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Abstract

This thesis investigates new methods of graph classification with the help of graph neural
networks. Based on earlier solutions, it presents a broad spectrum of possible designs and
compares them between each other. This helps with finding directions in which to start deeper
investigations. The focus of this thesis lies on the feasability and the accuracy of the presented
solutions.

In a first step, this research evaluates different designs of graph neural networks by
comparing them to a reference system. Then it describes the development of a kernel for a
support vector machine. Different similarity measures for the support vector machine are
explored and compared to the previously developed systems.

The results obtained by this research indicate that all approaches presented in this thesis
lead to working solutions. Algorithms with significantly worse performance are not discussed
in detail. Given the scope of implemented solutions, there is a solution for every dataset that
outperforms the reference system. However, there is no version of the support vector machine
classification that outperformes the reference system for all datasets, indicating that better
solutions could still be developed with more research.

Overall, this thesis gives a deep insight into the possibilities that arise from using graph
neural networks for classification tasks. Thus providing valuable information about the
direction in which future work can go.
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1
Introduction

The field of artificial intelligence has developed over a long period of time and therefore encompasses a
broad spectrum of technologies. Especially with recent advancements through the use of neural networks,
more research is conducted in this area, thus further broadening the field. While there are many ways to
group algorithms into subfields of artificial intelligence, avoiding any overlap between the fields is difficult.
This thesis remains within the scope of machine learning.

Artificial Intelligence

Natural Language Processing Machine Learning

Reinorcement Learning Pattern Recognition

Supervised Learning

Regression Classification

k-NN SVM Neural Networks

Unsupervised Learning

Generative Algorithms

Figure 1.1: Overviev of the used technology in the context of artificial intelligence.
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CHAPTER 1. INTRODUCTION 4

Figure 1.1 indicates where the topics of this thesis lie within the larger scope of artificial intelligence.
Each level of the tree could be expanded on more, but only some areas are shown as examples. The topics
relevant for this thesis are presented in black, while the other topics are in light gray. There are multiple
ways in which all the subcategories could be arranged and divided, with no objectively correct answer.
While machine learning is in itself a subcategory of artificial intelligence, machine learning techniques are
also used in other fields of artificial intelligence. The field of pattern recognition is here divided based on
the amount of information that the algorithm is given during training. This thesis uses supervised learning
to do classification, meaning that each entry in the training set is labeled with its corresponding class.
What Figure 1.1 does not fully cover is the form in which the data is presented to the algorithm. Including
that context into the division of pattern recognition provides jet another view.

When focusing on the context of the data, pattern recognition can be divided into statistical pattern
recognition and structural pattern recognition. The former relies on the representation of data in the form
of feature-vectors, while the latter keeps more information about the structure of the data through the
use of graphs. The field of graph-based pattern recognition has itself a long history and can not only be
divided into different categories, but also into different eras. In the first era, graph matching and graph
clustering algorithms were explored for different purposes. Graph kernels were developed in a second
era to facilitate the use of a broader spectrum of known algorithms for graph-based data. In the third era,
algorithms using neural networks were adapted to structural pattern recognition.

Altough this thesis mainly focuses on structural pattern recognition, some algorithms can be explained
more easily in the domain of statistical pattern recognition. In fact, most algorithms used in this thesis
have first been developed in the domain of statistical pattern recognition. In recent years advancements
in neural networks have opened up new possibilities for the field of pattern recognition. There is also a
large potential benefit in combining neural networks with more traditional algorithms, wich this thesis
attempts. A previous attempt at this combination, done by Dobler and Riesen [7] on this topic, explores
the use of a graph isomorphism network (GIN) to estimate the graph edit distance (GED) and using the
k-nearest-neighbor (k-NN) algorithm for classification.

The primary goal of this thesis is to broaden the spectrum of algorithms used for graph classification.
On the side of graph neural networks (GNNs), there are other options that can be explored besides GIN.
In this thesis, graph attention networks (GATs) and graph convolutional networks (GCNs) are investigated
and compared to GIN. What all these network designs have in common is that they pass information across
a graph. The way their weights are trained and mapped to the graphs is where the main difference lies.
Concerning classification algorithms, support vector machines (SVMs) are the only candidates besides
k-NN that are considered in this thesis. The connection between GNNs and SVMs involves enough
decisions that a wide range of different solutions can be developed. One benefit of the use of SVMs is
that it provides a solution without the calculation of the GED. While the computational complexity of
the system is still dominated by the matching of nodes between graphs, this approach could yield more
performant solutions in practice. The conclusions drawn from the comparisons in this thesis may be
helpful for future work, where these algorithms could be refined or even combined.

There are considerable challenges in combinig methods such as GNNs and SVMs. Given that multiple
GNN architectures are tested, a well-performing version of each GNN has to be obtained, which requires
computationally expensive training. To ensure generalization, the final solutions have to be compared
based on multiple datasets. Testing solutions on different datasets can lead to inconclusive results, if
one GNN architecture performs best on a dataset A, while another performes best on a dataset B. This
statement can also be extended to the exact design of each architecture. Small design choices in the
GNNs may vary, if they are optimized based on one dataset instead of another. Given the existing solution



CHAPTER 1. INTRODUCTION 5

using GIN and k-NN, some statement can be made for the performance of GAT and GCN. This makes it
easier to see if a change in the model improved it or not. For the classification using a SVM, there is an
inherent lack of knowledge concerning its potential. In addition to that, the space of design choices that
can be made is very large. Datasets need to be picked carefully because, due to random variance in the
results, good designs may be overlooked in some cases. It is also possible to assume a design to be good
because it randomly performs well under certain conditions. Therefore, it can help to make the choice of
datasets based on the performance of the reference systems. While testing datasets where the reference
system performes badly can give valuable insight into a new solutions potential, testing datasets where the
reference system performs well can help eliminate bad solutions early.

Testing different designs of GNNs helps future investigations in this field. Even if all designs had
similar performance, that would be relevant information, indicating that the first choice of a specific GNN
is not as critical. One idea behind using a SVM, rather than k-NN-Classification, is to use the kernel trick
to obtain a different separation of datapoints, which could make badly separable datasets easier to separate.
While some temporal efficiency gain may be expected from the SVM-Classification, finding solutions that
worked proved to provide a large enough scope for this thesis without the requirement of filtering them for
time efficiency. Instead, a deeper investigation into the nature of the datasets is presented. This could help
with deciding which kinds of datasets show the highest potential for an accurate classification.

The next chapter introduces the theoretical background required for the solution. It begins with the
description of the classification problem in the domain of statistical pattern recognition, before moving
on to its application in the domain of structural pattern recognition which includes the description of the
reference system. In Chapter 3 some ideas behind the existing solution developed by Dobler and Riesen
[7] are presented. That solution is based on a GIN and classifies graphs using the k-NN algorithm with
the GED as a distance metric. After that, the developed GNNs are presented in detail, which includes the
GED estimation process by which the different GNN designs are first evaluated. All the SVM designs
with different similarity measures are presented at the end of the chapter. Chapter 4 beginns with an
introduction to the datasets used in this thesis and the reasoning behind those choices. It then presents the
results obtained by the GNN-GED estimations and compares them between each other, as well as to the
reference system. That chapter also includes some intermediate results that are necessary for the validation
of the solutions metaparameters. The comparison of the accuracy of all the developed systems is presented,
before some visual investigations into the reasons for misclassifications conclude that chapter. Finally, in
Chapter 5 some conclusions about the performance of the solutions are drawn, before laying out possible
paths for future work.



