
The Core of Change
Frequent Subgraph Discovery in Software Evolution Graphs

Bachelor Thesis

Faculty of Science, University of Bern

submitted by

Damian Rhyn

from Waldkirch, Switzerland

Supervision:

PD Dr. Kaspar Riesen

Institute of Computer Science (INF)

University of Bern, Switzerland

Abstract

Software undergoes constant evolution in the form of code changes. These

changes can be modeled as graphs, so-called variation diffs, that capture the struc-

tural evolution of software. This thesis explores the application of frequent subgraph

mining (FSM) on variation diffs. The goal is to find interesting patterns in these

software evolution graphs. The GraMi algorithm [1] is selected for mining the fre-

quent subgraphs, based on its performance and compatibility with the data. To

enhance the quality of the output, several pre- and post-processing strategies are

proposed. These include filtering the input graphs to remove unchanging struc-

tures, extracting previously found subgraphs from the input graphs, and randomly

relabeling certain nodes and edges to influence the mining process toward more

significant patterns.

Experimental results show that running GraMi on the unmodified data predom-

inantly reveals unchanged code structures. The proposed pre- and post-processing

methods improve the quality of the output. The findings suggest that FSM, sup-

ported by some processing steps, is a promising approach for finding interesting

patterns in software evolution, though challenges related to performance and pat-

tern relevance remain.

ii

Contents

1 Introduction 1

1.1 Frequent Subgraph Mining in Context 1

1.2 Software Evolution as Graphs . 2

1.3 Frequent Subgraph Mining Algorithms 2

1.4 Thesis Structure . 3

2 Foundation 5

2.1 Frequent Subgraph Mining and GraMi 5

2.1.1 Foundations of Frequent Subgraph Mining 5

2.1.2 The GraMi Algorithm . 9

2.2 Optimization Techniques . 12

2.2.1 Heuristic . 12

2.2.2 Push-Down Pruning . 14

2.2.3 Unique Labels . 15

2.2.4 Automorphism . 16

2.2.5 Lazy Search . 17

2.2.6 Decomposition Pruning . 18

3 Methodology 20

3.1 Dataset Construction . 20

3.2 Baseline Frequent Subgraph Mining 22

4 Refinements 24

4.1 Filtering . 24

4.2 Extracting . 26

4.3 Random Relabeling . 27

5 Conclusions and Future Work 30

5.1 Conclusion . 30

5.2 Future Work . 32

iii

A Optimized Frequency Checking 33

Bibliography 35

B Declaration of Consent 39

iv

Chapter 1

Introduction

In this section, the topic of this thesis is embedded in a broader context, and the

research question is articulated. Then, an overview of the subsequent structure of

the thesis is provided.

1.1 Frequent Subgraph Mining in Context

The field of computer science is characterized by a broad spectrum of disciplines

focused on the representation, processing, and analysis of data. This encompasses

areas such as algorithms and data structures, security and cryptography, and com-

puter graphics and visualization [2].

Among its many subfields, pattern recognition plays a central role in enabling

computers to detect regularities in data [3]. Whether the task involves recogniz-

ing handwritten digits [4], classifying images [5], or analyzing code change pat-

terns [6], pattern recognition provides a foundation for identifying structures in

complex datasets.

Within pattern recognition, a distinction exists between the type of data, rang-

ing from sequences and time series [7] to trees [8] and graphs [9], each requiring

specialized analytical techniques. Graph-based pattern recognition focuses on data

represented as nodes and edges, a natural format for modeling phenomena as di-

verse as social network interactions [10], biochemical pathways [11], transportation

networks [12], or software and its evolution [13].

Methods for analyzing graph-structured data include graph clustering and com-

munity detection (to uncover tightly knit groups of nodes) [14], graph classifica-

tion (to assign whole-graph labels, for instance, identifying malicious versus benign

network topologies) [15], and, more recently, graph neural networks (GNNs) for

end-to-end learning on graph inputs [16].

Frequent subgraph mining (FSM) remains a core technique in this landscape,

1

allowing the discovery of subgraphs that recur across a collection of graphs and

revealing common structures or shared building blocks [17].

1.2 Software Evolution as Graphs

Graphs are a versatile data structure that can represent a wide variety of real-

world and abstract systems. In the context of code analysis, source code can be

mapped onto graphs in many ways. Abstract syntax trees capture the hierarchical

structure of language constructs [18], control-flow graphs model possible execution

paths [19], call graphs describe inter-procedural invocation relationships [20], and

program-dependence graphs (PDGs) combine control and data dependencies into

a single representation [21]. Each of these graph views highlights different aspects

of a program’s behavior and structure, making them invaluable for tasks ranging

from optimization [22] and bug detection [23] to change analysis and refactoring

support [24].

This thesis is focused on the analysis of changes between versions of code. As

software undergoes development, programmers implement modifications to intro-

duce new functionality, fix bugs, or refactor code. When these modifications are

represented in graphs, nodes represent elements of code, and edges represent the re-

lationship between these elements. The nodes and edges are labeled to indicate the

type of code element and how the elements and their relationships have changed.

In order to encompass the intricacies of these relationships, the edges are directed.

Every specific code change is therefore encoded as a labeled, directed graph [25].

In this context, a frequent subgraph represents a recurring change pattern. Iden-

tifying these change patterns is valuable for several reasons. For instance, it in-

forms tools used for code auto-completion [26], automatic refactorings [27], or quick

fixes [28]. By mining frequent subgraphs from variation graphs, we gain insight into

the evolutionary patterns of software [13].

1.3 Frequent Subgraph Mining Algorithms

A multitude of different FSM algorithms have been developed over the years, each

with distinct capabilities and optimizations depending on the requirements of the

input data. Among these, some stand out for their impact and innovations.

Among the earliest is gSpan, which was presented in 2002 [29]. gSpan intro-

duced a new lexicographic ordering of graphs and a DFS-code representation. This

innovation made it significantly more efficient than earlier approaches and suitable

for mining large datasets of undirected, labeled graphs.

2

Algorithm Node labels Edge labels Directed

gSpan ✓ ✓ ✗

GraMi ✓ ✓ ✓

FS3 ✓ ✓ ✗

T-FSM ✓ ✓ ✗

SPMiner ✓ ✗ ✓

Table 1.1: FSM algorithms and their capabilities.

GraMi was proposed in 2014 [1] to tackle the scalability bottlenecks of FSM on

large, labeled, directed graphs. GraMi adds pruning strategies to reduce the search

space as well as other optimizations, including a heuristic. These techniques allow it

to avoid a large fraction of expensive matching operations and maintain a compact

in-memory data footprint, leading to significant speed-ups over earlier methods on

real-world graphs.

FS3 [30] employs a probabilistic approach by sampling subgraphs and estimating

their frequencies. It was proposed in 2015 and operates on undirected labeled

graphs. FS3 is particularly useful when the dataset is of considerable size and

exhaustive enumeration is not feasible.

More recently, T-FSM was proposed in 2023 [31] and is designed to leverage

hardware capable of parallel processing, such as multicore processors. T-FSM op-

erates on labeled, undirected graphs and boasts high scalability for graph mining

on large data platforms.

SPMiner, introduced in 2023 [32], employs a novel approach by integrating con-

cepts from representation learning and subgraph mining. It learns vector embed-

dings of subgraph structures to guide the mining process and supports directed

graphs with node labels. The utilization of representation learning enables it to

scale more effectively in comparison to exhaustive pattern enumeration methods.

The key capabilities of these algorithms are summarized in Table 1.1.

Given that the data consists of directed graphs with both node and edge labels,

GraMi is an ideal choice for the FSM tasks in this thesis. By applying GraMi to

these graphs, the thesis aims to uncover interesting patterns in variation diffs.

1.4 Thesis Structure

The remainder of this thesis is organized as follows.

