Rule-based Text Correction

Bachelor Thesis

Faculty of Science, University of Bern

submitted by
Nils E. Neeb

from Brig, Switzerland

Supervision:

PD Dr. Kaspar Riesen
Corina Masanti
Institute of Computer Science (INF)

University of Bern, Switzerland

Abstract

In the corporate publishing process, maintaining consistency in style and vocabu-
lary is essential for clear communication and a strong brand identity. Companies
often rely on proofreaders to achieve this cohesion. This thesis explores the devel-
opment of a program designed to support proofreaders by automating aspects of
the correction process.

The project is rooted in the field of Artificial Intelligence (Al), specifically within
the subdomain of Natural Language Processing (NLP). It focuses on text correction
tasks, such as style and spelling correction. The primary aim is to partially replicate
the work of proofreaders by applying predefined linguistic and stylistic rules. The
methodology involved designing rule-based models that enforce uniformity across
texts.

The results of the empirical investigation indicate that the program effectively sup-
ports style adherence and error correction. It has been statistically identified that
the developed program can automate 43% of the corrections made by proofread-
ers, provided that sufficient rules are defined. This demonstrates that the primary
objective of this thesis has been met and that the system can enhance the current

correction process.

i

Acknowledgements

I would like to thank PD Dr. Kaspar Riesen for his guidance during this project
and for providing helpful feedback throughout the writing process. I also want
to acknowledge PHD student Corina Masanti, who offered valuable inputs and
practical advice during all stages of the work.

Finally, I want to thank my family, especially my parents and my sister, for their

support and patience.

il

v

Contents

1 Introduction

2 Background

2.1 Current State of the Research
2.2 Rules. e
221 Rule Types
2.2.2 Usage and Examples oL
3 Implementation
3.1 Structure
3.2 Graphical User Interface
3.3 Workflow
4 Results
4.1 Test Setup
4.2 Test Results
4.2.1 Results without additional Rules
4.2.2 Results with additional Rules
4.2.3 Interpretationo
5 Conclusions and Future Work
5.1 Conclusion
5.2 Further Work
Bibliography

o OO W W

10
10
17
18

20
20
22
22
23
23

26
26
28

31

vi

Chapter 1

Introduction

In the corporate world, the utilization of proofreaders has become an integral com-
ponent of the publishing process, particularly in the context of ensuring the unifor-
mity of style and vocabulary across various documents. This practice is employed
by numerous companies to maintain the cohesion and clarity of their communi-
cation, thereby contributing to the enhancement of their overall brand, corporate
identity, and reputation.

The program created in the course of this thesis aims to aid proofreaders and
improve the correction process by increasing productivity and decreasing time ex-
penditure. This thesis is situated within Artificial Intelligence, which is a part of
Computer Science that focuses on replicating aspects typically associated with hu-
man intelligence, such as learning, reasoning, problem-solving, and decision-making.
One subdomain of Artificial Intelligence is Natural Language Processing, also called
NLP. The relevant structure of Computer Science is shown in Figure 1.1. The
present thesis is located within the domain of NLP, known as Text Correction. In
this domain, the program is capable of executing tasks across various subfields,
including Style Correction and Spelling Correction, if appropriate rules have been
defined.

I Computer Science I

I Artificial Intelligence l

b

[Matural Language Processing]

\I

I Text Comection

| ————
h

v

¢ 4
I Style Correction I I Grammar Correction l I Spelling Correction I

Figure 1.1: Hierarchical Diagram of Computer Science Domains

The primary objective of this thesis is to develop a program with the ability to,
at least partially, perform the tasks of the proofreaders. Ensuring the consistent
application of the style and wording guidelines provided by companies is a key com-
ponent of the process.

The remainder of this thesis is structured as follows (see also Figure 1.2). After
the introduction, the first chapter is dedicated to the scientific background and
previously existing research in this field. Following this, the theoretical foundation
of the rules, implemented in the program, is discussed. After the theoretical back-
ground is set, the structure as well as the workflow of the correction program are
described. After the description of the implementation, a thorough examination of
the results ensues. There, the setup of the testing and the results are described and

interpreted.

| Introduction I
h

[Background]—[Current State of the research]—[Rules]
r

A

ues ults Test Setup Test Results

k.
[Conclusion and Future Work]

Figure 1.2: Structural Diagram of this thesis

Chapter 2

Background

2.1 Current State of the Research

Rule-based text correction approaches have been used before, but primarily for the
correction of grammatical and syntactical errors in specific languages. One example
of this would be the work of Byun et al. In their research paper, Byun et al. [1]
describe a rule-based approach for correcting spelling errors in spoken-style mes-
sages in Korean text like short messenger service (SMS). They extracted the rules
automatically from the correction corpus and applied the extracted rules to new
sentences. With their system, they could reach a precision of 79.04%.
Language-specific correction programs are not only present for languages with com-
paratively large numbers of speakers, as Adruzi et al. [2] show with their morpho-
logical analysis-based method for spelling correction for Basque. It uses a two-level
morphological analyzer to decompose words into morphemes and verify their gram-
matical validity. This process involves mapping canonical forms to written forms
through language-specific rules. When a word is not recognized, the system dis-
tinguishes between orthographic errors and typographical errors. It then applies
appropriate correction strategies. This language-specific approach enables the sys-
tem to accurately recognize and correct complex word forms that general-purpose
spell checkers often misidentify.

With the paper ” Automatic Rule Acquisition for Spelling Correction”, Mangu et al.
[3] focused more on the automatic learning of rules from a larger one-line text cor-
pus. The captured rules are then stored in a small set of rules. They refrained from
using opaque features and weights in favor of easily understandable rules, which
allowed them to exploit human intuition and thereby enhance the comprehension
and refinement of the system’s acquired knowledge.

In contrast to Byun et al., Milkowski et al. [4] chose a language-independent tool

that uses a rule-based approach in order to detect grammar, style, and consistency

issues. The main focus of their system was on flexibility and extensibility, allowing
rule development without a full formal grammar or deep syntactic parser. They
used a combination of declarative XML rules and Java-based rules.