2
Theory and Related Work

This chapter provides an overview of all the theory required to develop the new solution, as well as some
insights into the related work which this thesis is based on. The chapter is divided into two sections.
Section 2.1 introduces the general concept of classification with some classical algorithms in the domain
of statistical pattern recognition. In Section 2.2 these concepts are adapted to structural pattern recognition
with algorithms that are adapted to graphs.

2.1 Classification of Feature Vectors
This section introduces the task of classification, together with some algorithms that solve this task. To
obtain a good basic understanding, the focus of this section remains within the realm of statistical pattern
recognition [7]. This means that the data is represented using n-dimensional feature vectors instead of
graphs.

2.1.1 General Procedure
Classification is only one of many tasks that are typical in machine learning. The problem, as described by
Patrick and Fischer [16], is a special case of supervised discrimination. Given a feature vector x from a set
of M classes denoted ω1, ..., ωM , the goal is to assign x to the correct class ωi. If x belongs to the class
ωi, then there is a probability density function f(x, ωi) that is assumed fixed, continuous and unknown,
while the probability Pi that x belongs to class ωi is known. The model that solves this problem can be
described as a learner that produces a hypothesis h, as is done by de Lacerda et al. [5]. This hypothesis is
generated by adjusting a set of parameters λ based on a training set D. This set consists of l samples from
the original dataset of size n. For each sample vector x ∈ D, there is also a label y which corresponds to
the class ωi of x. The parameters λ are then tuned to associate that vector x with its label y. To evaluate
the model’s performace, the test set consisting of n− l sampels, that are not in the training set, is given
to the model. After predicting the labels of all vectors in the test set, the simple accuracy measure can
be calculated by dividing the number of correct labels by n − l, the number of samples in the test set.
In practice, more elaborate techniques to assess performance are used, that will be described later. One
problem of simply optimizing for one specific training set is that the model can be overfitted to the training

6
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set, thus not adapting well to new data. Another problem is the initialization of parameters λ0, which could
rely on an extensive manual search.

There are many approaches to solving these problems, but for this thesis one approach suffices. As
suggested by Kohavi [13], some improvements on performance can be made using crossvalidation. In
this procedure, the training set is split again into k mutually exclusive sets denoted D1, ..., Dk. The model
is then trained on D \Di and its performance is evaluated on Di. This process is then repeated k times,
leaving out each Di at some point. To evaluate the performance one calculates the average accuracy over
all repetitions. Using this technique for a set of predefined initial parameter values yields values that work
well for new data. Finally, the model is tested on the test set with the best parameters, giving a result that
allows it to be compared to other models.

A lot of different algorithms can be used to do classification. Giving an introduction into all popular
algorithms would be out of the scope for this thesis. Hence, only the algorithms that are relevant for this
thesis are presented in the next sections.

2.1.2 Traditional Algorithms
The first algorithm to be introduced is the k-nearest-neighbor classification (k-NN-Classification). Patrick
and Fischer [16] have a good description for it. The requirements for this algorithm are a parameter k ∈ N
and a distance metric, that is defined on the vectorspace of the samples. Given a vector x in the test set,
k-NN-Classificaiton considers the k vectors x0, ..., xk in the training set that are nearest to x denoted N(x).
The decision is then based on the labels of the majority of vectors in N(x). Or more precisely, the decision
hk(x) can be described as follows:

hk(x) = max
j∈M

∑
xi∈N(x)

δj(yi) (2.1)

where M is the set of classes (e.g. {0, 1}), δj is the kronecker delta symbol corresponding to the class
j and yi is the label of xi. To break ties for datasets with two classes, k can be chosen as an odd number.
If there are more classes, the assigned class can be arbitrary. In a practical implementation, this means that
the decision is based on the ordering of the data.

Figure 2.1: Example of a classification problem that can be solved with k-NN-Classification.
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Figure 2.1 shows an example of k-NN-Classification. Here, the two classes in the training set are
represented in black and gray respectively, and the point in the test set is represented in red.

Applying k-NN-Classification for k = 3 with the euclidian distance as the distance metric yields the
points at (4, 5, gray), (6, 4, black), and (7, 5, black) as the nearest neighbors. Because two out of three
neighbors are labeled black, the tested point is classified as part of the black set. Intuitively this looks like
a reasonable classification, but the actual class of the red point could still be gray.

One can use cross validation to optimize the parameter k by trying out a set of integers, for example
k ∈ {1, 3, 5, 7, 9, 11}. The k-NN-Classification algorithm also has some weaknesses compared to other
algorithms. For the problem investigated in this thesis, obtaining a meaningful distance metric is an
expensive computation. The next algorithm described does not require a distance metric, but rather a
similarity measure.

Support vector machines (SVMs) can be used to solve a variaty of problems including classification,
regression and distribution estimation. The SVM for this thesis is implemented using the sklearn library,
which is based on the LIBSVM library as described by Chang and Lin [4]. The focus of this thesis lies on
classification. Therefore, one uses the C-support vector classification (C-SVC) version of the LIBSVM
library. Specifically, the implementation uses C-SVC as described by Chang and Lin[4] and Boser et al.[3]
to solve the following optimization problem:

Given a set of training vectors xi ∈ Rn, i = 1, ..., l and a label vector y ∈ Rl for two classes, such that
yi ∈ {1,−1} solve:

min
w,b,ξ

1

2
wTw + C

l∑
i=1

ξi

subject to yi(w
Tϕ(xi) + b) ≥ 1− ξi,

ξi ≥ 0, i = 1, ..., l,

(2.2)

where ϕ(xi) maps xi into a higher dimension and C > 0 is the regularization parameter. To solve this
primal optimization problem, it is transformed into the following dual problem:

min
α

1

2
αTQα− eTα

subject to yTα = 0,

0 ≤ αi ≤ C, i = 1, ..., l,

(2.3)

where eT = [1, ..., 1]T is the vector of all ones, Qi,j = yiyjK(xi, xj) with a custom kernel matrix
κ = K(xi, xj). The regularization parameter is optimized manually with the constraints: C = 10k for
k ∈ {−10,−9, ...,−1, 0, 1, ..., 9, 10}. The implementation for this thesis uses different versions of kernel
matrices, which will be elaborated on later. After solving the problem 2.3, one obtains an optimal w by
using the primal-dual relationship. This w satisfies:

w =

l∑
i=0

yiαiϕ(xi) (2.4)

The decision function for the classification is then:
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sgn(wTϕ(x) + b) = sgn(

l∑
i=0

yiαiK(xi, x) + b). (2.5)

This decision function yields a separation boundary, that aims to fully separate the classes. The shape
of said boundry depends on the kernel matrix that was used. All parameters are then stored in the model for
the prediction. For the case where the labels are for more than two classes, the ”one-versus-one” approach
is used. This means that for n classes, n(n−1)

2 classifiers are constructed. Each classifier is then trained to
destinguish one class form another class [2].

Figure 2.2 shows an example of SVM-Classification. Again, the two classes in the training set are
represented in gray and black respectively, while the point from the test set is represented in red. The blue
line represents the decision boundary with a linear kernel, that was optimized on the training set.

Figure 2.2: Example of a classification problem that can be solved with SVM-Classification.

The red point will be classified as part of the black class, because it lies on the same side of the
separation boundary. This could still possibly be a wrong classification, because there could be an
actual boundary between the classes that is shifted to the bottom right. In some cases the classes could
also be inseparable by a linear boundary. That is why the choice of kernel matrix can matter a lot for
SVM-Classification.