After this introduction, there will be an explanation of FSM in general and the

GraMi algorithm in particular. Chapter 3 will provide a more thorough exploration

3

of the data and how it was generated as well as the application of GraMi on this

data. This will be followed by three possible pre- and post-processing methods to

improve the output of GraMi for this specific data. Chapter 5 will conclude the

thesis with a summary and suggestions for future work.

4

Chapter 2

Foundation

GraMi, proposed by Elseidy et al. in 2014 [1], is an FSM algorithm designed to

operate on a single large, directed graph with both node and edge labels. Rather

than storing every embedding of a candidate subgraph, GraMi stores only compact

templates and reformulates the FSM problem as a constraint satisfaction problem

(CSP). This CSP formulation enables GraMi to discover the minimal set of subgraph

appearances required to verify the frequency, thereby avoiding redundant searches.

To further improve performance, GraMi employs a heuristic and a suite of opti-

mizations that prune entire branches of the search tree, prioritize fast searches and

defer more expensive ones, and exploit special graph structures when present.

This chapter begins with a review of the fundamentals of frequent subgraph min-

ing and then moves on to explain the workings of GraMi. Finally, the optimization

techniques are explained in greater detail.

2.1 Frequent Subgraph Mining and GraMi

2.1.1 Foundations of Frequent Subgraph Mining

To help with the comprehension of the following detailed description of FSM, some

intuition is provided first. The idea behind FSM is to identify subgraphs in a

graph that appear frequently. A threshold is defined, and a subgraph is considered

frequent if it occurs at least as many times in the graph as the threshold defines [1].

For example, if we consider the graph in Figure 2.1(a) and set the frequency

threshold τ to 3, the only subgraph that is considered frequent is the one shown in

Figure 2.1(b). If the threshold is lowered to τ = 2, however, both the subgraphs

illustrated in Figure 2.1(c) also qualify as frequent.

Before delving into an in-depth description of GraMi, the groundwork of a formal

foundation for FSM is established.

5

u?

u?

u?

2

1

u?

u?

2

1

u?

1

(a)

v?

v?

1

(b)

v?

v?

v?

2

1

v?

v?

2

(c)

Figure 2.1: Frequent subgraphs found using different thresholds.

A graph G = (V,E, L) consists of a set of nodes V , a set of edges E, and a

labeling function L that assigns labels to nodes and edges [1].

A graph S = (VS, ES, LS) is a subgraph of a graph G = (V,E, L) if and only if

VS ⊆ V , ES ⊆ E, and LS(v) = L(v) for all v ∈ VS ∪ ES [1].

The data used in this thesis contains nodes and edges with a single label each,

and all edges are directed. For illustrative purposes, edges are represented by arrows,

and nodes are colored according to their labels.

Definition 1 (Subgraph Isomorphism, from [1]). Let S = (VS, ES, LS) be a subgraph

of a graph G = (V,E, L). A subgraph isomorphism of S to G is an injective function

f : VS → V such that LS(v) = L(f(v)) for all nodes v ∈ VS, and (f(u), f(v)) ∈ E

with LS(u, v) = L(f(u), f(v)) for all edges (u, v) ∈ ES.

A subgraph isomorphism finds a smaller graph inside a larger one by establishing

a one-to-one correspondence between their nodes and edges, ensuring that both

connections and labels match. For example, the subgraph in Figure 2.1(b) can be

mapped to the larger graph in 2.1(a) in three distinct ways: in every mapping, v1

corresponds to u1, while v2 corresponds to u2, u3, or u4.

To measure the support of a subgraph, meaning the number of times it can be

found in a graph, one can count the number of subgraph isomorphisms. However,

when determining the support in this way, it is not anti-monotone. A measure is

anti-monotone when its support cannot increase when extending a subgraph [1].

6

u?

u? u?

u? u? u?

2

1 1

2 2

(a)

v?

v?

1

(b)

v?

v?

v?

1

2

(c)

Figure 2.2: Anti-monotonicity example.

This is not the case for counting subgraph isomorphisms, which is illustrated in

Figure 2.2.

The subgraph in Figure 2.2(b) has two subgraph isomorphisms in the graph in

Figure 2.2(a), namely mapping v1 to u1 and v2 to u2 or u3. When extending the

subgraph to the graph seen in Figure 2.2(c), the support increases to three, because

v3 can map to u4, u5, or u6. Having an anti-monotone metric is crucial for pruning,

as a subgraph whose support falls below the threshold can only be discarded if one

knows its support cannot rise again in any extension [1].

There are various ways to measure support, many of which are anti-monotone by

design, such as homomorphism-based support [29] or maximum edge coverage [33].

GraMi employs the minimum-image-based support (MNI) metric [1], which counts

the number of distinct nodes in each domain and takes the minimum of these counts

as the pattern’s support.

Definition 2 (Minimum Image-based Support (MNI), from [1]). Let f1, . . . , fm be

the set of subgraph isomorphisms of a subgraph S = (VS, ES, LS) in a graph G.

Also let F (v) = {f1(v), . . . , fm(v)} be the set that contains the (distinct) nodes

in G whose functions f1, . . . , fm map a node v ∈ Vs. The minimum image-based

support (MNI) of S in G, denoted by sG(S), is defined as sG(S) = min{t | t =

|F (v)| for all v ∈ VS}.

Using this metric on the example in Figure 2.2 and looking at the subgraph

in Figure 2.2(b) as S1, one can deduce that F (v1) = {u1} and F (v2) = {u2, u3},
therefore sG(S1) = 1. Extending this to the subgraph in Figure 2.2(c) as S2 with

F (v3) = {u4, u5, u6} does not change the MNI, so sG(S2) = sG(S1) = 1.

With these definitions, the FSM problem can be formally stated as follows:

7

Problem 1 (Frequent Subgraph Isomorphism Mining, from [1]). Given a graph G

and a minimum support threshold τ , the frequent subgraph isomorphism mining

problem is defined as finding all subgraphs S in G such that sG(S) ≥ τ .

Note that Problem 1 does not require an exact calculation of the MNI; it only

requires that the MNI be greater than τ . This fact allows the problem to be modeled

as a constraint satisfaction problem (CSP) [1].

Before defining a CSP formally, it helps to build some intuition. At its core, a

CSP is a mathematical framework used for finding values that satisfy a collection

of rules. The CSP consists of variables, each of which must be assigned a value; a

domain of possible values for each variable; and a set of constraints [1]. This concept

is common in many everyday scenarios, for example, solving a Sudoku puzzle, where

each empty cell is a variable, the numbers 1–9 form the domain, and the rules of

Sudoku serve as the constraints.

In the context of subgraph isomorphisms, CSPs provide a structured way to de-

scribe how nodes of a smaller graph can be mapped to nodes of a larger graph while

preserving connectivity and labels. For each node in a subgraph, a corresponding

node in the larger graph must be found that has the same label and edges. If a

matching node can be found for each node in the subgraph, and if the connectivity

and labels are correct, then this is considered a solution to the CSP. In this case,

the CSP’s variables match the subgraph’s nodes, its domains are all nodes from the

large graph that could potentially match, and its constraints are the connectivity

and labels. Formally, this can be described as follows:

Definition 3 (Subgraph S to Graph G CSP, from [1]). Let S = (VS, ES, LS) be a

subgraph of a graph G = (V,E, L). The subgraph S to graph G CSP is defined as

a constraint satisfaction problem (X,D,C), where:

� X contains a variable xv for every node v ∈ VS.

� D is a set of domains, where each variable xv ∈ X has a domain Dv ⊆ V .

� Set C contains the following constraints:

• xv ̸= xv′ for all distinct v, v′ ∈ VS.

• L(xv) = LS(v) for all v ∈ VS.

• L(xv, xv′) = LS(v, v
′) for all (v, v′) ∈ ES.

Whenever it is clear from the context, v may be used to refer to the corresponding

variable xv to simplify notation.

8

An assignment of a node u to a variable v is considered valid if and only if there

exists a solution to the CSP that assigns u to v. Each valid assignment corresponds

to an isomorphism [1].