In their 2019 study, Alamri et al. [5] developed Sahah, an automatic correction sys-
tem designed to address spelling errors in Arabic texts written by dyslexic individu-
als. The system combines rule-based pre- and post-processing with a compression-
based language model (Prediction by Partial Matching) and dictionary lookup for
error detection and correction. It targets common dyslexic writing issues, such as
character repetition, letter confusion, and word segmentation. Evaluation using the
Bangor Dyslexic Arabic Corpus showed Sahah achieved high precision (89%) and
81% accuracy, outperforming general-purpose tools like Microsoft Word and Farasa.
This work demonstrates the effectiveness of tailored, rule-based NLP solutions for
low-resource languages and special user groups. Their work shows an interesting
approach to creating more inclusive correction systems.

Another approach to correcting mistakes in text makes use of statistical methods.
Golding et al. [6] propose a context-sensitive spelling correction method focused
on real-world errors where the incorrect word is a valid dictionary word but con-
textually inappropriate. Their system, called the Contextual Spelling Corrector
(CSC), uses the Winnow algorithm, a linear classifier well-suited for handling high-
dimensional feature spaces with many irrelevant attributes. Each confusion set (e.g.,
to, too, two) is treated separately, and decisions are made based on the contextual
words surrounding the target. The approach significantly outperforms traditional
methods such as n-gram models and Naive Bayes classifiers. Their work emphasizes
the importance of context for text correction programs.

An additional illustration of a rule-based correction system that has been developed
specifically for second-language learners is provided by the work of Lee et al. [7].
Their approach is centered on the correction of grammatical errors in English sen-
tences composed by non-native speakers. Rather than attempting to directly parse
ill-formed input, their system generates a lattice of possible corrections using a set
of rule-based transformations and then selects the most probable corrected sentence
using an n-gram language model. A stochastic context-free grammar (SCFG) parser
is subsequently used to re-rank the candidates based on grammatical plausibility.
The system was evaluated in a task-oriented domain (airline travel) and achieved a
correction accuracy of 88.7% on parsable sentences, demonstrating the potential of
combining rule-based generation with statistical ranking for robust grammar cor-
rection.

A different approach was proposed by Zhou et al. [8]; they developed a grammar

correction system that employs a classification-based approach, wherein different

grammatical error types are addressed by dedicated classifiers. The system extracts
linguistic features to predict the correct grammatical forms, focusing on errors such
as subject-verb agreement and article usage. This targeted method enhances preci-
sion while preserving interpretability, thereby presenting a transparent alternative
to neural models.

In contrast, Hu et al. [9] developed a misspelling correction system that combines
edit distance algorithms with contextual embeddings from pre-trained language
models, such as BERT. The system generates candidate corrections via edit dis-
tance and employs BERT’s masked language modeling to select the best fit in con-
text. This hybrid approach has been demonstrated to be effective in the handling of
both obvious typos and subtle context-dependent errors. On benchmark datasets,
the model achieved an Fl-score of 91.4% on the Twitter misspelling dataset and
88.7% on the Wikipedia misspelling dataset, outperforming traditional spell check-
ers. This finding underscores the efficacy of integrating symbolic and contextual
information for effective misspelling correction.

Another example of a language-specific rule-based correction approach is the work
of Oladéttir et al. [10]. With Icelandic being a low-resource language, their work is a
key component of the Icelandic government’s strategic 5-year Language Technology
Program for Icelandic. In their thesis, Oladéttir et al. used a rule-based modular
system design consisting of three main modules: the tokenizer, the morphological
tagger, and the parser. The tokenizer is responsible for splitting the input text
into tokens such as words or punctuation. Next, the morphological tagger is used
to assign part-of-speech (POS) tags and morphological features like case, number,
gender, or tense to each token. Lastly, the parser performs a syntactic analysis,
building a shallow parse tree of the sentences. The tree pattern matching rules are

then used to detect grammatical errors.

As the research mentioned before shows, a rule-based approach can yield good
results and can increase the understandability of the program. Therefore, a rule-
based approach was chosen for this project. This also ensured consistency with
applying the covered rules. To illustrate the problems that can arise from the use of
generative artificial intelligence, ChatGPT will be used as a representative for this
type of non-local artificial intelligence. In the following paragraph, the previously
mentioned problems will be discussed.

There are two main problems that can be prevented by using a rule-based approach
instead of using Al. The first problem is the character and token limit that many
artificial intelligence systems have.

In Figure 2.1, one can see the response of ChatGPT using the model GPT-4-turbo,

Here are the general character and file size limits you should be aware of when interacting with me:

» Text Input Limits
* Single message (from you): Up to 25,000 characters

¢ Total conversation context: Up to 128,000 tokens (which usually covers ~300,000-500,000 characters,

depending on the content)

B File Upload Limits

® Per file: Up to 100 MB

* lcanread .docx, .pdf, .txt, and many other common file formats.

Figure 2.1: GPT-4-turbo describing its own limitations

when asked about the limits of the current model. Some of the texts that companies
want to have corrected go beyond the scope of GPT-4-turbo. This means that these
texts can not be corrected consistently using such models. This may manifest as
semantic shifts or the omission of expected rule applications.

The second major concern from using non-local ATl models is security. Some models
may use inputs from users to train. If the documents, that need to be corrected,
contain sensitive information or private information, the users may not want them
to be used in the training of Al models. Another advantage of not using Al models
is the simplicity. The rules are much more easily understood by humans than the
architecture with weights and other parameters of an artificial intelligence. In the

next sections, the rules that the system supports are described.

2.2 Rules

2.2.1 Rule Types

The rules used in the program are separated into three main types with multiple
subclasses. These types are based on the underlying mechanism applied to these
rules. Rules of Type 1 replace a word, a list of words, or single characters with
other words. Type 1 contains two sub-rules. Type 2 rules format specific numbers,
such as dates, times, and currency amounts. This type contains three sub-rules.
Lastly, Type 3 rules are for replacements in .docx files, where the section style of the
location of the word that should be replaced decides whether to replace the word
or not. Type 3 has only one sub-rule. The subsequent sections provide a thorough

exposition of these rules and the syntax of their storage in the rule files.