2.1.3 Modern Classification Algorithms
Another approach to classification is the use of neural networks, which are loosely inspired by neuroscience.
Goodfellow et al. [12] explain that a neural network tries to estimate a function f∗. For classification,
this means that the function f∗ maps the input x to a label y. The neural network now tries to estimate
that functioin with a parameter θ, such that f(x, θ) = y. This is typically done by combining multiple
functions in layers, meaning f(x) = fn(fn−1(...(f2(f1(x))))) where n is called the depth of the neural
network. The function f1 is called the input layer, fn is called the output layer, and all other layers are
called hidden layers. Each layer is represented by a vector, whose elements can be interpreted as neurons,
because they play a similar role as neurons do in neuroscience. Each element of the layer i calculates
an activation value, based on weights that are assigned to all values of the layer i − 1. The layers may
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also vary in size. Only the input- and outputlayer have to be adapted to the sizes of the input and output
respectively. For classification specifically, the number of output nodes has to match the number of classes
available. Figure 2.3 shows a small example of such a network. A network like this could be used for a
dataset where each vector has three features, and is part of one of two classes. The final two nodes would
then give the probabilities for each class, that the vector belongs to said class.

Figure 2.3: Example of a neural network with three nodes in the input layer, four nodes in each of the three
hidden layers, and two nodes in the output layer.

A more detailed description of the calculations actually used for this thesis, will be given in Chapter 3.
The general calculation of a neural network is based on the following formula for the first layer [12]:

h(1) = g(1)(W (1)Tx+ b(1)) (2.6)

where g represents the activation function, W is a weight matrix, b is a weight vector, and x is the
input vector. For subsequent layers h(i), x is replaced by h(i−1).

2.2 Graph-Based Classification
This section provides the graph-related definitions used in this thesis, as well as the explanation of the
reference system. To understand the latter, the notion of the graph edit distance (GED) has to be introduced
as well. The basic idea used by Dobler and Riesen [7] for the new system is introduced in Section 2.2.2.
Also, the methods described in Sections 2.1.2 and 2.1.3 are now applied to graphs. Thereby showing how
they are applicable to structural pattern recognition [7].

2.2.1 Graph Edit Distance
The GED, as described by Riesen and Bunke [19] is a measure of similarity between two graphs and has
many applications. In this case, it is used in the classification of graphs. The main issue with the GED is that
its computational complexity is very high. Therefore, it is often estimated, which is also a goal of this thesis.

Given two graphs G1, and G2, one calculates the GED by transforming one graph into the other.
There are many operations that can be performed to achieve this goal. Here, only some of the node edit
operations and edge edit operations are considered. There are substitution, deletion and insertion for nodes,
and deletion and insertion for edges. The lack of a substitution operation for edges lies in the fact that
the edges are not always labled in the investigated datasets. For nodes u and v, one denotes substitution
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with (u → v), the deletion with (u → ϵ) and the insertion with (ϵ → v). For edges, usually denoted by
e, a similar notation is used. Each of these operations has a cost assigned to it, that will be used in the
calculation of the GED. For the purposes of this thesis, the following costs are used for node operations:

cost(u → v) =

{
1 if label[u] ̸= label[v]
0 if label[u] = label[v]

(2.7)

cost(ϵ → v) = 1 (2.8)

cost(u → ϵ) = 1 (2.9)

where u, and v are nodes. For edge operations, the costs look as follows:

cost(e → ϵ) = 1 (2.10)

cost(ϵ → e) = 1 (2.11)

The sequence of operations used in the transformation of one graph into another is called the edit path,
denoted o1, ..., ok. The GED is defined on the optimal edit path, that leads to the lowest total cost. Hence,
the GED is defined as:

ged(G1, G2) = min
(o1,...,ok)∈Γ

k∑
i=0

cost(oi) (2.12)

where Γ is the set of all possible edit paths. The number of possibilities for such edit paths grows
exponentially with the size of the graphs. This is because the nodes of a graph G1 need to be matched to
the nodes of graph G2. For two graphs of the same size |G1| = |G2| = n, there are n! ways to match their
nodes. Hence explaining the high complexity and the need for estimation mentioned above.

As Riesen and Bunke [19] show, one can calculate an estimation of the GED more efficiently with
their bypartite graph edit eistance (BP-GED) algorithm. Their system also serves as a good reference
for the solutions developed in this thesis. The difficult part of computing the GED is to find a matching
between the nodes in both graphs. This can be formulated as an assignment problem, where elements of a
set A need to be assigned to elements of a set B of the same cardinality. This problem can be reformulated
as finding an optimal matching in a complete bipartite graph. To solve this problem, Riesen and Bunke
use Munkres’ algorithm. Explaining this algorithm in detail is out of the scope of this thesis, but most
importantly, it gives an optimal solution to the assignment problem in O(n3) time. This result is achieved
by doing smart operations on a cost matrix C, where Ci,j represents the cost of assigning node ni ∈ GA to
node nj ∈ GB . Here GA and GB refer to the parts in the bipartite graph that represent the sets A and B.

The adaption of Munkres’ algorithm to graphs is done by defining a cost matrix C that represents node
assignments in a meaningful way. It is defined on the graphs G1 and G2 from the original problem, that
represent GA and GB in the bipartite graph:

C =

[
X Y
Z 0

]
(2.13)

where, with n = |G1| and m = |G2|, X is a n ×m matrtix representing node substitutions, Y is a
m×m matrix representing node deletions, Z is a n× n matrix representing node insertions, and 0 is the
m × n matrix with all zeros. Because nodes can only be inserted or deleted once, all the non-diagonal
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entries in Y and Z are set to ∞. It is also important to mention, that the node operations imply edge
operations that are added to the total cost.

Applying Munkers’ algorithm to this matrix yields an optimal node assignment, that minimizes the
cost of node operations. However, it is only a suboptimal solution to the GED problem. The reason for
this is that for each node operation only the local structure is considered, thus being unable to infer edge
operations dynamically. Hence, the BP-GED algorithm only gives an upper bound for the true GED of the
two graphs. While a lower bound can also be calculated based on the same system, the reference system is
based on the upper bound.

2.2.2 Node Embeddings
To estimate the edit distance between two graphs G1 and G2, one tries to match each graph’s nodes in a
sensible manner, thereby minimizing the search space of possible matchings. Another way to do this is by
first obtaining node embeddings, that can later be used to give a distance metric for the matching process.
For that, each GNN is trained for the classification of the graphs. Taking the values of the last GNN-layer
yields a 64-dimensional vector for each node in the graph. Having obtained these node embeddings, the
pairwise distance between all nodes in the graph G1 and the graph G2 is calculated using a distance metric.
The original version developed by Dobler and Riesen [7] used the euclidean distance as a metric. To
evaluate the effects of the choice of metric, the cosine distance is being used for this thesis. It is defined as:

d(u, v) = 1− u · v
∥u∥2 ∥v∥2

(2.14)

where ∥u∥2 and ∥v∥2 are the respective two norms of the vectors u and v, and u · v is the dot product
of the vectors u and v. This yields a n×m matrix, where n is the number of nodes in G1 and m is the
number of nodes in G2. With that matrix, a linear sum assignment problem can be solved to assign the
nodes. The linear sum assignment problem can be described by the formula:

min
∑
i∈U

∑
j∈V

Ci,jXi,j (2.15)

where Ci,j is the cost calculated by the cosine distance d(u, v), and Xi,j = 1 if and only if the row i
is assigned to the column j. The nodes are then assigned according to Xi,j , yielding a matching M . In
the next step the edit distance between the two graphs G1 and G2 is calculated based on the definition in
Section 2.2.1. Calculating this graph edit distance for each pair of graphs yields a distance matrix D. This
distance matrix can now be used to classify the graphs with the k-NN method described in Section 2.2.3.