Proposition 1 (from [1]). Let (X,D,C) be the subgraph S to graph G CSP. The

MNI support of S in G satisfies τ , i.e., sG(S) ≥ τ , if and only if every variable in

X has at least τ distinct valid assignments (i.e., isomorphisms of S in G).

The GraMi algorithm builds on this proposition, which allows it to consider the

number of valid assignments for each variable to determine if a subgraph is frequent.

Proposition 1 shows that the MNI support of a subgraph S in G is simply the

smallest number of distinct CSP assignments (i.e., node mappings) any node from

S can take. This gives us a direct, variable-centric way to test frequency. Once

subgraph matching has been modeled as a CSP, the MNI support can be computed

by examining each variable’s set of valid assignments. If every variable can reach at

least τ different host nodes, then S occurs with a support larger than τ ; otherwise

it does not [1].

Proposition 1 thus provides the formal justification for GraMi’s core strategy.

Rather than explicitly enumerating every embedding of S, GraMi simply verifies

that the MNI support of S meets the threshold τ and uses pruning and other

optimization techniques to quickly determine whether a subgraph is frequent or

can be discarded.

2.1.2 The GraMi Algorithm

Algorithm 1 FrequentSubgraphMining(G, τ) (from [1])

1: result← ∅
2: Let fEdges be the set of all frequent edges of G
3: for each e ∈ fEdges do
4: result← result ∪ SubgraphExtension(e,G, τ, fEdges)
5: Remove e from G and fEdges
6: end for
7: return result

The main loop of the GraMi algorithm is shown in Algorithm 1 [1]. Due to

the anti-monotone property of the MNI measure, only frequent edges—those that

occur more than τ times—need to be considered for frequent subgraphs. Based

on this, the subgraph candidates begin as a single edge from the set of frequent

edges fEdges (line 3) and are iteratively extended by an edge from fEdges by

Algorithm 2 (line 4) [1].

9

Algorithm 2 SubgraphExtension(S,G, τ, fEdges) (from [1])

1: result← S, candidateSet← ∅
2: for each edge e in fEdges and node u of S do
3: if e can be used to extend u then
4: Let ext be the extension of S with e
5: if ext is not already generated then
6: candidateSet← candidateSet ∪ ext
7: end if
8: end if
9: end for

10: for each c ∈ candidateSet do
11: if sG(c) ≥ τ then
12: result← result ∪ SubgraphExtension(e,G, τ, fEdges)
13: end if
14: end for
15: return result

In Algorithm 2 [1], the candidate subgraph S is, if possible, extended by a

frequent edge (line 4). If an extension has already been considered, it is skipped

(line 5). Then, based on the anti-monotone property, only frequent subgraphs are

considered for further extension (line 11). The algorithm recursively calls itself on

these subgraphs, extending each one until no further frequent extension exists (line

12) [1].

u?

u? u?

u? u?

2

1 1

2

u?

1

(a)

2

1

(b)

1

2

(c)

Figure 2.3: Subgraph extension process example.

For clarity, an example of this process can be seen in Figure 2.3. Assuming

a support threshold of two, graph G, as seen in Figure 2.3(a), has two frequent

edges, which can be seen in Figure 2.3(b). These will be called e1 and e2 for the top

10

and bottom, respectively. Node u1 cannot be extended by edge e2, because e2 does

not contain any pink nodes. However, it can be extended by e1. If this extension

does not already exist—for example, by extending u3 to u1—it will be added to the

candidate set. From there, the candidate is further extended by edge e2. Again, if

this further extension, depicted in Figure 2.3(c), is new, it is added to the candidate

set as well. This process continues with u1 as the origin, and then it is repeated

with each other node in G as the origin. After generating the entire candidate set,

the frequency of each candidate is checked. If a candidate is frequent, it is added to

the result set. In this example, the subgraphs shown in Figures 2.3(b) and 2.3(c)

make up the result set, which is returned as the output of the algorithm.

Algorithm 3 IsFrequentCSP(S,G, τ) (from [1])

1: Consider the subgraph S to graph G CSP
2: Apply node and arc consistency
3: if the size of any domain is less than τ then
4: return false
5: end if
6: for each solution Sol of the S to graph G CSP do
7: Mark all nodes of Sol in the corresponding domains
8: if all domains have at least τ marked nodes then
9: return true

10: end if
11: end for
12: return false

An integral part of Algorithm 2 is the frequency check on line 11. To perform

this check, consider Algorithm 3 [1], which is based on Proposition 1. This algorithm

determines whether a subgraph S is frequent in a graph G according to a threshold

τ . To achieve this, it first asserts node and arc consistency (line 2) [1].

Node consistency involves excluding nodes from G that cannot be matched,

such as nodes with labels that are not present in S or nodes with a lower degree

than those in S. Arc consistency ensures the consistency between the assignments

of two variables. Specifically, if nodes v and v′ in S are connected by an edge,

arc consistency ensures that each candidate in the domain of v has a compatible

candidate in the domain of v′ that is connected by an edge with the correct label.

If, after enforcing these consistencies, the size of any domain is smaller than τ , the

algorithm can return false based on Proposition 1 (line 4) [1].

Following this pruning, the algorithm considers all solutions to the subgraph

S to graph G CSP and marks the corresponding nodes in the domains (line 7).

According to Proposition 1, S is frequent if all domains have at least τ marked

nodes [1].

11

Algorithm 3 provides a basic idea for determining the frequency of a subgraph

using Proposition 1. Further optimizations are presented in the following chapter.

2.2 Optimization Techniques

GraMi implements multiple optimizations, primarily when checking the frequency

of a subgraph in a graph. This section will first explain the heuristic used to speed

up the search process. Then Subsections 2.2.2, 2.2.3, and 2.2.4 cover optimizations

using a lookup table, the properties of special graphs, and symmetric candidate sub-

graphs, respectively. Finally, Subsections 2.2.5 and 2.2.6 address inefficient searches.

The pseudocode for the frequency checking algorithm that incorporates all of these

optimizations can be found in Appendix A.

2.2.1 Heuristic

Algorithm 4 IsFrequentHeuristic(S,G, τ) (from [1])

1: Consider the subgraph S to graph G CSP
2: Apply node and arc consistency
3: for each variable v with domain D do
4: count← 0
5: Apply arc consistency
6: if the size of any domain is less than τ then
7: return false
8: end if
9: for each element u of D do

10: if u is already marked then
11: count++
12: else if a solution Sol that assigns u to v exists then
13: Mark all values of Sol in the corresponding domains
14: count++
15: else
16: Remove u from the domain D
17: end if
18: if count = τ then
19: Move to the next v variable (Line 3)
20: end if
21: end for
22: return false
23: end for
24: return true

GraMi uses a heuristic to speed up frequency checking. An improved version of

Algorithm 3, which employs this heuristic, is shown in Algorithm 4 [1]. It considers

12

each variable and searches for τ valid assignments. If they are found, it continues

to the next variable. More specifically, after applying node and arc consistency,

Algorithm 4 iterates over all elements of the domain of each variable and looks

for a solution that assigns this element to the corresponding variable (line 12). If a

solution is found, the count variable is incremented (line 14); otherwise, the element

is removed from the domain (line 16). Removing an element from a domain may

cause inconsistencies in other domains, so arc consistency must be enforced again

(line 5). If for any domain count fails to reach the threshold τ , the subgraph is not

frequent (line 22); otherwise, it is considered frequent (line 24) [1].

Algorithm 4 also marks all elements of all domains that are part of a solution

(line 13). When evaluating an element that is already marked, we know that a

valid assignment for this element has already been found and can simply increment

count without searching for another solution (line 10). This allows the algorithm

to avoid redundant searches [1].

u?

u? u?

u? u?

2

1 1

2
u?

1
u?

2

(a)

v?

v? v?

1 1

(b)

v?

v?