Type 1

Rules of Type 1.1 are stored as follows:
(list) : (replacement) : ()

The first bracket contains a list separated by a comma of at least one word. The
second bracket contains a single word. The word in the second bracket is what the
words in the first bracket are replaced with. The third bracket is there for consis-

tency reasons. It allows for a uniform handling of all rules of Type 1.

Rule Type 1.2 follows a similar pattern for storing information. This allows for

all rules, following this syntax, to be handled uniformly.
(character) : (replacement) : (checklist)

The content of bracket one is a single character. It is meant for special characters
like % or &. Bracket two contains, similar to Type 1.1, a word that the character
in the first bracket is replaced with. The main difference to Type 1.1 can be seen
in bracket three. It contains a list following the same syntax as the list in the first
bracket, meaning words separated by a comma. The words in the text that contain
the character of the first bracket are looked up in the list stored in the third bracket.
If the list does not contain the word from the text, then the character is replaced
with the content of the second bracket. If the list contains the word found in the

text, then the character does not get replaced.

Type 2

Type 2 rules use a different storage syntax than Type 1. All three subtypes use a
single square bracket to store all the relevant information. The first three characters
are in capital and are used to denote the type of rule. The rest of the content
contains the target format, that the corresponding numbers should be formatted
to.

The first subtype is Type 2.1. This type is used for currencies. Its notation looks

as follows:
[NUMformat]

The first three characters, as described before, denote the type (in this case, Type
2.1). The second part is a placeholder that will be used for all rules of Type 2. In

rule type 2.1, the format is denoted in Format Specification Mini-Language.

Rule Type 2.2 is used to format dates. Its notation is similar to the notation
of Type 2.1:

[DATformat]

The type of rule is defined by the first three characters. The format in Type 2.2 is
written as a standard datetime format. This makes it possible that the second part

can be used directly when formatting dates with datetime.

The third and last type is Type 2.3. It is used to format times. Here, the for-

mat of the rule is similar to the last two rules of Type 2:
[TIMformat]

The format in Type 2.3 is, as in rule Type 2.2, in datetime notation. This means

that the format can be directly used and does not need to be adjusted to be usable.

Type 3

Type 3 contains only one rule type, and it is only applicable in .docx documents.
This type of rule shares similarities with rule Type 1.1 and rule Type 1.2. It is

stored as follows:
{list}:{replacement}:{style}

The first bracket contains a list of words, as in rule Type 1.1, that are separated
by a comma. These words are replaced with the replacement word in the second
bracket. This only occurs if the section of the text is of the style denoted in bracket
three. Microsoft Word offers a variety of styles that can be used to quickly format
a text section. Examples of a style in Microsoft Word are title or subtitle. The
dependency on style is what differentiates this rule type from any other previously

described rule.

2.2.2 Usage and Examples

The rules are stored in a separate .txt file. This allows the user to reuse the same
rules without having to manually add them again for each use. Another advantage
of having the rules stored in permanent files is that the rules can be standardized for
all proofreaders, with the possibility of having a central administration of the rule
files. Additionally, rule files can be easily expanded, so that they can evolve and

change with the companies for which the rule files are used. Rule files can contain

any number of rules. The modular design of the rules enables their representation
of a wide range of modifications, as illustrated in Table 2.1. Through the mostly
uniform syntax of the rules, the addition of new rules does not require changes in

any preparation sequence, which is used to transform the rules into rule objects.

Rule Type | Generalized Example

Type 1.1 (list):(replacement):() (cash,bills):(money):()
Type 1.2 (character):(replacement):(checklist) | (&):(and):(H&M,M&M)

Type 2.1 [INUMformat] [NUM.2f]

Type 2.2 [DATformat] [DAT%d.%m.%y]

Type 2.3 [TIMformat] [TIM%H%M]

Type 3.1 {list }:{replacement }:{style} {cash,money,bills}:{funds}:{title}

Table 2.1: Generalized syntax and examples for each rule type

In Figure 2.2, the general application process of the rules can be seen. First, can-
didates that are usually denoted in the first bracket for Type 1 and Type 3 rules
are found. For Type 2 rules, these candidates, which are numbers, need to follow a
specific syntax. Examples of this syntax are common date or time formats, such as

the following examples:

01.01.2000
16:00

Once an appropriate candidate is found, it is checked if certain rule-dependent
conditions are met. If that is the case, then the correction is made according to the

rule. This process is described in more detail in Section 3.1.

Find candidates in
text

h 4

Check if condition is
met

h 2 h 2

Replace/format lgnore

Figure 2.2: Simplified rule application process

Chapter 3

Implementation

3.1 Structure

To run the algorithm that corrects the given text, two things need to be present.
Firstly, the rules need to be entered and stored in an object of the storage class,
and secondly, the text needs to be stored.

The program consists of five main parts.
e Adapter

RuleParser

Applier

e Rule

Storage

These classes are developed using Python and make use of several standard and
third-party libraries. Built-in modules such as string!, re?, datetime®, and os*
were used for core functionality like text processing, regular expressions, time man-
agement, and file system operations. The shutil® module was employed for ad-
vanced file handling tasks, such as moving or copying files. For parsing and inter-

6

preting natural language dates, the third-party library dateparser® was integrated.

The user interface was developed using tkinter’ and its ttk® extension to create

https://docs.python.org/3/library/string.html
Zhttps://docs.python.org/3/library/re.html
3https://docs.python.org/3/library/datetime.html
‘https://docs.python.org/3/library/os.html
Shttps://docs.python.org/3/library/shutil.html
Chttps://dateparser.readthedocs.io/en/latest/
"https://docs.python.org/3/library/tk.html
8https://docs.python.org/3/library/tkinter.ttk.html

10

a basic but functional GUI. Additionally, the python-.docx? library was used for
reading and writing Microsoft Word documents.
All of these parts are needed in order for the program to function efficiently. In the

following sections, all parts will be discussed in detail.

Adapter

The adapter is the first part of the program that interacts with the raw text im-
ported from .txt or .docx files. As shown in Figure 3.2, the rules and the text first

run through the adapter.

In the following section, the transformations of the text are described.