2.2.3 Traditional Classification Algorithms for Graphs
To adapt k-NN-Classification to graphs, one only needs a distance metric. One promising candidate for
this metric is the GED, wich can be estimated in different ways. Riesen and Bunke [19] show the BP-GED
estimation discussed in Section 2.2.1. Another estimation of the GED, as used by Dobler and Riesen [7],
is based on graph matching through node embeddings. These node embeddings need to be obtained by a
system that conveys information about the graphs’ structures, as well as their class. This solution will be
discussed in more detail in Section 3.1.

The SVM-Classification described in Section 2.1.2 can most easily be adapted to graphs with a
precomputed kernel matrix. Each entry in that matrix corresponds to a measure of similarity between two
graphs. Since the graph edit distance is a dissimilarity measure, one approach to obtaining said matrix is to
take a kernel function k(dij) of the graph edit distance between all pairs of graphs Gi, Gj . This needs to
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be done in a way, that leads to a similarity measure. Some trivial examples from Riesens lecture [20] of
functions that achieve this are as follows:

k1(dij) = −dij

k2(dij) = −d2ij

k3(dij) = tanh(−dij)

k4(dij) = exp(−dij)

(2.16)

A solution with k1 as a kernel was tested as a proof of concept. While that solution did work, it has
been outperformed by at least one version of the actual solution for each of the tested datasets.

More involved kernels have also been suggested. One example of a kernel for graphs is the direct
product kernel, as described by Gärtner [10]. This kernel considers walks on graphs (i.e. sequences of
nodes) that have equal labels and may possibly contain gaps. Computing the product graph allows for
efficient computation of these walks. The direct product graph contatins a node for every pair of nodes in
the original graphs that have the same labels. It contains an edge between two nodes whenever an edge
between the corresponding original nodes is also present and has the same label. The kernel computation
is then based on the adjacency matrix E× of this direct product graph. To be more precise, the calculation
depends on the limit of matrix power series involving E×. If this limit exists, the formula for the graph
kernel looks as follows:

k×(G1, G2) =

|V×|∑
i,j=1

[ ∞∑
n=0

λnE
n
×

]
ij

(2.17)

with |V×| being the size of the direct product graph and λn ∈ R. An appropriate choice of λ allows
for the calculation of this kernel in cubic time. Section 3.2 shows the actual solution, another appoach to
obtaining a kernel for SVM-Classification based on GNNs.

2.2.4 Modern Classification Algorithms for Graphs
Graph neural networks (GNNs) extend deep learning approaches for graph data. As Wu et al. [22] describe,
the irregular nature of graphs makes some operations difficult. Convolutions for example, can be calculated
in many ways. The basic idea of taking neighborhood information of each node is similar to convolution
in the image domain. This approach results in message passing algorithms that spread information across
the graph. The first category of GNNs that use message passing are recurrent graph neural networks
(RecGNNs). They assume a constant exchange of informatioin between nodes in a graph until a stable
equilibrium is reached. RecGNNs inspired convolutional graph neural networks (ConvGNNs). The
main idea behind ConvGNNs is to aggregate a node’s features with the features of its neighbors. The
difference is that ConvGNNs stack multiple graph convolutional layers, resulting in a high-level node
representation. They can be used to build many more complex GNN models (e.g. for node classification
or graph classification). Other categories investigated by Wu et al. [22] include graph autoencoders and
spacial-temporal graph neural networks. They are not relevant for this thesis and are hence not explained
further.

Graph classification with GNNs is based on a combination of graph convolutional layers, graph pooling
layers, and readout layers. The graph convolutional layers extract node representations that are then
downsampled by a graph pooling layer. The readout layer yields a graph representation that can then be
sent into a multilayer perceptron. Finally, the classification is obtained by adding a softmax layer to the
end of the network.



3
The Classification Systems

This chapter discusses the implementation of the systems that are being tested. That includes the system
which serves as a starting point for this thesis. Said system, as well as other approaches to GED estimation,
will be described in detail in Section 3.1. Section 3.2 presents the new solution for classification based on
different implementations of SVMs.

3.1 K-NN-Classification with Graph Neural Networks
The k-NN-Classification developed by Dobler and Riesen [7] serves as a starting point for this thesis. The
general procedure can be summed up briefly. In a first step, a GNN is trained for the direct classification.
Then, from the last layer of the network, node embeddings are extracted. This results in node embeddings,
which can help with the estimation of the GED. Finally, that estimation of the GED is used as a distance
metric for the k-NN-Classification, as described in Section 2.2.3.

The GNN used in the first solution by Dobler and Riesen [7] is a graph isomorphism network (GIN).
Because the other GNNs used in this thesis are conceptually similar, the GIN will be explained in some
more detail before presenting the crucial differences. This explanation is based on a lecture from Riesen
[20]. The GIN follows the description in Section 2.2.4. For each node v ∈ V , the initial embedding h

(0)
v

is just the node’s label xv. Then for each node, the node embedding is computed in K steps, with the
following formula for a node v ∈ V at step k:

h(k)
v = g(k)

 ∑
u∈N(v)

h(k−1)
u + (1 + ϵ(k)) · h(k−1)

v

 (3.1)

where g(k) is the aggregation function, N(v) is the set of neighbors of v, and ϵ ∈ R is a parameter.
Here, ” · ” refers to scalar vector multiplication. With this process, each node gradually receives infor-
mation about its environment. In the first step, this information is limited to the node’s neighbors. In
every step, a node indirectly receives information about all nodes that are two steps away from it. Thus
information is passed along the graph, hence the name message passing algorithm. This model has good

14
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scaling capabilities, because the aggregation function g(k) and the parameter ϵ are shared between all nodes.

Figure 3.1 shows an example of one step of the GIN algorithm. The numbers represent the actual
labels that are relevant to the algorithm. The letters are there to referr to the nodes in the explanation. In
this simplified example, all nodes only have one label. Because the operation can be done in the same way
for each label, this illustration suffices.
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(a) Starting graph at step k = 0
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(b) The same graph after step k = 1

Figure 3.1: One step of the GIN algorithm applied to a graph.

Since the calculations are the same for each node, they will be demonstrated on node D. Using the
rectified linear unit (ReLU) as an activation function and ϵ = 1 yields the following calculation:

h1(D) = ReLU(h0(B) + h0(E) + (1 + ϵ) · h0(D))

h1(D) = ReLU(2 + 4 + (1 + 1) · 1)
h1(D) = ReLU(8)

h1(D) = 8

(3.2)

When applying the same calculation for each node, one obtains the graph in Figure 3.1b. Each layer
in the network applies one of these operations, before further layers do the classification. With this
setup of g and ϵ, the labels of the nodes will only grow with each step. This is not an issue, because
only a limited amount of layers are used. For this thesis in particular, three layers are being used. Us-
ing too many layers would also not help, because nodes with higher degrees will grow more quickliy.
This would mean that the labels approach a relative distribution which is similar to just the degrees of nodes.