2

(c)

Figure 2.4: Heuristic example.

For clarity, an example is given using the graphs in Figure 2.4. When considering

a support threshold of two, the graph in Figure 2.4(a) as G and the subgraph in Fig-

ure 2.4(b) as S1, the domains are as follows: Dv1 = {u1, u2}, Dv2 = {u3, u4}, Dv3 =

{u3, u4}. When enforcing arc consistency, u2 is dropped from v1’s domain because

it has no connection to any of the other domains. With the new domain of v1 being

{u1}, false is returned on line 7 because this domain is smaller than the threshold

τ .

Now consider the second subgraph S2 from Figure 2.4(c), with initial domains

Dv1 = {u3, u4} and Dv2 = {u5, u6, u7}. Enforcing node and arc consistency does

not remove any values, so the domains remain the same. Then, each CSP variable

is processed in turn. For v1, take the first domain element u3. A supporting

assignment (v1 7→ u3, v2 7→ u5) is found, so u3 and u5 are marked, and count is

incremented to 1. Next, consider u4. A second valid assignment (v1 7→ u4, v2 7→ u6)

13

is found, u4 and u6 are marked, and count is incremented to 2. Once count reaches

the threshold τ = 2, the algorithm moves on to v2.

Considering the next variable v2, the element u5 is already marked, and therefore

count is incremented to 1 immediately without looking for any solutions. The same

happens for element u6, bringing count to 2. Since v2 has now reached the threshold

τ = 2 and there are no more variables left, the algorithm terminates and returns

true. Note that no further matching checks were required for variable v2, and u7

was never examined, thanks to the markings of previously found matches and the

early exit once each variable’s count reached τ .

2.2.2 Push-Down Pruning

1: for all edge e of S do
2: Let S/e be the graph after removing e from S
3: Remove values in the domains of S corresponding to invalid assignments in

S/e

4: end for

Figure 2.5: Sketch of the push-down pruning procedure (from [1]).

Figure 2.5 [1] outlines the push-down pruning routine, which exploits the fact

that any node mapping ruled out for a subgraph remains invalid for an extension

of that subgraph. Before iterating over all elements of the domains and looking for

solutions to the CSP for a subgraph S, GraMi iterates over each edge e in S, forms

the smaller graph S/e by removing e from S, and looks up any assignment already

known to be invalid for that graph. These assignments are then removed from the

domain of S.

In practice, these invalid assignments are stored in a global lookup table during

the search step. By pushing down these prunings from each possible parent graph

into S, the domain sizes are reduced upfront, cutting down the elements that need

to be tested in the subsequent support checking phase. Some subgraphs are even

disqualified without the need for any searches [1].

Figure 2.6 shows an example of this process. Graph G1 is extended to G2 and

G3, among others. Graph G4 is an extension of both G2 and G3. Next to each graph,

the hypothetical domains of its variables are displayed. The invalid assignments of

each step are marked. For example, the element a1 is found to be invalid in G1

and is marked as such. This marking is pushed down to all extensions, even over

multiple iterations. Thus, graph G4 inherits the invalid assignments of all previous

graphs, which significantly reduces its domains.

14

u?

u?

u?

1

u?

u?

1

u?

u? u?

1 1

.

.

.

.

.

.

.

.

.

G?

G?

G?

G?

u? u? u?

? ? ? ? ? ?

a? b? c?

a? b? c?

a? c?

u? u?

? ? ? ?
a? b?

a? b?
a?

u? u?

? ? ? ?

a? c?

a? c?

a? c?

u?

?

a?

a?

a?

(a)

Figure 2.6: Push-down pruning example.

2.2.3 Unique Labels

In the cases where a graph G has a single label per node and a graph S is a subgraph

of G with unique labels and a tree-like structure, the frequency calculation can be

simplified. Specifically, if all of S’s directed edges are treated as undirected and

S then represents a tree where each label only exists once, enforcing node and arc

consistency is sufficient to calculate the frequency sG(S), without requiring any

explicit subgraph isomorphism searches [1]. This simplification is possible because

the uniqueness of labels in S ensures that each node inG can match at most one node

in S, making the variable domains in the CSP disjoint. As a result, after enforcing

consistency, the frequency sG(s) can be computed directly from the domain size,

and no further search is required.

1: if S and G satisfy the unique labels optimization conditions then
2: if any domain size is less than τ then
3: return false
4: end if
5: return true
6: end if

Figure 2.7: Sketch of the unique labels procedure (from [1]).

This procedure, depicted in Figure 2.7 [1], is executed before iterating over the

subgraph and searching for subgraph isomorphisms. It intersects all subgraphs that

satisfy the criteria, eliminating the need for exhaustive search in these cases.

15

u?

u? u?

u?

2

2 1

u?

2

(a)

v?

v? v?

2 1

(b)

Figure 2.8: Unique labels example.

Refer to Figure 2.8 for an example of this process. The graph in Figure 2.8(a) is

G, and the subgraph in Figure 2.8(b) is S. S completes all objectives of the unique

labels optimization, because each label occurs only once, and replacing the directed

edges with undirected ones would result in a tree. After enforcing node consistency,

u4 does not need to be considered anymore because its label does not appear in

S. u5 cannot survive arc consistency enforcement because no edge connects it to

any element in the domain of v1. The remaining elements in the domains now

participate in a subgraph isomorphism between G and S.

2.2.4 Automorphism

An automorphism is an isomorphism from a graph to itself. In the context of

subgraph mining, automorphisms arise when a subgraph contains symmetries, so

if two nodes or substructures are indistinguishable. In this case, the valid assign-

ments found for one node or substructure can be reused for the other, which avoids

redundant searches [1].

1: if there exists an automorphism with a computed domain D′ then
2: D ← D′ and continue to the next variable
3: end if

Figure 2.9: Sketch of the automorphism procedure (from [1]).

In practice, the procedure shown in Figure 2.9 [1] can be applied to each variable

prior to the computation of the domain. If an automorphism maps a variable’s

domain D to that of another variable, the corresponding domain D′ can be directly

reused, eliminating the need for any further domain calculations.

Consider the graph in Figure 2.10(a) as G and the subgraph in Figure 2.10(b)

16

u?

u? u?

u?

2

1 1

(a)

v?

v? v?

1 1

(b)

Figure 2.10: Automorphism example.

as S, with domains Dv1 = {u1}, Dv2 = {u2, u3}, and Dv3 = {u2, u3}. Intuitively,

due to the symmetries in S, the nodes v2 and v3 are interchangeable. As a result,

any node in G that is a valid match for v2 must also be a valid match for v3, and

vice versa. Therefore, after computing the domain of v2, the same domain can be

assigned to v3 without recomputing it.

2.2.5 Lazy Search

To determine whether a subgraph S is frequent in a graph G, the frequency check-

ing algorithm explores all possible partial assignments of nodes in S to nodes in G,

searching for enough valid assignments to meet the frequency threshold τ . How-

ever, not all partial assignments are equally efficient to evaluate. Some are compu-

tationally expensive and may never lead to a valid embedding. Since only τ valid

assignments have to be found for a subgraph to be considered frequent, it is not

necessary to explore every possible assignment, especially those that are expensive

to compute [1].

To optimize this process, GraMi imposes a time limit, and if a search exceeds

this limit, the algorithm proceeds to the next partial assignment. This allows the

algorithm to possibly reach the required number of valid embeddings through more

efficient assignments. In many cases, a subgraph can be confirmed frequent without

ever needing to resume the slow searches [1].

However, if the number of embeddings found without timeouts is not sufficient,

i.e., fewer than τ , but could possibly reach τ with the timed-out searches, GraMi

revisits these searches. Each suspended search resumes from its last saved state, this

time without a time limit. In this way, GraMi avoids unnecessary computation when

possible but guarantees a complete search of the entire search space if required [1].