The first step in the adapter is a transformation of the given text, which is entered
as a string, into a raw string. This means that escape characters are now visible
and do not have an influence on the formatting, which allows the system to interact

with them. As a result, the raw escape characters will exemplarily look as follows:

\n
\r

Next, the raw escape characters are replaced by placeholders to prohibit them from
affecting the string manipulations. These placeholders are unique for each type of
escape character. They all follow a pattern that only changes in the last part. The

escape character gets replaced with a space followed by:
-escape-character-

At the end of this string, the escape character and another space are added so the
escape characters do not interfere with the correction later on when the text gets
separated by a space. Based on the previous examples, this leads to the following

results:
u—escape-character—\n,
u—escape-character—-\r

After all the escape characters are replaced with their according placeholder, the
text is returned to the main method to be stored in a storage object.
The handling of the rules does not necessitate the presence of escape characters for

subsequent transformations. Therefore, after loading the rules as a raw string, the

‘nttps://python-docx.readthedocs.io/en/latest/

11

escape characters can simply be deleted and replaced by a semicolon. The resulting
text is then split by semicolons and stored in a list.

Subsequent to this, each element in the sequence is examined to ascertain whether
it contains one of the three bracket characters employed to signify the rules, which
are: (for rule Type 1,[for rule Type 2,{ for rule Type 3. If a position contains
one of these brackets, a corresponding number (1, 2, or 3) is appended to the string
based on the bracket type, in order to facilitate parsing. Then this string is given
to the RuleParser as an argument. The RuleParser returns a rule object based on
the given argument, which is then stored in a separate list. After every position of
the list containing the string given at the start is checked and, if needed, given to
the RuleParser, then the second list, containing all the rule objects, is returned to

the main method.

RuleParser

The RuleParser is the second and last part of the transformation of the rules from a
raw text file into usable rules. The input is the transformed string from the adapter.

This string, for example, may look like this:
1 (wordl,word?2) : (word3) : ()

Initially, the number at the beginning of the string is removed again and used to
determine how the rule needs to be parsed. After this, the string follows the rule
format described previously.

For rule Type 1, the string is split first by colon, which results in three separate
parts. Then, in each part, the brackets are removed, and they get split again by a
comma. This returns a list with usually multiple elements for the first part. The
second part is a list with only one element, and the third part of the rule may
contain elements. After this split, the third part of the rule is checked. If the result
contains any elements, then the rule is of Type 1.2, and otherwise it is of Type 1.1.
Lastly, a rule object with the parameters type, first part, second part, and third

part is created and returned.

Applier

The applier is the main part of the program. It takes a storage object as an argu-
ment. The storage object needs to contain a list of rules and a text, as well as the
section type if the text was given as a .docx file.

The applier first analyses the given text and subsequently verifies whether it con-

tains only a single space and no additional characters. This can happen due to the

12

way runs are extracted from .docx files. The rules are then sorted by rule type in
descending order. This sequencing is executed in order to ensure that the more
general rules are applied later, once the required placeholders are in place. This is
especially important for the formatting of numbers. The current Type 2 rules only
edit specific numbers. However, if a rule is later added that formats all numbers,
all dates, times, etc., must first be replaced with placeholders before editing the
remaining numbers. If the placeholders were not in place, then all the numbers
would be formatted. This has the potential to yield improper formatting, which

can manifest in undesirable outcomes, such as the following:

16:00 h-> 16.00:00.00 h
24.12 -> 24.00:12:00

After the rules are sorted, the program iterates over the list containing all the rules.
For each rule, the type is checked, and then, depending on the type, the rules are
applied to the text. As outlined above, some rules utilize placeholders. Namely,
rule Types 1.2, 2.2, and 2.3. These placeholders are replaced with the actual values
once all rules from the list have been applied to the text. This ensures that no
incorrect number formatting or replacement occurs.

In the following sections, it is discussed how each type of rule is applied in detail.

Type 1.1:

The first step of applying the rules of Type 1.1 is to check the content of the first
bracket. If the first bracket of the rule only contains a single character, then this
character can simply be replaced in the entire text without having to take any fur-
ther steps to ensure correctness. The same is valid if the first bracket contains a
space. Then the phrase contained in the first bracket can be replaced without any
further steps. This approach allows the program to ignore punctuation, meaning
that if the phrase or character is at the end of a sentence, it can still be detected
and replaced.

However, if the first bracket contains words without any spaces, then the text is
split by space. Then, every part of the new list is first cleaned. This means that
all punctuation marks are removed. Since Word is not equal to Word., this step is
needed in order for the words contained in the first bracket to be detected correctly.
Once these steps have been taken, it is iterated over all the splits from the text,
and the words in the first bracket are replaced with the word in the second bracket.

Following this, the text is joined back together and returned.

Type 1.2:

13

As previously stated, Type 1.2 uses placeholders. The initial step is to replace all
words in the text that are contained in the third bracket with placeholders. The
placeholders used here are numbered with letters and not with numbers as a means
to eliminate the possibility of the placeholder being altered by rules of Type 2.

These placeholders can, for example, look as follows:
whitelistaA

The placeholder consists of three parts. The first part is whitelist, which denotes
what type of rule this placeholder is used in. That part is followed by a lowercase
letter. This letter is changed (following the alphabet) to differentiate between the
replaced words. The last part is an uppercase letter. This letter comes from a
global variable that counts how often placeholders were used. This is needed be-
cause if there are two rules of Type 1.2, then the placeholders can be equal since
the counter used in the lower case is not global and resets after Type 1.2 is applied.
The replaced words are stored together with the placeholder in a dictionary, so that
after all rules have been applied, they can be switched back. After the placeholders
are present, the new text is handled similarly to the procedure Type 1.1, and the

words in the first bracket are replaced by the word in the second bracket.

Type 2.1:

Type 2.1 replaces all numbers that have any abbreviation of the Swiss franc before
or after them. To find the numbers that match this description, a regular expression
(regex) is used. This regex currently contains the following variations of notations

of the Swiss franc:
o Ir
o Ir

e CHF

e Franken

This list can be expanded to other currencies if needed, but it requires the regex to
be adjusted.