The first goal of this thesis is to obtain comparable solutions to the one developed by Dobler and
Riesen [7]. For that, two other GNNs are implemented, namely a graph attention network (GAT) and a
graph convolutional network (GCN). Because they work in a very similar way as GIN, only the different
formulas for the message passing calculations, as well as an example graph are shown. The formulas are
based on lecture notes from Riesen [20]. For the GAT, the formula is:

h(k)
v = g(k)

W (k)

 ∑
u∈N(v)

α(k−1)
vu h(k−1)

u + α(k−1)
vv h(k−1)

v

 (3.3)
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where W (k) is the shared weight matrix and the attention weights α are calculated between two nodes
by some attention mechanism.

Figure 3.2 shows an example of what the weights could look like after one layer has been applied. For
this, the starting weights are chosen as W (1) = I , where I refers to the identity matrix, and α

(1)
uv = 1 for

all nodes u, v. Because there is only one label in this example, the matrix W (k) has only one dimension
and is equal to 1. The ReLU function is again used as the activation function g(1).
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(a) Starting graph at step k = 0
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(b) The same graph after step k = 1

Figure 3.2: One step of the GAT algorithm applied to a graph.

The GAT introduces a way to weigh the inpact of each node to another node separately, making
the process very customizable, while sacrificing some scalability. The GCN uses another approach that
normalizes the weights from a node’s neighbors based on the node’s degree. The formula for the GCN
looks as follows:

h(k)
v = g(k)

(
W (k) ·

∑
u∈N(v) h

(k−1)
u

deg(v)
+B(k) · h(k−1)

v

)
(3.4)

where W (k) and B(k) are weight matrices and deg(v) is the degree of the node v. In this context, ” · ”
refers to matrix multiplication. Similarily to GIN, GCN scales also well because the weight matrices are
shared between all nodes.

Figure 3.3 shows an example of one step of the GCN applied to the example graph. The weights for
the initial step are all set to one, with ReLU as the activation function.
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(b) The same graph after step k = 1

Figure 3.3: One step of the GCN algorithm applied to a graph.

It is immediately appearant that the nodes with higher degrees do not grow as quickly as in the other
examples. In the case of GAT, this could be adapted through a different choice of parameters.

The calculation of the GED estimation works in the same way as described in Section 2.2.2. The only
difference lies in the exact numbers, based on which the nodes are assigned. A first evaluation of the
different GNNs can be made simply based on the GNN-GED estimation compared to the BP-GED, which
is used as a reference. Using this evaluation, the GNN-GED estimations can also be compared between
each other.

Figure 3.4 shows an example of a plot that presents the comparison between GNN-GED estimations
and BP-GED estimations. The 45°-axis represents the estimation that stems from the BP-GED. The four
points each represent the GNN-GED-based estimation of a particular graph. The graph is also normalized,
such that the largest GED corresponds to one. The point on the bottom left represents the case where both
systems estimated an edit distance of zero, while the point on the top right represents the case where both
systems estimated the maximum edit distance. The point on the top left represents an overestimation of
the edit distance by the GNN-based system. To be precise, the GNN-GED estimated an edit distance equal
to 80% of the maximum distance, while the BP-GED estimated 20% of the maximum distance. For the
point on the bottom right it is the other way around, meaning that the GNN-GED estimated 20% of the
maximum distance, while the BP-GED estimated 80% of the maximum distance.
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Figure 3.4: Example of a GNN-GED estimation relative to the BP-GED estimation.

The estimation performance of a system can be evaluated by how close the points are to the 45°-axis.
It is still important to remember that the BP-GED is also an estimation. In fact, it gives an upper bound to
the GED. Hence, the actual GED would be scattered below the 45°-axis.

3.2 SVM Classification
As already mentioned in Section 2.2.3, SVM-Classification requires a precomputed kernel matrix to
work well. The approach taken for this work is to calculate this similarity measure directly on the node
embeddings. For that, the node embeddings are obtained from the last layer of the trained GNNs, yielding
three different starting points for the kernel calculation. This means that the following calculations need to
be tested for each of the GNN designs. Given two graphs G1 and G2, the cosine distances between all
pairs of nodes ni ∈ G1 and nj ∈ G2 are calculated with the same formula as in equation 2.14. The result
of this procedure is a (|G1| × |G2|)-matrix with all the similarities between the graphs’ nodes. This matrix
is then used to obtain a new matching M , by applying the linear sum assignment problem described in
Section 2.2.2. As with the other systems, this matching represents an estimation of the optimal matching
for the calculation of the GED. While the GED is not required for this solution, the matching still contains
the necessary information of the graphs’ similarities. Instead of calculating the GED, the cosine similarity
between two graphs G1 and G2 can be defined as follows:

cosine similarity(G1, G2) =
∑

(u,v)∈M

(1− d(u, v)) (3.5)

where d(u, v) is the distance in equation 2.14. Calculating this similarity for each pair of graphs yields
the new kernel matrix, that can be used for the SVM-Classification. Analyzing the information that is lost
with this procedure presents possible weaknesses of the solution.

Figure 3.5 shows a simplified example of this with two-dimensional node embeddings. In the table,
the node embeddings correspond to the nodes that are matched between the graphs. One could expect the
similarity of a graph to itself to be a maximum value that depends on the context. In the example, the
graph G1 compared to itself has a cosine similarity of 2.0. But the same graph compared to the larger
graph G2 reaches the same similarity. Even more counterintuitively, comparing G2 to the graph G3 yields
a larger similarity than comparing G1 to itself.
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Node Embedding G1 G1 G1 G2 G2 G3

n0 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
n2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n3 - - - (9, 1) (9, 1) (0, 1)
n4 - - - (9, 1) (9, 1) (0, 1)

Cosine Similarity 3.0 3.0 3.22

Figure 3.5: Example of cosine similarities between graphs.

A similar problem occurs if the two larger graphs are also very similar. In general, two small graphs
that are very similar, may have a low similarity compared to two large graphs that are less similar, simply
because more similarities are added up. One approach to normalization is to divide the cosine similarity by
the size of the matching. Some experiments have shown that this approach leads to very bad performance,
because too much information gets lost. With that method a graph and its subgraph would still have the
same similarity as the subgraph compared with itself, if matched correctly. Instead, the cosine similarity is
divided by the size of the larger graph, giving the following formula:

normalized cosine similarity(G1, G2) =

∑
(u,v)∈M (1− d(u, v))

∥G2∥
(3.6)

where ∥G2∥ is the number of nodes in the graph G2 and ∥G2∥ ≥ ∥G1∥. That way, the information
about the different graph sizes is conserved. Applying this similarity measure to the example graphs gives
the results in Figure 3.6.

Node Embedding G1 G1 G1 G2 G2 G3

n0 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
n2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n3 - - - (9, 1) (9, 1) (0, 1)
n4 - - - (9, 1) (9, 1) (0, 1)

Cosine Similarity 1.0 0.6 0.64

Figure 3.6: Example of normalized cosine similarities between graphs.