17

2.2.6 Decomposition Pruning

1: Decompose S into a set of graphs Set containing the newly added edge
2: for all s ∈ Set do
3: Remove invalid assignments of s from domains of S
4: end for

Figure 2.11: Sketch of the decomposition pruning procedure (from [1]).

Decomposition pruning, as seen in Figure 2.11 [1], is applied exclusively when

resuming timed-out searches, with the goal of reducing the problem size by focusing

on smaller components of the subgraph. Algorithm 2 extends a subgraph S with a

new edge e. Decomposition pruning generates all connected components of S that

include the edge e by iteratively removing one edge at a time from S and recording

the connected components containing e. Identifying and eliminating invalid assign-

ments on these smaller components instead of the full subgraph S can be done more

efficiently. These invalid assignments can then be handed down to S and reduce

its search space. Components of S that do not contain the edge e are excluded

from decomposition pruning, as their invalid assignments are already handled by

push-down pruning [1].

1 1

2

1

2

1

1 1

DECOMPOSE

EXTEND

(a)

Figure 2.12: Decomposition pruning example.

This approach is illustrated in Figure 2.12. The graph on the left is extended by

a new edge. Following this extension, the graph is decomposed into all connected

components that include the newly added edge. Before checking the frequency

of the extended graph, the invalid assignments for the connected components are

identified and transferred to the extended graph. Finding invalid assignments for the

18

components is faster because of their smaller size, and, based on the anti-monotone

property, the invalid assignments can be transferred to the full subgraph.

19

Chapter 3

Methodology

In this thesis, the underlying data consists of graphs that represent changes in

software. These graphs were created using DiffDetectve [25]. This chapter briefly

explains how the graphs are created and then presents some statistics and results

from applying GraMi to the dataset.

3.1 Dataset Construction

DiffDetective is designed to operate on any generic differencing technique [25]. In

the context of this thesis, the focus is on analyzing software code changes. To that

end, DiffDetective is applied to the version history of a GitHub repository. For the

purpose of this thesis, a demo repository was chosen; however, the entire process is

fully reproducible and can be applied to any GitHub repository.

#ifdef A

foo();

#else

#ifdef B

baz();

#endif

#endif

#ifdef A

foo();

bar();

#endif
#if B && C

baz();
#endif

#ifdef A

foo();

#else

#ifdef B

bar();

#endif

#if B && C

baz();

#endif
#endif

-

-

+

+

+

-

foo();

A

else

B

baz();

bar();

root

B && C

(a)

Figure 3.1: Data generation using DiffDetective (adapted from [25]).

20

In Figure 3.1, two versions of an example code are shown. A change file can

be created from these two versions of the code, like the one seen in the center of

Figure 3.1. The green, plus-marked code has been added, and the orange, minus-

marked code has been deleted. This change file can be converted into a graph. Each

node represents a piece of code, and each edge represents the relationship between

them. The nodes and edges are color-coded in the same way as the code: green if

added and orange if deleted during the code change. Note that most nodes have

one edge originating from them. However, there are exceptions, such as the node

containing baz(); at the bottom of the graph. The node itself is uncolored because

baz(); existed before and after the change. Its relation to node B was removed, and

a relation to node B&&C was added. This is based on the fact that the position

of the function baz(); changed inside the code [25].

For the purpose of FSM, having the full content of a line of code as node labels is

not ideal. In FSM, it is important to generalize beyond exact character-by-character

equality, allowing similar nodes to be considered equivalent. Therefore, nodes and

edges are assigned more generalized labels that better support pattern comparison.

Node Labels Meaning

ADD * Added
REM * Removed
NON * Unchanged

* IF If Statement
* ELSE Else Statement
* ELIF Elif Statement
* ARTIFACT Other Code

Table 3.1: Meaning of node labels.

Edge Labels Meaning

b before
a after
ba before & after

Table 3.2: Meaning of edge labels.

The labelling scheme used in this thesis is shown in Table 3.1 for nodes and

Table 3.2 for edges. Edge labels encode whether the edge existed before, after, or

in both versions of the code. This corresponds to the edge colors in Figure 3.1.

Node labels, on the other hand, consist of two components. The first component

indicates whether the node was added, removed, or stayed unchanged; the second

categorizes the type of code the node represents.

|G| 109
|V | 554.8
|E| 554.3

Table 3.3: Dataset Statistics

21

For this thesis, a dataset consisting of 109 graphs has been constructed. Key

characteristics of the dataset are summarized in Table 3.3. Note that the average

number of edges is only slightly smaller than the average number of nodes. This

distribution is consistent with the graph construction process described earlier.

3.2 Baseline Frequent Subgraph Mining

GraMi was executed on the dataset described in Section 3.1 using a machine

equipped with an Intel i7-1260P processor, 32 GB of RAM, and running Win-

dows 11 Pro. GraMi, as described in Chapter 2, is designed to operate on a single

graph as input. To accommodate this requirement, the 109 individual graphs in

the dataset were merged into a single graph composed of 109 disjoint connected

components, each corresponding to one of the original graphs.

400 600 800 1000 1200
Support

100

101

102

103

104

Ti
m

e
(s

ec
on

ds
)

(a) Runtime.

400 600 800 1000 1200
Support

5

10

15

20

25

30

35

N
um

be
r

of
 S

ub
gr

ap
hs

(b) Number of subgraphs found.

NON_A
RTI

FA
CT

NON_IF

NON_E
LS

E

Label

0.0

0.2

0.4

0.6

Fr
ac

tio
n

of
 T

ot
al

 N
od

es

(c) Node label distribution (support 270).

400 600 800 1000 1200
Support

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

N
um

be
r

of
 E

dg
es

 p
er

 S
ub

gr
ap

h

(d) Average number of edges per subgraph.

Figure 3.2: Statistics of GraMi executions.

With a decrease of the frequency threshold, the number of subgraphs found by

GraMi increases exponentially, as seen in Figure 3.2(b), and so does the computa-

tion time, shown in Figure 3.2(a). Due to this rapid rise in time consumption, a

frequency threshold below 269 could not be processed within a reasonable timeframe

of eight hours or less.

22

NON_IF

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

NON_ARTIFACT

NON_IF ba

ba

ba

ba

(a)

NON_IF

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

NON_ARTIFACT

ba

ba

ba

ba
NON_ARTIFACT

NON_ARTIFACT
NON_ARTIFACT

baba

(b)

NON_IF

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

NON_ARTIFACT
NON_IF ba

ba

ba

ba

(c)

Figure 3.3: Frequent subgraphs found by GraMi.

As the frequency threshold decreases, the average number of edges per subgraph

generally increases (Figure 3.2(d)). Intuitively, this makes sense because larger sub-

graphs likely appear less often and are therefore only found with a lower frequency

threshold.

In Figure 3.3, three representative frequent subgraphs identified by GraMi have

been hand-selected to represent the overall characteristics of the output. Most of

the discovered subgraphs follow a structure similar to those shown in Figures 3.3(a)

and 3.3(b), typically consisting of several NON ARTIFACT nodes pointing to a

NON IF node. Occasionally, a NON IF or NON ELSE node appears alongside

them. A few subgraphs exhibit slightly more structural depth, such as the subgraph

shown in Figure 3.3(c), where a NON ARTIFACT node is nested inside two layers

of NON IF nodes.

This pattern can also be seen in the distribution of labels shown in Figure 3.2(c).

The vast majority of nodes in the output subgraphs are labeledNON ARTIFACT ,

with a smaller number of NON IF and NON ELSE nodes. Most NON IF nodes

appear at the base of the subgraphs.

Note that none of the present subgraphs contain labels without the NON ∗
prefix. Since the goal of this thesis is to uncover meaningful patterns in code

changes, rather than unchanged structure, the current results do not fully meet this

objective. This observation motivates the development of additional methods to

better target subgraphs that reflect actual change.

