n× n])
9: (µ, logvar)← vae.encode(x)

10: z ← vae.reparameterize(µ, logvar)
11: (i idx, j idx)← torch.triu indices(n, n, offset = 1)
12: z i all← z[i idx]
13: z j all← z[j idx]
14: for each t in linspace(0, 1, 4, endpoint = False) do
15: if t == 0 then
16: continue //Avoids adding original datapoints to synthetic dataset
17: else
18: z interp← slerp(t, z i all, z j all)

19: recon adj← vae.decode(z interp)
20: node labels← vae.classifier(z interp).view(−1, n, num nlabels).argmax(dim = −1)
21: recon adj← (recon adj.squeeze() ≥ threshhold).float()
22: graph labels← tensor of ones with shape (recon adj.size(0)) × encoder data[”class nr”]
23: data new.add entry(recon adj.cpu(), node labels.cpu(), graph labels)
24: return data new

Algorithm 3 Training loop for one epoch in classifier training

1: function TRAINONEEPOCH(cls model, optimizer, dataloader, loss fn)
2: cls model.train()
3: total loss← 0
4: for each (adj matrices, node labels, graph label) in dataloader do
5: Move data to device
6: adj matrices← reshape(adj matrices, [adj matrices.shape[0], -1])
7: optimizer.zero grad()
8: pred← cls model(adj matrices, node labels)
9: loss← loss fn(pred, graph label)

10: loss.backward()
11: optimizer.step()
12: total loss← total loss + loss.item()
13: return total loss / len(dataloader.dataset)
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