There are also other similarity measures that could be used instead of the cosine similarity. To
investigate the impact of the similarity measure, the cosine similarity can be compared to the correlation.
The implementation follows the same steps as explained above, except that for each node pair, one
calculates the correlation distance given by:

d̄(u, v) = 1− (u− ū) · (v − v̄)

∥(u− ū)∥2 ∥(v − v̄)∥2
(3.7)

where ū and v̄ are the respective means of the elements in u and v, and ” · ” represents the dot product.
After obtaining a new matching M by solving the linear sum assignment problem with the new distances,
the correlation between graphs G1 and G2 is calculated as:

correlation(G1, G2) =
∑

(u,v)∈M

(
1− d̄(u, v)

)
(3.8)
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This yields another kernel matrix which can be used for the SVM-Classification. Applying this
similarity measure without normalization to the example from before gives the results in Figure 3.7

Node Embedding G1 G1 G1 G2 G2 G3

n0 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
n2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n3 - - - (9, 1) (9, 1) (0, 1)
n4 - - - (9, 1) (9, 1) (0, 1)

Cosine Similarity 3.0 3.0 1.0

Figure 3.7: Example of correlations between graphs.

This result already looks different from the one in Figure 3.5. Here the similarity between G2 and G3

is not automatically larger because the graphs have more nodes. Multiple nodes with similar embeddings
though, would still lead to larger similarities. Therefore, a normalized version is still worth investigating.
Similar to the normalized cosine similarity, one defines the normalized correlation as:

normalized correlation(G1, G2) =

∑
(u,v)∈M

(
1− d̄(u, v)

)
∥G2∥

(3.9)

With this calculation for the example graphs, one obtains the results shown in Figure 3.8, this time
yielding the smallest similarity for the graphs with the same size but different embeddings for two nodes.

Node Embedding G1 G1 G1 G2 G2 G3

n0 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n1 (1, 0) (1, 0) (1, 0) (1, 0) (1, 0) (1, 0)
n2 (2, 0) (2, 0) (2, 0) (2, 0) (2, 0) (2, 0)
n3 - - - (9, 1) (9, 1) (0, 1)
n4 - - - (9, 1) (9, 1) (0, 1)

Cosine Similarity 1.0 0.6 0.2

Figure 3.8: Example of normalized correlations between graphs.

Deciding which similarity is the most reasonable to use in a given situation, depends on the context of
the data. With the abstraction of embeddings, which stem from GNNs, it is hard to know in advance which
measure will lead to the best performance. Therefore, it can be useful to test multiple similarity measures
for each new dataset. While there are many ways to calculate such similarity measures, investigating four
measures provides enough basic understanding of the effects that these measures have. This also includes
information about the effects of normalization, as will be shown in Chapter 4. With the kernel matrix,
the goal that was set in Section 2.2.3 is achieved. The SVM-Classification can therefore be conducted as
described in Section 2.1.2. To obtain the best performance, the C-parameter in the SVM-Classification is
optimized using cross validation. The results from this cross validation will be shown in Chapter 4.

To summarize, there are 14 new systems that can be compared to the k-NN-Classifications based
on the BP-GED [19], as well as the GIN-GED [7]. While two of these new systems are also based on
k-NN-Classification, 12 systems give a deeper insight into the performance of SVM-Classification.



4
Experimental Results

The first section in this chapter introduces the datasets used for this thesis and provides some reasoning
behind the choices. In the second section, this chapter also provides an insight into the estimation process
and the results it achieved. Section 4.3 focuses on the C-Optimization that is used to tune the SVM for
maximum performance. Some essential graphs of the C-Optimization are presented there, but including
all 120 graphs would add little value. That sectioin does not discuss the optimization of the k-NN based
classifiers, because that process is already described in Section 2.1.2. Section 4.4 then shows the obtained
accuracy of the tested solutions, evaluated by the F1-score, before comparing some examples of correctly
and incorrectly classified graphs.

4.1 Datasets
Five datasets from the TUDataset library [14] are investigated to evaluate the performance of the developed
solutions and compare them to the existing systems. Both the reference BP-GED [19] and the GIN-GED
[7] are evaluated based on the k-NN classifier developed by Dobler and Riesen [7]. The calculation of the
BP-GED is based on an implementation by Gillioz and Riesen [11]. The MUTAG dataset serves used as a
good starting point, given that the reference solutions work fairly well with some room for improvement.
As a second dataset OHSU is investigated, to see if any solution could result in large performance increases,
because the reference systems leave more room for improvement. The AIDS dataset can help because
the reference systems perform very well. With the evaluation of the performace on this dataset, poorly
performing solution attempts can easily be discarted. The ENZYMES dataset is labeled based on six classes
instead of two, thus enabeling investigations of the generalization potential the developped solutions have
compared to the reference systems. Finally, the investigtions conducted by Dobler and Riesen [7] into
the DD dataset suggest a very hard task for GNN-based classification. To give a deeper insight into these
datasets, they are described below.

The MUTAG dataset, taken from Debnath et al. [6], contains 188 graphs sorted into two classes. The
average number of nodes per graph is 17.93, while the average number of edges is 19.79. This is a relatively
small dataset that is not too complex. The dataset is from the domain of drug development and investigates
the toxicity of certain compounds. It is used by Debnath et al. [6] to analyze the structure-activity

21
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relationship of mutagenic aromatic and heteroaromatic nitro compounds. For this dataset, a graph’s nodes
represent the atoms in the compounds and the edges represent the covalent bonds.

Figure 4.1: Representative graph form the MUTAG dataset.

The OHSU dataset, based on brain mappings by Craddock et al. [17] and investigated by Pan et al.
[15], contains 79 graphs sorted into two classes. The average number of nodes per graph is 82.01, while
the average number of edges is 199.66. This is still a relatively small dataset, but it contains much more
complex graphs. The contained graphs are connecting different regions of interest in the brain. The dataset
labels correspond to the hyper/impulsive behavior of the tested individuals. The graph’s nodes correspond
to the different regions of interest in the brain, while the edges represent their correlation.

Figure 4.2: Representative graph form the OHSU dataset.

The AIDS dataset, aggregated by Riesen and Bunke [18] based on the AIDS Antiviral Screen Database
of Active Compounds [9], contains 2000 graphs sorted into two classes. The average number of nodes per
graph is 15.69, while the average number of edges is 16.20. This dataset is large and has fairly simple
graphs. It containes graphs that represent molecules that are either active or inactive against HIV. The
molecules are represented as graphs in the same way as for the MUTAG dataset.
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Figure 4.3: Representative graph form the AIDS dataset.

The ENZYMES dataset is part of the BRENDA database by Schomburg et al. [21] and contains 600
graphs sorted into six classes. The average number of nodes per graph is 32.63, while the average number
of edges is 62.14. While this dataset is medium in size and complexity, it is the only dataset with six
classes instead of two that is being tested. The graphs represent different enzymes that are labeled based
on the reaction catalysed by the enzyme. Here nodes represent amino acids instead of single atoms and the
edges represent their connections.

Figure 4.4: Representative graph form the ENZYMES dataset.

The DD dataset, compiled by Dobson and Doig [8], contains 1178 graphs sorted into two classes. The
average number of nodes per graph is 284.32, while the average number of edges is 715.66. This dataset
contains the most complex graphs out of the datasets investigated. The graphs represent proteins that are
labeled as enzyme structures or non-enzymes. The representation of nodes and edges is similar to the
representation in the ENZYMES dataset.
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Figure 4.5: Representative graph form the DD dataset.

4.2 GED Estimation Results
Figures 4.6 - 4.10 show the GNN-based estimations of the GED compared to the BP-GED-based estima-
tions. The format of the plots is explained in Section 3.1. Each figure presents the results for one dataset,
while in each figure the different GNN architectures are compared.