23

Chapter 4

Refinements

In Chapter 3, the output of GraMi on the constructed dataset was presented. How-

ever, the results were not fully satisfactory, as they mainly reflected unchanged

code patterns rather than meaningful patterns of change. To address this, three

improvement strategies are presented in this chapter.

The first improvement involves filtering the input graphs by removing all edges

labeled ba, which represent unchanged relationships. As an alternative, the second

improvement consists of a two-pass approach. After running GraMi once, the result-

ing frequent subgraphs are removed from the input dataset, and GraMi is executed

again on the reduced graphs. The third approach proposes artificially decreasing

the weight of unchanged nodes or edges by randomly relabeling them.

4.1 Filtering

As seen in Chapter 3, the results produced by GraMi contain exclusively node labels

with the NON ∗ prefix. Additionally, they only contain edges holding the ba label.

Since the objective of this thesis is to discover meaningful patterns in code changes,

rather than unchanged structures, a filtering approach is proposed. Specifically, all

edges holding the ba label are removed from the input graphs. This preprocessing of

the data is intended to focus the FSM process on changes by eliminating unchanged

relationships.

When running GraMi on the filtered dataset using the same hardware configura-

tion as mentioned in Chapter 3, the frequency threshold can be set lower compared

to the unfiltered case. This is due to improved performance at equivalent thresh-

olds, as illustrated in Figure 4.1(a). The number of found subgraphs scales similarly,

as shown in Figure 4.1(b). When filtering out edges labeled ba, the share of node

labels carrying the NON ∗ prefix drops significantly, as illustrated in Figure 4.1(c).

Nevertheless, some NON IF labels remain, typically at the root of the subgraphs

24

25 50 75 100 125 150 175 200 225
Support

100

Ti
m

e
(s

ec
on

ds
)

(a) Runtime.

25 50 75 100 125 150 175 200 225
Support

0

5

10

15

20

25

N
um

be
r

of
 S

ub
gr

ap
hs

(b) Number of subgraphs found.

REM_A
RTI

FA
CT

ADD_IF

ADD_A
RTI

FA
CT

NON_IF

Label

0.0

0.1

0.2

0.3

0.4

0.5

Fr
ac

tio
n

of
 T

ot
al

 N
od

es

(c) Node label distribution (support 20).

Figure 4.1: Statistics of filtered approach.

and without any outgoing edges.

Three representative subgraphs from the output have been hand-selected and

are shown in Figure 4.2. They illustrate the typical structure of the subgraphs

produced after filtering. Each subgraph has a node with the NON ∗ prefix at the

root and a varying number of ∗ ARTIFACT nodes.

NON_IF

ADD_ARTIFACT

a

REM_ARTIFACT

REM_ARTIFACT

REM_ARTIFACT

a

b

b

b
ADD_ARTIFACT

(a)

NON_IF

ADD_ARTIFACT

a

REM_ARTIFACT

a

b

ADD_ARTIFACT

ADD_ARTIFACT

a

ADD_ARTIFACT

a

ADD_ARTIFACT

a

ADD_ARTIFACT

a

ADD_ARTIFACT

a

(b)

NON_IF

ADD_ARTIFACT

a

REM_ARTIFACT

a b

ADD_ARTIFACT

(c)

Figure 4.2: Frequent subgraphs found using filtering.

25

4.2 Extracting

This section presents a strategy for increasing the share of nodes carrying the

ADD ∗ or DEL ∗ prefix while retaining some structure given by ba edges. To

achieve this, the output subgraphs that were generated by GraMi as presented in

Chapter 3 are extracted from the input graphs. This forms a reduced set of in-

put graphs. Then, GraMi is run on the reduced dataset in a second pass. This

strategy aims to remove uninteresting subgraphs, such as those from the first pass,

while still allowing ba edges to exist. These runs are characterized by two frequency

thresholds, denoting the thresholds used for the first and second passes, respectively.

0 25 50 75 100 125 150 175 200
Support

100

Ti
m

e
(s

ec
on

ds
)

Extracted Support 500
Extracted Support 1000

(a) Runtime.

0 25 50 75 100 125 150 175 200
Support

100

101

102

N
um

be
r

of
 S

ub
gr

ap
hs

Extracted Support 500
Extracted Support 1000

(b) Number of subgraphs found.

REM_A
RTI

FA
CT

REM_IF

ADD_IF

ADD_A
RTI

FA
CT

NON_A
RTI

FA
CT

NON_E
LI

F

ADD_E
LS

E

NON_IF

NON_E
LS

E

Label

0.0

0.2

0.4

0.6

0.8

Fr
ac

tio
n

of
 T

ot
al

 N
od

es Support 500 / 10
Support 1000 / 50

(c) Node label distribution.

Figure 4.3: Statistics of extracted approach.

With a first-pass frequency threshold of 500, eleven subgraphs were extracted

from the source graphs, compared to only five subgraphs extracted when using a

threshold of 1000. This greater reduction in the dataset allows for lower possible

second-pass thresholds, as shown in Figure 4.3(a). The number of subgraphs found

scales similarly, as seen in Figure 4.3(b).

Since the subgraphs from the first-pass contain manyNON ARTIFACT nodes,

their removal results in a significant drop in the portion of such nodes after the

second pass. This effect is especially pronounced when using a lower first-pass

26

NON_ELSE

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

NON_ARTIFACT

ba

ba

ba

baNON_ARTIFACT

NON_ARTIFACT
NON_ARTIFACT

baba

(a)

NON_ELIF

NON_ELIF

NON_ELIF

ba

NON_ARTIFACT

NON_ARTIFACT

ba

ba

ba

(b)

a

ADD_ARTIFACT

ADD_ARTIFACT

a

a

ADD_IF

ADD_ELSE

(c)

Figure 4.4: Frequent subgraphs found using extraction.

threshold. In contrast, the higher threshold of 1000 removes fewer subgraphs and

therefore leaves in a larger portion of NON ARTIFACT nodes, as illustrated in

Figure 4.3(c).

One of the subgraphs obtained using a first-pass threshold of 1000 and a second-

pass threshold of 50 is shown in Figure 4.4(a). All other subgraphs produced with

these settings are subgraphs of this graph, and therefore contain no edges with a

label different from ba.

Subgraphs obtained with a first-pass threshold of 500 and a second-pass thresh-

old of 5 are shown in Figures 4.4(b) and 4.4(c). These examples were hand-picked

to represent the two dominant patterns observed in the output. The first pattern,

exemplified by Subgraph 4.4(b), features a relatively complicated structure with

multiple layers; however, all edges carry the label ba. The structure of the second

pattern, as in Subgraph 4.4(c), exhibits a simpler structure but does contain edges

with labels b and a. Some interesting patterns can be found, such as the added

if-else block with two associated artifact nodes shown in Subgraph 4.4(c).

4.3 Random Relabeling

The third approach presented in this thesis does not involve the removal of any parts

of the input graphs but aims to reduce the relative importance of edges labeled ba

or nodes carrying the NON ∗ prefix. This is achieved by randomly relabeling these

nodes or edges.

For edge relabeling and with an assumed batch size of two, each edge labeled ba

is randomly renamed to either ba1 or ba2. As a result, two identical edges labeled ba

in the source graph now only have a 50% chance of being considered equal during the

FSM process. In contrast, edges with other labels remain unaffected and retain full

comparability. Node relabeling follows a similar approach. Nodes labeled with the

27

25 50 75 100 125 150 175 200
Support

100

101

102

103

Ti
m

e
(s

ec
on

ds
)

Batch Size 2
Batch Size 5
Batch Size 10

(a) Runtime.

25 50 75 100 125 150 175 200
Support

0

100

200

300

400

500

600

700

N
um

be
r

of
 S

ub
gr

ap
hs

Batch Size 2
Batch Size 5
Batch Size 10

(b) Number of subgraphs found.

NON_IF

NON_A
RTI

FA
CT

Label

0.0

0.2

0.4

0.6

Fr
ac

tio
n

of
 T

ot
al

 N
od

es Batch Size 5, Support 60
Batch Size 10, Support 30

(c) Node label distribution.