Type 2.2:

This type handles the formatting of dates. Similarly to Type 2.1, it uses a regex
to capture all the dates and format them. The key difference in the handling of
Type 2.1 and Type 2.2 is that, after the formatting of Type 2.2, the date is re-

placed by a placeholder. The placeholders used here have the same structure as the

14

placeholders for Type 1.2. The main difference lies in the word at the beginning.
For this rule type, the word date is used to identify the placeholders. This word is
followed by a lowercase letter, similar to the placeholders of rule Type 1.2, to dif-
ferentiate between the replaced words. The uppercase letter comes from the same
global placeholder counter to ensure that no two rules of the same type produce the
same placeholders. The resulting placeholders can take, for example, the following

form:
dateal

Type 2.3:

Type 2.3 is handled similarly to Type 2.2. The regex is adjusted to detect times,
and depending on whether the time is in a 12-hour format or a 24-hour format, a
transformation between the two systems is needed. Type 2.3 is the last rule type
that uses placeholders. The placeholders follow the previously discussed structure.
The placeholders for this rule type start with the word time. The two letters that
follow that word are utilized and derived in the same manner as previously stated.

Here is an example of a placeholder for Type 2.3:
timeal

Type 3.1:
Type 3.1 is specific for .docx files. The .docx files are separated into so-called runs.
These runs are then edited separately. Each of these runs has a style type. Common

style types for .docx files are:
o title
e subtitle
e heading 1

The information about the current style is stored in the storage object that the
adapter receives as an argument. Initially, it is checked if the current style is the
one defined in the third bracket. If this is the case, the text is handled exactly
as described in Type 1.1. If it is not the case, then the found candidate does not
satisfy all the criteria needed for this rule to be applied.

Rule Class

The rule class is needed in order for the applier to effectively apply the defined
rules. It also simplifies the general handling of rules. Each rule object can have

four attributes:

15

e first
e second
e third

e type

The first three attributes correspond to the brackets in which the rules are stored.
Each rule has its type stored as a numerical value in the attribute type. The rules
that follow the three-part storage syntax, for example, rule Type 1 and Type 3,
transfer the contents of the brackets into the respective attribute. This means that
the content of the first bracket is stored in the attribute first, etc. The attribute
third does not contain any information for rules of Type 1.1.

Rules of the Type 2 only utilize the attribute first and type, where the target
format and the type are stored.

Storage Class

A single object of this class is used for all different segments of the code to pass

information over to one another. It has 10 attributes, which are:
e rules
o text
e doc_type
e file_path
e name
e style
e placeholder_counter
o dictl2
o dict22
e dict23

The rules and text are stored in an object of this class at the beginning of the
program, once the user selects the two files, which are the rule file and the text file.
The attributes doc_type, file_path, and name are also stored while the user selects

the files. The value of the attribute style is stored during the text extraction of

16

the .docx file. placeholder_counter is the global variable that is used to ensure
the uniqueness of each placeholder. The remaining three attributes are used to
store dictionaries for the respective rules to enable an accurate replacement of the

placeholders with the edited values.

3.2 Graphical User Interface

The Graphical User Interface (GUI) of the developed system consists of a vertical
navigation bar on the left. The main content of the program is displayed on the right
of the navigation bar. The document view can be seen in Figure 3.1. This is shown
by the title in the center labeled " Document”. The button in the center is used to
upload a document. On the right side, the text marks the space where any outputs
of the system are shown. This feedback is essential for users to understand whether
the system is currently processing, what actions it is performing, and whether any
input from the user is required. It also serves as feedback for the loaded documents.
In the document view, a snippet of the document is displayed after uploading. The
rules view is structured the same way. The navigation bar on the left stays there
while the title and the text of the button change to ”Rules” and ”Load Rules”. The
output space on the left is used to display a list of all the rules contained in any
uploaded rule file. The run view consists of a single button in the center and an
output field on the right side, similar to the document and rules view. The output
of the run view, after pressing the run button, is a snippet of the corrected version
of the text previously uploaded.

The vertical navigation bar on the left consists of three buttons: Document, Rules,
and Run. The first button, Document, switches to the document view, where a
.docx or a .txt file can be uploaded. The button Rules switches to the rules view,
where complete rule files in .txt format can be uploaded. The last button on the
left, Run, can be pressed to switch to the run view.

The design of the GUI is simple in order to keep the amount of visual clutter low
and not to distract from the core functionality of the System. Another advantage
of the simplicity is that the usage of the system does not require any explanation.
The program’s interface is straightforward, requiring only a few steps to complete
tasks, making it very efficient. The labeling, color schemes, and button placement
are consistent throughout the GUI, making it easier for first-time users to use the

system.

17

Document

Rules

Figure 3.1: Screenshot of the current GUI

3.3 Workflow

Once the program has started, a storage object is created. The user then needs to
input two files. It does not matter in which order these files are provided. There
are two separate buttons in the GUI to input the different files. One of these files
is the rules file. Once the rule file is entered, the rules automatically run through
the adapter and the RuleParser. After that, the rule objects get stored in a list in a
storage object. The text, on the other hand, only runs through the adapter before
being stored in the storage object.

Once both files have been stored in the storage, the user can press a separate button
to apply the rules to the text. How the rules are applied to the text is described in
detail in Section 3.1. This process is illustrated in Figure 3.2.

The sequential structure of the workflow ensures that each rule type is applied in an
order that prevents interference between dependent transformations. Rules that rely
on placeholder substitution, such as those for dates and times, are executed early to
isolate their formatting targets. This prevents subsequent rules from altering critical
substrings that have already been processed. Once all the rules have been applied,
the system iterates through the stored placeholders and replaces them with their
corrected representations. This two-phase approach guarantees that formatting
integrity is preserved throughout the process. Rules are applied iteratively and
deterministically to ensure the reproducibility of results with identical inputs. The
workflow incorporates rule-type-specific logic to enable tailored handling of simple

replacements, context-based conditions, and style-dependent changes in .docx files.

18

All transformations are applied directly to an in-memory representation of the text,
minimizing I/O overhead and facilitating efficient processing. The design allows for
extensibility, enabling new rule types to be integrated without altering the workflow

sequence.