In Figure 4.6 there are some large differences between the GNN-based estimations and the estimations
from the BP-GED system. Despite the differences, there is a clear correlation between both estimations for
all GNN architectures. It is hard to find any meaningful differences between the GNNs. Only the bottom
section in the middle seems to have fewer points in the GAT-based design, indicating that there are fewer
underestimations with that architecture.

Figure 4.6: The GNN-GED estimates relative to the BP-GED estimate for the MUTAG dataset.

Figure 4.7 shows the same comparison for the OHSU dataset. Here the pattern looks a bit different
compared to Figure 4.6. For small distances, there are much smaller discrepancies between the GNN esti-
mation and the reference system. Again, there are barely any differences between the GNN architectures.
For the AIDS and ENZYMES datasets, represented in figures 4.8 and 4.9, the errors appear to be smaller
than those of the MUTAG dataset. They are also more evenly distributed than the errors of the OHSU
dataset.
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Figure 4.7: The GNN-GED estimates relative to the BP-GED estimate for the OHSU dataset.

Figure 4.8: The GNN-GED estimates relative to the BP-GED estimate for the AIDS dataset.

Figure 4.9: The GNN-GED estimates relative to the BP-GED estimate for the ENZYMES dataset.

The smallest differences between the GNN estimations and the reference system appeared in Figure
4.10. A clear division into clusters can be observed, which has to do with the nature of the dataset. While
finding the best GNN architecture is still not trivial, the GIN-based estimation marginally stands out. Its
estimated distances are not necessarily closer to the BP-GED-based estimations, but there is less variance
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in each cluster.

Figure 4.10: The GNN-GED estimates relative to the BP-GED estimate for the DD dataset.

One summarizing result is that, for a given dataset, all GNN-GED estimations are very similar to each
other. That fact also holds for every investigated dataset. Although this suggests very similar performance
for the classification, there are some outliers in the resulting performances which are hard to explain. The
results are also promising in the sense that there is a clear correlation between the GNN-GED estimations
and the BP-GED estimation. One might expect a smaller spread from the 45°-axis to result in better
performance for classification. Section 4.4 will show how that is not necessarily the case. In fact, drawing
conclusions about performance, based on figures 4.6 - 4.10, proves to be difficult.

4.3 Validation of Metaparameters
To start the C-Optimization, one first needs to define a performance measure. For this thesis, the F1-score
[1] is a reasonable approach. The formula for the F1-score is given by:

F1− score =
(2 · TP )

(2 · TP ) + FP + FN
(4.1)

where TP is the number of true positives, FP is the number of false positives, and FN is the number
of false negatives. Since this calculation only makes sense for datasets with two classes, another approach
needs to be taken for multiclass datasets. The simple solution is to calculate TP , FP , and FN globally.
This is done by comparing each class separately to all other classes.

The parameter C is the only parameter that needed to be tuned for the SVM-Classification. This
parameter was already discussed in Section 2.1.2 and is only restricted by C > 0. As briefly mentioned
in Section 2.1.2, C is first optimized with C = 10k for k ∈ {−10,−9, ..., 0, 1, ..., 9, 10}. After that, a
finer C-Optimization is conducted for C = kC∗ for k ∈ {0.5, 0.6, ..., 1.4, 1.5} and with C∗ as the optimal
value from the coarse C-Optimization. This finer optimization did not have a big impact due to random
fluctuations specific to the training set. For the AIDS dataset, all of the graphs, independent of similarity
measure or GNN architecture, appear similar for the coarse optimization. For the fine optimization, the
results look random within a small band of difference in performance. Figure 4.11 shows what the graphs
look like for the example of the normalized correlation with the GCN architecture.
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Figure 4.11: The coarse and fine C-Optimization for the AIDS dataset using the normalized correlation
based on the GIN architecture. The score axis represents the F1-score.

For the other datasets, there are more differences between the implementations. Still, the fine optimiza-
tion remains mostly random, and will therefore not be shown. Figures 4.12 and 4.13 show the optimizations
of the SVM-Classification with the GIN-based normalized correlation for the other datasets. Note that for
the DD dataset, the scaling of the C-axis is different. This is because for very small values of C, the SVM
does not converge. The main takeaway out of figures 4.11 - 4.13 is that the performance is relatively low
for small values of C, before increasing at a certain threshold. There are also examples where the F1-score
decreases more after a peak in the middle. Another interesting observation is a correlation between the size
of the dataset and the random noise in the graph. As will be discussed in the next section, this correlation
does not imply a correlation between the size of a dataset and the classification performance.

(a) C-Optimization with GIN-based normalized cor-
relation for the MUTAG dataset.

(b) C-Optimization with GIN-based normalized cor-
relation for the OHSU dataset.

Figure 4.12: The score axis represents the F1-score.
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(a) C-Optimization with GIN-based normalized cor-
relation for the ENZYMES dataset.

(b) C-Optimization with GIN-based normalized cor-
relation for the DD dataset.

Figure 4.13: The score axis represents the F1-score.

4.4 Classification Results
Figure 4.14 shows the F1-scores of all the relevant experiments. The results for the SVM-Classification
with the negative GED, as well as other normalization attempts, are omitted because they are less accurate
than the best shown solutions. The former design also defeats one purpose of using SVM-Classification,
which is to be independant of the GED calculation. The results shown are all based on the same random
train-test-split of the datasets. Although the best results for all datasets are from the SVM-Classification, a
consistent improvement compared to the reference system cannot be observed across all versions of the
solution. For the MUTAG dataset, only one approach outperformes the reference system. Still, the scores of
the SVM-Classification is on average very similar to the k-NN-Classification, which indicates reasonable
performance. With the OHSU dataset one should be careful, because there can be a high variance in
performance due to its small size. The average performance though, is once again similar to the reference
system. There is not much to say about the AIDS dataset, since it appears to be easy for all solutions.
One interesting result is that only the ENZYMES dataset shows much better results for the GIN-based
architectures compared to the other SVM-based solutions. The GIN-based arcitecture’s performance is
more similar to the implementations that used the k-NN classifier, while the other SVM-based solutions
perform about as well, or worse than the reference system. The only dataset for which there is a consistent
improvement is the DD dataset. Not only do all approaches outperform the reference system, but all the
SVM-based solutions outperform k-NN-based solutions .
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Classification System Embedding MUTAG OHSU AIDS ENZYMES DD
Reference System (k-NN) BP-GED 90.9 63.2 98.9 29.2 57.4

GNN-GED GAT 85.7 63.6 99.2 42.5 67.8
with k-NN-Classification GCN 85.7 63.6 99.5 41.7 67.8

GIN 80.0 81.5 99.4 44.2 71.6
Cosine Similarity GAT 82.6 85.7 99.7 27.5 72.7

with SVM-Classification GCN 80.0 42.1 99.8 28.3 74.4
GIN 87.5 57.1 99.8 38.3 72.0

Normalized Cosine Similarity GAT 82.6 57.1 99.8 29.2 73.7
with SVM-Classification GCN 89.1 63.6 99.8 31.7 72.0

GIN 82.6 66.7 99.8 49.2 75.4
Correlation GAT 82.6 85.7 98.0 21.7 73.1

with SVM-Classification GCN 89.8 42.1 99.8 27.5 73.0
GIN 91.7 57.1 99.5 42.5 76.2

Normalized Correlation GAT 82.6 63.6 99.2 25.0 73.1
with SVM-Classification GCN 82.6 69.6 99.8 28.3 71.8

GIN 83.7 66.7 99.7 53.3 75.4

Figure 4.14: F1-scores(%) based on random train-test splits.