Figure 4.5: Statistics of random relabeling approach.

NON ∗ prefix are randomly relabeled into multiple variants, lowering the likelihood

that such unchanged nodes align.

This process makes it less likely for ba edges or NON ∗ nodes to appear in the

same way across graphs, which means they are less likely to form part of a frequent

subgraph. As a result, their influence on the mining process is reduced.

As can be seen in Figure 4.5(a), the time consumption decreases with an increase

in batch size. Similarly, the number of found subgraphs also decreases with an

increase in batch size, as seen in Figure 4.5(b). Important to note is that for these

figures, the nodes and edges have been relabeled to their original form without any

appended numbers. The label distribution, illustrated in Figure 4.5(c), presents a

domination of NON ARTIFACT nodes and no nodes without the NON ∗ prefix.
The handpicked example subgraphs found using a batch size of eight and a

frequency threshold of 30 are shown in Figure 4.6. They all exhibit similar patterns,

typically consisting of a varying number of NON ARTIFACT nodes pointing to

a NON ∗ prefixed node at the root of the graph.

28

NON_IF

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

NON_ARTIFACT

ba

ba

ba

ba
NON_ARTIFACT

NON_ARTIFACT

ba

(a)

NON_IF

NON_ARTIFACT

ba

NON_ARTIFACT

NON_ARTIFACT

ba

ba

ba

NON_ARTIFACT

(b)

Figure 4.6: Frequent subgraphs found using random relabeling.

29

Chapter 5

Conclusions and Future Work

5.1 Conclusion

In this thesis, the goal was to find interesting patterns in software evolution graphs

using an FSM algorithm, specifically GraMi, introduced in 2014 by Elseidy et al. [1].

GraMi approaches FSM by formulating it as a CSP and applies several optimization

techniques, primarily while checking the frequency of a subgraph in a larger graph.

These techniques include the exploitation of special graph types and structures,

which allows the avoidance of any searches in the case of a subgraph with unique

labels and a tree-like structure. The detection of automorphisms in a subgraph can-

didate helps eliminate redundant searches by recognizing symmetries. Additionally,

based on the anti-monotone property, invalid assignments found in a subgraph can

be pushed down to all its extensions. To avoid inefficient computations, lazy search

postpones expensive subgraph matches unless needed. If such searches become nec-

essary, their complexity is reduced via decomposition pruning. Finally, a heuristic

is used throughout to accelerate frequency checking.

The dataset used in this thesis consists of graphs generated by DiffDetective [25],

based on the changes made within a GitHub repository. In total, 109 individual

graphs were created and combined into a single graph with multiple connected

components to meet GraMi’s input requirements.

An initial attempt was made by running GraMi on the dataset. This revealed

several challenges, namely the dominance of edges labelled ba and nodes carrying

the NON ∗ prefix, as well as a lower bound on the frequency threshold of 269 due

to time constraints. To address these issues, three pre- and post-processing methods

were developed.

The first approach involved filtering out all edges labeled ba. The second con-

tained two passes of the GraMi algorithm. Subgraphs found in the first pass were

extracted from the input graphs before performing a second pass. The final method

30

randomly renamed NON ∗ prefixed nodes or ba edges to lower the likelihood of

such elements matching during the FSM process.

When running GraMi on the unmodified dataset, the frequency threshold could

not be lowered below 269 within a reasonable timeframe. This yielded no subgraphs

with an edge carrying a label other than ba.

When filtering the source graphs to exclude all edges labeled ba, a much lower

frequency threshold could be set. The subgraphs that were found differ from those

produced by running GraMi on the unfiltered dataset, but they do not exhibit

significantly more variety, as they are now dominated by artifact nodes. This is

suspected to be either due to a substantial loss of structural information caused by

removing all ba edges or because the frequency threshold remains too high. While

the original issue of the domination of ba edges was resolved, the approach did not

lead to the discovery of more interesting patterns.

As a second approach, extracting the output subgraphs from the input graphs

and performing a second pass allowed some ba edges to remain, preserving more

of the original structure. This method also allowed for a lower frequency thresh-

old compared to running GraMi on the unmodified dataset. Because of this lower

threshold, some output subgraphs revealed more structure, such as if-else blocks,

which could be considered interesting patterns. However, the reveal of these struc-

tures required setting the second pass threshold at five, which raises concerns about

whether they can be considered frequent.

Finally, when relabeling the nodes or edges, lower thresholds could be achieved

compared to the unmodified dataset, though not as low as those achieved by ex-

tracting subgraphs. This also depends on the batch size, so the number of distinct

names a label can be assigned. Higher batch sizes result in lower possible thresh-

olds. While the subgraphs discovered using this technique are potentially more

interesting, a significant number of ba edges remain, even with a batch size as large

as ten.

Overall, while this thesis did not uncover many highly interesting patterns, it

demonstrates that FSM is a valid method for analyzing software evolution graphs.

The experiments show that the quality of the results can be significantly improved

by various pre- and post-processing steps. Some methods are constrained by per-

formance, while others produced results dominated by artifact nodes, limiting their

usefulness. A few interesting patterns did emerge; however, they required a very

low frequency threshold of five, suggesting that the data may not contain many

interesting patterns with a high frequency.

31

5.2 Future Work

Future research could subdivide the broad ∗ ARTIFACT node label category into

more specific types, which might lead to more interesting patterns. Additionally,

techniques that allow for low frequency thresholds, such as the extraction method,

hold promise but require closer inspection of the extracted subgraphs to evaluate

their practical relevance. Generally, applying these techniques to larger or differ-

ently structured repositories may yield more valuable insights. Finally, leveraging a

more performant FSM algorithm with the ability to handle this type of data could

reveal more interesting patterns.

32

Appendix A

Optimized Frequency Checking

Algorithm 5 IsFrequent(S,G, τ) (Part 1, from [1])

1: Consider the subgraph S to graph G CSP and apply node and arc consistency
2: for all edge e of S do
3: Let S/e be the graph after removing e from S
4: Remove values in the domains of S corresponding to invalid assignments in

S/e

5: end for
6: if S and G satisfy the unique labels optimization conditions then
7: if any domain size is less than τ then
8: return false
9: end if

10: return true
11: end if
12: Compute the automorphisms of S
13: for all variable x and its domain D do
14: count← 0, timedoutSearch← ∅
15: if an automorphism has a computed domain D′ then
16: D ← D′ and continue to next x
17: end if
18: Apply arc consistency
19: if any domain size is less than τ then
20: return false
21: end if

33

Algorithm 6 IsFrequent (Part 2, from [1])

22: for all element u ∈ D do
23: if u is marked then
24: count← count+ 1
25: else
26: Search for a solution assigning u to x with a time threshold
27: if search timeouts then
28: Save search state to timedoutSearch
29: else if solution Sol is found then
30: Mark all values of Sol in their respective domains
31: count← count+ 1
32: else
33: Remove u from D and add it to invalid assignments in S
34: end if
35: if count = τ then
36: move to next variable
37: end if
38: end if
39: end for
40: if |timedoutSearch|+ count ≥ τ then
41: Decompose S into a set of graphs Set containing the newly added edge
42: for all s ∈ Set do
43: Remove invalid assignments of s from domains of S
44: end for
45: for all saved state t ∈ timedoutSearch do
46: Resume search from t
47: if solution Sol is found then
48: Mark values of Sol in corresponding domains
49: count← count+ 1
50: else
51: Remove u from D and add to invalid assignments in S
52: end if
53: if count = τ then
54: Move to the next variable
55: end if
56: end for
57: end if
58: return false
59: end for
60: return true

34

Bibliography

[1] Mohammed Elseidy, Ehab Abdelhamid, Spiros Skiadopoulos, and Panos Kal-

nis. GRAMI: frequent subgraph and pattern mining in a single large graph.