Start

Create Storage

Input Rules Input Text

Adapt &
Parse

Adapt

Apply

Save

Figure 3.2: Workflow of the program

19

Chapter 4

Results

4.1 Test Setup

To evaluate the program, which was developed in the course of this work, real-world
data provided by different companies was used. The data that was made available
encompassed two types of files. Firstly, the companies provided guidelines on how
they want their documents to be written. The guidelines contained directives about
the formatting of numbers, dates, and times. In addition, the use of the respec-
tive company name as well as product names was regulated. This program was
intended only to be used with German, therefore, files used for the evaluation are
only in German. In the German language, inclusive language assumes a variety of
forms. The majority of companies have established guidelines and rules regarding
the implementation of inclusive language in their documents. Consequently, the
guidelines contained directives on inclusive language. A significant component of
the guidelines pertained to the general use of specific words, which were subject to
regulation. In Table 4.1, examples of the previously mentioned types of directives
are provided. In this table, 7X” is used as a pseudonym for a company name. The

examples shown there are of the same form as the rules in the guidelines.

Guideline type Example

Formatting of numbers For currency: Two digits after decimal point
Use of company or product name | Always write X AG and never only X
Inclusive language Always use male form followed by *in

Use of specific words Never use customers, instead use patients

Table 4.1: Examples of company guideline types and their formulation

The second type of document made available by the regarded companies consists of
both corrected and uncorrected documents, which are corrected by the proofreaders.

The provided documents range from one to four pages in length. The distribution

20

of the document length is illustrated in Figure 4.1. All tested documents combined

contain 42 pages of content.

Number of pages in the test files

144

12 4

=
o

Number of documents
[+-]

2 3 4
Pages per document

Figure 4.1: Distribution of documents according to their length

Before the testing process on the basis of the selected documents can be started,
the guidelines of the companies need to be transformed into usable rule files. This
ensures that the same rules are applied to all documents from the same company.
In Table 4.2, the previous examples of guideline types from Table 4.1 are trans-
formed into usable rules in the syntax defined previously in Section 2.2. The rule
files created with this process consist of one rule in the defined syntax per line.

The number of rules was dependent on the quality and the level of detail in the

guidelines.
Guideline example Example rule
For currency: Two digits after decimal point | [NUM.2f]
Always write X AG and never only X X): (X AG®): O
Always use male form followed by *in (Mitarbeiter): (Mitarbeiter*in): ()
Never use customers, instead use patients (customers) : (patients): ()

Table 4.2: Examples of guidelines and their respective rules

The documents used in the evaluation of the system were selected based on three
criteria. The first criterion is language. A majority of the guidelines only contain
corrections for German, therefore, the documents need to be in German too to en-

sure a sensible evaluation. The second criterion, corrections, refers to the presence

21

of corrections. The documents need to contain corrections made by the proofread-
ers in order to compare them to the corrections made by the system. Lastly, the
system’s capabilities were considered. This means that documents containing only
changes that, e.g., alter the text’s meaning, were not used for evaluation. After
creating the rule files and selecting the documents used for testing, the first round
of testing is done. This is done by running the program with all the files from each
company and the respective rule files. After the files have been edited by the pro-
gram, the number of corrections is counted. For each file used this way, the number
of corrections the proofreaders made is also counted and used for comparisons.

Following the first test run, the rule files for each company are extended with addi-
tional rules. The rules that are added this way are not described in the guidelines
of the different companies. The additional rules are derived from the documents
used in the first test run. This process consists of analyzing the documents for cor-
rections that the proofreaders made, which are easily transformed into rules, while
being generalizable so that the new rules can be applied to every document from

the respective company.

4.2 Test Results

4.2.1 Results without additional Rules

Figure 4.2 shows the number of corrections made by the system in relation to the
number of corrections the proofreaders made. Without any additional rules, the
program corrected 26 errors, denoted by the orange bar labeled ”'True Positive 17,
that were present in the test files. The proofreaders corrected 246 errors, represented
by the green bar labeled Proofreader, and zero false positives are present, meaning
no wrong corrections were made. This means that the program corrected 10.57%
of the errors the proofreaders detected. The baseline for the rules extracted from
the guidelines is 28 rules. The low rate of corrections is due to the poor quality
and the low level of detail in which the guidelines are written. It is also important
to note that a significant number of the corrections in the tested documents were
stylistic and semantic, which is not possible to replicate with the current rule set.
However, all the rules that were applied in the first test run were consistently applied
throughout all the documents of the respective company. This means that even at
this low rate of correction, the rules that are applied are applied more consistently
than if done by hand.

It is also noteworthy that, without extended rules, there were zero false positives.

The guidelines, provided by the companies, mostly did not include a lot of generally

22

Results for rule-based corrections
250 246

200

150 4

Count

100 -

26

0
False ﬁositive True Positive 1 Proofreader

Figure 4.2: Results without additional rules

applicable rules. This is reflected in the number of corrections made.

4.2.2 Results with additional Rules

If the rule files are adapted and expanded as described in Section 4.1, the number of
corrections made by the program could be more than quadrupled. This expansion
of the rule files consisted of adding 17 rules, for a total of 45 rules.

As seen in Figure 4.3, with the extended rules, the system could correct 106 errors
from the tested files as shown by the orange bar labeled ”True Positive 2”. The
number of corrections the proofreaders made did not change and is denoted by the
green bar labeled ”Proofreader”. With the extended rule files, three false positives
were produced, which are shown by the blue bar labeled "False Positive”. These
false positives resulted purely from inclusive language in German, also known as
"gendering”. With the extended rules, 43% of all corrections made by the proof-
readers can be done automatically. It is important to note that the rules need to
be adjusted, which requires human interaction, but it can decrease the workload

for proofreaders.

4.2.3 Interpretation

The tool was tested on 25 files with varying numbers of pages, ranging from one

to four. The number of pages the tested documents had can be seen in Figure 4.1.

23

Results for rule-based corrections
250 246

200

150 4

Count

100 -

3

False ﬁositive True Positive 2 Proofreader

Figure 4.3: Results with additional rules

Since there was no noticeable change in the time difference between the beginning
and the end of the corrections for the documents of different lengths, speed was not
specifically tested. The varying percentage of corrections that could be made from
company to company is the result of the varying quality and level of detail of the
different guidelines. The percentage of corrections that can be made is proportional
to the quality and level of detail in the guidelines. Companies with higher correction
percentages tend to possess more extensive and robust guidelines. The correlation
between guideline quality and correction percentage is also shown in the extension
of the existing guidelines. With the additional rules not specified by the companies,
more of the corrections could be automated.