Having established that there is no single best solution that outperforms the reference system for all
datasets, it also makes sense to compare the different approaches on average. Figure 4.15 shows the
average performance of the SVM-Classification across all datasets.

k-NN Cosine Normalized Cosine Correlation Normalized Correlation Total SVM
GIN 75.3 70.9 74.7 73.4 75.8 73.7
GAT 71.6 73.6 68.5 72.2 68.7 70.8
GCN 71.7 64.9 69.2 66.4 70.4 67.8
Total 72.9 69.8 70.8 70.7 71.6 70.8

Figure 4.15: Average F1-scores(%) over all datasets.

As can be seen in Figure 4.15, the GIN architecture outperformes the others by a fair margin. This
holds for most SVM-based classifications, as well as for the k-NN-based classification. A slightly smaller
margin can be observed with the different similarity measures for the SVM-Classification. The best
performance overall is obtained by the normalized correlation based on the GIN architecture. Compared to
the average performance of the reference system, which is 67.9%, the best architecture shows a relative
improvement of 11.6%. The fact that the k-NN-Classification, based on the GIN architecture, is 75.3%
suggests that there is no significant difference to the best SVM-Classification with a relative performance
increase of only 0.664%.

Figures 4.16 - 4.20 show some examples of correct and wrong classifications for each dataset. The
examples are based on the SVM-Classification with the kernel matrix from the normalized correlation
with the embeddings from the GIN. For the MUTAG dataset, there is no clear increase in complexity that
would explain a wrong classification.
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(a) Correct SVM-Classification (b) Wrong SVM-Classification

Figure 4.16: Example of classified graphs from the MUTAG testset.

In the OHSU dataset, there are clear differences in complexity between the graphs in Figure 4.17. Given
the information from the MUTAG dataset, it is not clear if that is the reason for the wrong classification.
This could also suggest that there is an inherent difficulty in classifying graphs from this dataset.

(a) Correct SVM-Classification (b) Wrong SVM-Classification

Figure 4.17: Example of classified graphs from the OHSU testset.

For the AIDS dataset in Figure 4.18, it looks like the correctly classified graph is more complex. There
is still rotational symmetry in both cases though, that comes from the nature of the dataset. This might
suggest that larger graphs with more information are sometimes easier to classify.
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(a) Correct SVM-Classification (b) Wrong SVM-Classification

Figure 4.18: Example of classified graphs from the AIDS testset.

For the ENZYMES dataset, the graphs look similar in complexity. Jet the F1-score this system achieves
is only 53.3%. Some of the difficulty in classification stems from the fact that there are six classes for this
dataset. Taking that into account, the F1-score is still a lot better than a guess.

(a) Correct SVM-Classification (b) Wrong SVM-Classification

Figure 4.19: Example of classified graphs from the ENZYMES testset.

For the DD dataset in Figure 4.20, there is a similar increase in complexity as observed in figure 4.17.
The increase in performance compared to the OHSU dataset may come from the nature of the dataset. The
DD dataset could have fewer complex graphs. To test this one would need an more objective measure of
complexity.
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(a) Correct SVM-Classification (b) Wrong SVM-Classification

Figure 4.20: Example of classified graphs from the DD testset.

The real reasons for misclassifications would have to be analyzed with more expert knowledge in the
field from which each dataset stems. Although improvements compared to the reference system were
made in many cases, limitations were encountered for some datasets. Whether these limitations are due to
the systems used, or due to the nature of the datasets remains to be discovered.



5
Conclusion and Future Work

5.1 Conclusion
The goal of this thesis was to expand on the system built by Dobler and Riesen [7]. Therefore, the reasearch
question was to find oher classification systems that were also based on GNNs. The first step in obtaining a
solution was to investigate the impact of the GNN designs, namely GAT and GCN compared to GIN. This
involved building a GAT and a GCN, and finding a way to evaluate their effectiveness. In part, this was
done by comparing the GED estimations to the BP-GED. Given the promising results in the comparison
with GIN, the implemented systems were compared based on classification performance. To get a direct
comparison, the classification was performed with k-NN-Classification and the same GED estimation
algorithm as was used by Dobler and Riesen [7]. Since all GNN designs resulted in solutions performing
with similar F1-scores as the reference system, all designs were kept for further investigations.

The second step in obtaining a solution was to investigate other machine learning algorithms. Specifi-
cally, the hope was to achieve better results with SVM-Classification. After a proof of concept with the
negative GED as a kernel matrix, a better solution had to be found. This required a more direct translation
of the graph embeddings into a kernel matrix. It was interesting to investigate what impact on performance
the similarity measure had, even though there were no big differences that were consistent across all
datasets. One of the challanges was to deal with the different sizes of graphs without loosing too much
information from the embeddings. Normalizing the similarity measures resulted in minor improvements
when averaging over all datasets and GNN designs. Still, these improvements were not consistent across
different GNN designs. For the classification into two classes, the best performing system for each dataset
was always a version without normalization, while the same is true for the worst performing system in
three out of four cases.

With some datasets, the results show high variability despite using seemingly very similar classification
methods. Therefore it is hard to draw a meaningful conclusion. The performance for the AIDS dataset
suggests that all designs work as intended. Still, there is no single system that outperformes all the others.
The averages presented in Figure 4.15, obtained by the SVM-Classification, give some insight. As intuition
suggests when looking at Figure 4.14, the GIN implementation performes the best on average across all

33
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similarity measures. The different SVM implementations are very close when averaging over all GNN
designs. The best average performance is obtained by the normalized correlation, with both normalized
versions outperforming the others on average. In the end, any of the GIN-based SVM-Classifications
outperform the reference system for four out of five datasets. The normalized versions also outperform the
GIN-based k-NN-Classification for four out of five datasets. Hence, it is apparent that the this method
works well for classification, even though the improvements were only marginal.

5.2 Future Work
The solutions presented in this thesis show that good approaches can be made with different designs.
Jet, for some datasets, obtaining a reliable solution was not possible. Tuning the system even more by
changing the GNN designs based on the final classification would certainly be an option. A better approach
would probably be to define a different GNN that is more specialized in giving fitting embeddings for
SVM-Classification.

What this thesis does not discuss is the computation time of the different systems. The main rea-
son for this is that comparing one value per design for each dataset already results in the evaluation of
tradeoffs. Including time in the evaluation could possibly result in more uncertainty of which design
to persue. Also, because the embedding data is only written to once, all algorithms are highly paral-
lelizable, which makes temporal performance gains less significant. Still, a thorough analysis of the
computation times of all systems could be interesting. In the unlikely event that a certain solution was
much quicker than all the others, one would have a best solution, that could serve as a future reference point.

Another way to find out more about the presented solutions would be to test them on more datasets.
This could lead to some insight into why certain datasets are harder to classify. Focusing on large datasets
could be useful to avoid big fluctiuations in the F1-scores. As shown in Section 4.3, larger datasets
are much more consistend for different C-values. This can also be extended to different classification
algorithms. Having established that GIN-based architectures give the best average result across five
datasets, using only GIN-based implementations of the different machine learning approaches would be
a reasonable choice. Once a better classification algorithm is found, the design of the GNN could be
revisited again.

Finally, given that there are so many working solutions, one could implement a majority voting
algorithm, that combines all systems. Some accuracy gain could be expected of this approach. Even
though a lot of computations could be shared between the systems, the increase in computational cost
could be too large.
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