Proc. VLDB Endow., 7(7):517–528, 2014.

[2] Peter J. Denning, Douglas Comer, David Gries, Michael C. Mulder, Allen B.

Tucker, A. Joe Turner, and Paul R. Young. Computing as a discipline: pre-

liminary report of the ACM task force on the core of computer science. In

Herbert L. Dershem, editor, Proceedings of the 19th SIGCSE Technical Sympo-

sium on Computer Science Education, SIGCSE 1988, Atlanta, Georgia, USA,

February 25-26, 1988, page 41. ACM, 1988.

[3] Lasse Holmström and Petri Koistinen. Pattern recognition. WIREs Computa-

tional Statistics, 2(4):404–413, 2010.

[4] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-

based learning applied to document recognition. Proc. IEEE, 86(11):2278–

2324, 1998.

[5] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classifica-

tion with deep convolutional neural networks. Commun. ACM, 60(6):84–90,

2017.

[6] Sunghun Kim, E. James Whitehead Jr., and Yi Zhang. Classifying software

changes: Clean or buggy? IEEE Trans. Software Eng., 34(2):181–196, 2008.

[7] Tak-Chung Fu. A review on time series data mining. Eng. Appl. Artif. Intell.,

24(1):164–181, 2011.

[8] Kaizhong Zhang and Dennis E. Shasha. Simple fast algorithms for the editing

distance between trees and related problems. SIAM J. Comput., 18(6):1245–

1262, 1989.

35

[9] Donatello Conte, Pasquale Foggia, Carlo Sansone, and Mario Vento. Thirty

years of graph matching in pattern recognition. Int. J. Pattern Recognit. Artif.

Intell., 18(3):265–298, 2004.

[10] Mark E. J. Newman. The structure and function of complex networks. SIAM

Rev., 45(2):167–256, 2003.

[11] Young-Rae Cho and Aidong Zhang. Predicting protein function by frequent

functional association pattern mining in protein interaction networks. IEEE

Trans. Inf. Technol. Biomed., 14(1):30–36, 2010.

[12] Ammar Haydari and Yasin Yilmaz. Deep reinforcement learning for intelligent

transportation systems: A survey. IEEE Trans. Intell. Transp. Syst., 23(1):11–

32, 2022.

[13] Mario Janke and Patrick Mäder. Graph based mining of code change patterns

from version control commits. IEEE Trans. Software Eng., 48(3):848–863,

2022.

[14] Santo Fortunato. Community detection in graphs. CoRR, abs/0906.0612, 2009.

[15] Nils M. Kriege, Fredrik D. Johansson, and Christopher Morris. A survey on

graph kernels. Appl. Netw. Sci., 5(1):6, 2020.

[16] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan

Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:

A review of methods and applications. AI Open, 1:57–81, 2020.

[17] Büsra Güvenoglu and Belgin Ergenç Bostanoglu. A qualitative survey on fre-

quent subgraph mining. Open Comput. Sci., 8(1):194–209, 2018.

[18] Ira D. Baxter, Andrew Yahin, Leonardo Mendonça de Moura, Marcelo

Sant’Anna, and Lorraine Bier. Clone detection using abstract syntax trees.

In 1998 International Conference on Software Maintenance, ICSM 1998,

Bethesda, Maryland, USA, November 16-19, 1998, pages 368–377. IEEE Com-

puter Society, 1998.

[19] Frances E. Allen. Control flow analysis. In Robert S. Northcote, editor, Proceed-

ings of a Symposium on Compiler Optimization, Urbana-Champaign, Illinois,

USA, July 27-28, 1970, pages 1–19. ACM, 1970.

[20] Barbara G. Ryder. Constructing the call graph of a program. IEEE Trans.

Software Eng., 5(3):216–226, 1979.

36

[21] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program depen-

dence graph and its use in optimization. ACM Trans. Program. Lang. Syst.,

9(3):319–349, 1987.

[22] Gary A. Kildall. A unified approach to global program optimization. In

Patrick C. Fischer and Jeffrey D. Ullman, editors, Conference Record of the

ACM Symposium on Principles of Programming Languages, Boston, Mas-

sachusetts, USA, October 1973, pages 194–206. ACM Press, 1973.

[23] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabilities in

java applications with static analysis. In Patrick D. McDaniel, editor, Proceed-

ings of the 14th USENIX Security Symposium, Baltimore, MD, USA, July 31

- August 5, 2005. USENIX Association, 2005.

[24] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald C. Gall. Change dis-

tilling: Tree differencing for fine-grained source code change extraction. IEEE

Trans. Software Eng., 33(11):725–743, 2007.

[25] Paul Maximilian Bittner, Alexander Schultheiß, Benjamin Moosherr, Timo

Kehrer, and Thomas Thüm. Variability-aware differencing with diffdetective.

In Marcelo d’Amorim, editor, Companion Proceedings of the 32nd ACM Inter-

national Conference on the Foundations of Software Engineering, FSE 2024,

Porto de Galinhas, Brazil, July 15-19, 2024, pages 632–636. ACM, 2024.

[26] Rahul Amlekar, Andrés Felipe Rincón Gamboa, Keheliya Gallaba, and Shane

McIntosh. Do software engineers use autocompletion features differently than

other developers? In Andy Zaidman, Yasutaka Kamei, and Emily Hill, editors,

Proceedings of the 15th International Conference on Mining Software Reposi-

tories, MSR 2018, Gothenburg, Sweden, May 28-29, 2018, pages 86–89. ACM,

2018.

[27] Mohsen Vakilian, Nicholas Chen, Stas Negara, Balaji Ambresh Rajkumar,

Brian P. Bailey, and Ralph E. Johnson. Use, disuse, and misuse of automated

refactorings. In Martin Glinz, Gail C. Murphy, and Mauro Pezzè, editors,

34th International Conference on Software Engineering, ICSE 2012, June 2-9,

2012, Zurich, Switzerland, pages 233–243. IEEE Computer Society, 2012.

[28] Titus Barik, Yoonki Song, Brittany Johnson, and Emerson R. Murphy-Hill.

From quick fixes to slow fixes: Reimagining static analysis resolutions to enable

design space exploration. In 2016 IEEE International Conference on Software

Maintenance and Evolution, ICSME 2016, Raleigh, NC, USA, October 2-7,

2016, pages 211–221. IEEE Computer Society, 2016.

37

[29] Xifeng Yan and Jiawei Han. gspan: Graph-based substructure pattern mining.

In Proceedings of the 2002 IEEE International Conference on Data Mining

(ICDM 2002), 9-12 December 2002, Maebashi City, Japan, pages 721–724.

IEEE Computer Society, 2002.

[30] Tanay Kumar Saha and Mohammad Al Hasan. Fs3: A sampling based method

for top-k frequent subgraph mining. Stat. Anal. Data Min., 8(4):245–261, 2015.

[31] Lyuheng Yuan, Da Yan, Wenwen Qu, Saugat Adhikari, Jalal Khalil, Cheng

Long, and Xiaoling Wang. T-FSM: A task-based system for massively parallel

frequent subgraph pattern mining from a big graph. Proc. ACM Manag. Data,

1(1):74:1–74:26, 2023.

[32] Rex Ying, Tianyu Fu, Andrew Wang, Jiaxuan You, Yu Wang, and Jure

Leskovec. Representation learning for frequent subgraph mining. CoRR,

abs/2402.14367, 2024.

[33] Björn Bringmann and Siegfried Nijssen. What is frequent in a single graph?

In Takashi Washio, Einoshin Suzuki, Kai Ming Ting, and Akihiro Inokuchi,

editors, Advances in Knowledge Discovery and Data Mining, 12th Pacific-Asia

Conference, PAKDD 2008, Osaka, Japan, May 20-23, 2008 Proceedings, vol-

ume 5012 of Lecture Notes in Computer Science, pages 858–863. Springer,

2008.

38

Appendix B

Declaration of Consent

39