It is, however, important to note that the distribution of true and false positives
was not consistent over the tested companies, as shown in Figure 4.4. This comes
from the non-uniform standards that companies use regarding inclusive language.
Figure 4.4 uses a different color scheme as described in Subsections 4.2.1 and 4.2.2.
In this figure, the blue bars labeled ”True Positive 1”7 represent the percentage of
true positives without additional rules, the orange bars labeled " True Positives 2”
represent the percentage of true positives with extended rule files and the green bars
labeled "False Positives” represent the percentage of false positives with extended
rules. It is important to note that 100% for any given bar references 100% of the
corrections from that company.

The results demonstrate that, when the corresponding rules are well-defined, the

24

Comparison of results by company
0.82

Category
B True Positive 1
W True Positive 2
074 I False Positive

0.8 4

0.61

0.6

0.5 4

0.44

Normalized Count

0.00 0.00 0.00
Company 1 Company 2 Company 3 Company 4 Company 5

Figure 4.4: Results with additional rules by company

rule-based correction system can reliably address a substantial portion of the in-
consistencies. The observed automation rate of about 43% indicates a significant
reduction in manual proofreading effort. However, the system’s effectiveness is lim-
ited by the scope and specificity of the predefined rule set. Corrections requiring
nuanced interpretation of linguistic context or semantic intent, for example, remain
beyond the capabilities of the current implementation. This limitation highlights
the trade-off between transparency and flexibility in deterministic approaches. Fur-
thermore, reliance on static rules requires ongoing maintenance and expansion as
language usage and domain-specific conventions evolve. Despite these constraints,
the system offers a valuable, interpretable tool for environments that prioritize
consistency, reproducibility, and data confidentiality. Overall, the results support
the viability of rule-based correction systems as a practical complement to human

proofreading in structured publishing workflows.

25

Chapter 5

Conclusions and Future Work

5.1 Conclusion

The main objective of this thesis was to develop a system that supports proofreaders
in their work by automating a portion of their work. The primary problem in
the current correction process is that a significant number of rules defined in the
guidelines are not applied consistently. A further issue is the time required to rectify
the identified errors and implement the established guidelines on the documents.

To achieve this, a rule-based approach was chosen. This facilitated the application
of the defined rules. The developed solution consists of five classes, which are needed

in order to complete the defined tasks. These five classes are:
e Adapter
e RuleParser
e Rule
e Applier
e Storage

The Adapter is the first class that comes into contact with the rule files as well as
the documents after the user imports them. Its objective is to remove any unnec-
essary characters and either remove the escape characters for the rules or replace
them with appropriate placeholders for the text. These placeholders for the escape
characters allow for the text to be edited without information loss in terms of for-
matting.

After the rules are cleaned by the adapter, they are given to the RuleParser. There,
the clean strings, which represent the rules, are transformed into rule objects, which

allows them to be applied to the text. The rule objects are then stored in a list.

26

The Storage is a class used to store all relevant information during the entire cor-
rection process. An object of this class is created at the beginning of the process.
At that point, it does not have any information stored. The 10 attributes that this
object has are filled with information throughout the entire process.

The core part of the program is the Applier. It is used to apply the rules to the
text. A storage object is given to the Applier in order to apply the rules. This is
done by iterating over the list of rules that is stored in the Storage object. Then
the rules are applied to the text. The exact process of the application is described
in Section 3.1.

To evaluate the developed solution, 25 files from five different companies were se-
lected. The guidelines provided by the companies were then transformed into rule
objects. Then, as a first test run, the files were corrected with the respective guide-
lines. With no additional rules, 10.57% of the corrections, the proofreaders made
could be done. In a second step, the rule files were extended with rules that are
not defined in the guidelines. To obtain these additional rules, the documents were
analyzed, and consistent corrections the proofreaders made were used as a base for
the new rules. The newly added rules are applicable to all documents from the
respective companies. With the additional rules, 43% of the corrections the proof-
readers made can be done. The proofreaders will likely do the same in order to
increase the coverage of the system and relieve them of more work. The statisti-
cal evaluation of the performance of the created system shows that the correction
process is improved through the system. Mainly, the consistency in applying the
guidelines and the speed of correction have increased. As the main goal of this
thesis is to develop a system to aid the proofreaders in the correction of corporate
documents based on guidelines and not to automate their entire body of work, this
goal was achieved with the capabilities of the developed solution.

The implementation of a rule-based correction system provides a structured, inter-
pretable approach to automating parts of the proofreading tasks. However, several
limitations emerged during development and testing that warrant critical exami-
nation. First, the system’s effectiveness depends heavily on the comprehensiveness
and quality of the rule set. While the system successfully automated 43% of proof-
reader interventions, this percentage depends on the existence of rules for relevant
cases. Although adding new rules is straightforward due to the system’s modular
design, it creates a dependency on human expertise to formulate, test, and maintain
the rules. In fast-changing environments or domains with evolving language usage,
this dependency can create bottlenecks. Second, the program lacks the ability to
handle context-sensitive errors or nuanced phrasing. For instance, a word that is

appropriate in one instance may require replacement in another, which is difficult

27

to address without more complex logic or probabilistic models. Additionally, there
is no mechanism for learning from corrections over time, which limits the system’s
ability to adapt or improve autonomously.

Despite these drawbacks, the system excels in areas where interpretability, privacy,
and rule enforcement are paramount. In industries where sensitive documents must
not be exposed to external Al services, this rule-based solution offers a viable,
controllable alternative. However, to increase robustness and scalability, future ver-
sions could integrate statistical components or machine learning techniques. This
hybrid approach would allow the system to maintain transparency while becoming
more adaptable—a necessary evolution for wider adoption. As described in Section
5.2, there are possibilities to expand the capabilities of the developed system in
order to increase the coverage of corrections and possibly to make it more widely
applicable. Some other systems developed for correcting texts, which use generally
applicable systems in a language-independent setting, could be used to enhance the

capabilities of the system.

5.2 Further Work

The main objective of this thesis was achieved with the developed solution. The
program supports the proofreaders and can perform part of the proofreaders’ work.
With extended and adjusted rules, 43% of the work of the proofreaders can be
automated, which can speed up the correction process and ensure consistency in
the defined rules. The program developed in the course of this thesis can be ex-
tended in a multitude of ways. One example of this would be to implement a
spelling correction process for specific languages. With Switzerland in mind, a
spelling correction process for the four official languages, German, French, Italian,
and Rhaeto-Romance, would be sensible.

Another way that the capabilities of the program could be expanded would be the
usage of an artificial intelligence to analyze the documents in a context-sensitive
manner, to find and correct any errors that the previous correction steps may have
caused. This would also allow for the addition of context-sensitive rules, which
could open up a wide range of new possibilities.

The system of Oladéttir et al. [10] has some promising approaches used, which
could be implemented in the correction program developed with this thesis. Espe-
cially the part-of-speech (POS) and the tree matching to detect and possibly correct
grammatical errors.

Another addition that could be made to the developed system would be the addition

of language-specific rules, tailored to common dyslexia mistakes, as in the work of

28

Alamri et al. [5]. This could enhance the user experience for people with dyslexia
and make the program more accessible and inclusive. This could also eliminate
common spelling mistakes. It is also a possibility to create a basic rule set for the
four official languages of Switzerland in order to make the tool more usable for the
general correction of texts, and not only for standardizing and enforcing guidelines

onto a given text.

29

30

Bibliography

1]

3]

Jeunghyun Byun, Hae-Chang Rim, and So-Young Park. Automatic spelling
correction rule extraction and application for spoken-style korean text. In Pro-
ceedings of The Sixth International Conference on Advanced Language Process-
ing and Web Information Technology, ALPIT 2007, Luoyang, Henan, China,
22-24 August 2007, pages 195-199. IEEE Computer Society, 2007.

Itziar Aduriz, Eneko Agirre, Inaki Alegria, Xabier Arregi, Jose Maria Arriola,
Xabier Artola, Arantza Diaz de Ilarraza Sanchez, Nerea Ezeiza, Montse Mar-
itxalar, Kepa Sarasola, and Miriam Urkia. A morphological analysis based
method for spelling correction. In Steven Krauwer, Michael Moortgat, and
Louis des Tombe, editors, Sizth Conference of the European Chapter of the As-
sociation for Computational Linguistics, Proceedings of the Conference, 21-23
April 1993, Utrecht, The Netherlands. The Association for Computer Linguis-
tics, 1993.

Lidia Mangu and Eric Brill. Automatic rule acquisition for spelling correction.
In Douglas H. Fisher, editor, Proceedings of the Fourteenth International Con-
ference on Machine Learning (ICML 1997), Nashville, Tennessee, USA, July
8-12, 1997, pages 187-194. Morgan Kaufmann, 1997.

Marcin Milkowski. Developing an open-source, rule-based proofreading tool.
Softw. Pract. Ezxp., 40(7):543-566, 2010.

Maha Alamri and William John Teahan. Automatic correction of arabic
dyslexic text. Comput., 8(1):19, 2019.

Andrew R. Golding and Dan Roth. A winnow-based approach to context-
sensitive spelling correction. Mach. Learn., 34(1-3):107-130, 1999.

John Lee and Stephanie Seneff. Automatic grammar correction for second-
language learners. In Ninth International Conference on Spoken Language
Processing, INTERSPEECH-ICSLP 2006, Pittsburgh, PA, USA, September
17-21, 2006. ISCA, 2006.

31

8]

[9]

[10]

Shanchun Zhou and Wei Liu. English grammar error correction algorithm

based on classification model. Complex., 2021:6687337:1-6687337:11, 2021.

Yifei Hu, Xiaonan Jing, Youlim Ko, and Julia Taylor Rayz. Misspelling cor-
rection with pre-trained contextual language model. CoRR, abs/2101.03204,
2021.

Hulda Oladéttir, Thérunn Arnardéttir, Anton Karl Ingason, and Vilhjalmur
Thorsteinsson. Developing a spell and grammar checker for icelandic using
an error corpus. In Nicoletta Calzolari, Frédéric Béchet, Philippe Blache,
Khalid Choukri, Christopher Cieri, Thierry Declerck, Sara Goggi, Hitoshi Isa-
hara, Bente Maegaard, Joseph Mariani, Hélene Mazo, Jan Odijk, and Stelios
Piperidis, editors, Proceedings of the Thirteenth Language Resources and Fval-
uation Conference, LREC 2022, Marseille, France, 20-25 June 2022, pages
4644-4653. European Language Resources Association, 2022.

32

Erklarung

gemass Art. 30 RSL Phil.-nat.18

Name/Vorname: Neeb Nils Erik

Matrikelnummer: 21-106-299

Studiengang: Bachelor of Science in Computer Science
Bachelor | O Master Dissertation
Titel der Arbeit: Rule-based Text Correction

Leiterln der Arbeit: ~ PD Dr. Kaspar Riesen
Corina Masanti

Ich erklare hiermit, dass ich diese Arbeit selbstandig verfasst und keine anderen als die
angegebenen Quellen benutzt habe. Alle Stellen, die wortlich oder sinngemass aus Quellen
enthommen wurden, habe ich als solche gekennzeichnet. Mir ist bekannt, dass andernfalls der
Senat gemass Artikel 36 Absatz 1 Buchstabe r des Gesetzes vom 5. September 1996 iber die
Universitat zum Entzug des auf Grund dieser Arbeit verliehenen Titels berechtigt ist.

Fir die Zwecke der Begutachtung und der Uberpriifung der Einhaltung der Selbstandigkeitserklarung
bzw. der Reglemente betreffend Plagiate erteile ich der Universitat Bern das Recht, die dazu
erforderlichen Personendaten zu bearbeiten und Nutzungshandlungen vorzunehmen, insbesondere
die schriftliche Arbeit zu vervielfaltigen und dauerhaft in einer Datenbank zu speichern sowie diese zur

Uberprifung von Arbeiten Dritter zu verwenden oder hierzu zur Verfligung zu stellen.

Bern, 29.05.2025

Ort/Datum

Unterschrift

