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Abstract

In an era defined by the rapid spread of digital misinformation, the ability to ver-

ify factual claims automatically has become increasingly important. This study

presents the development and evaluation of a fast, modular fact-checking pipeline

that combines real-time evidence retrieval from Google Search with a fine-tuned

transformer model, specifically Mistral-7B, for claim verification. The system takes

claims as input, converts them into questions, retrieves relevant information from

Google, and classifies the evidence as either supporting, refuting, or insufficient

using the fine-tuned model. To improve the classification accuracy, especially

for the task of detecting refuted claims, the base model is fine-tuned on a self-

created synthetic, task-specific dataset. The pipeline is evaluated using another

self-created synthetic dataset, GPT2500, as well as two known fact-checking bench-

marks, FEVER and SciFact. Results show that fine-tuning significantly improves re-

call and F1-scores for the REFUTES class, addressing a key weakness of the instruction-

tuned base model. Furthermore, this study presents a breakdown of the performance

by snippet source, revealing a critical mismatch between retrieved evidence and ev-

idence quality, especially in organic search results. Despite these advances, several

limitations remain, ranging from incorrect retrieval outputs to the challenges of

fact-checking subtle misinformation. Nevertheless, the results highlight the poten-

tial of combining web search with LLM adaptation to enable scalable fact-checking

across a wide range of topics. This work contributes both a functional prototype

and an empirical foundation for future research in automated claim verification.
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Chapter 1

Introduction

Artificial Intelligence (AI) has become a central technology of our time, improving

systems that influence how we communicate, make decisions, and interact with the

world. As AI continues to advance, the capacity to process and generate human

language improves with it [1]. Natural Language Processing (NLP) enables ma-

chines to understand, interpret, and produce text and speech in a way that was

previously unimaginable. This advancement has opened new paths for different

industries, from virtual assistants and chatbots to machine translation, summariza-

tion, and automated fact-checking [2]. Within the larger context of AI, this study

is situated at the intersection of NLP, machine learning, and information retrieval.

Figure 1.1 shows how the topic of this study fits into the context of AI and the

related subfields. It also shows how NLP is closely related to areas such as textual

entailment, information retrieval, text generation, and model fine-tuning. These are

the components that come together in this work, which focuses on building a fast

and robust fact-checking pipeline that is capable of verifying claims using real-time

web evidence.

Artificial Intelligence

Natural Language
Processing Computer Vision Machine Learning Pattern Recognition

Model Fine-Tuning

Transfer LearningTextual EntailmentInformation Retrieval Text Generation

Figure 1.1: The topic of the present study in a broader context.
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The need for automated fact-checking systems is more relevant than ever. In the

digital space, which is flooded with information, consumers are often confronted

with conflicting or false information, especially in areas such as news, politics,

or social media discussions [3]. Manual fact-checking of these claims is often ex-

tremely time-consuming, and the resources of professional fact-checkers are often

limited. Therefore, researchers are trying to automate these systems to make the

fact-checking process more responsive to real-time information [4].

This study contributes to that movement by building a modular pipeline, which

performs claim verification based on Google Search engine result page (SERP) ev-

idence. The central idea is to take a claim as input, query the web for relevant

evidence, and determine whether the evidence supports, refutes, or is insufficient to

evaluate the claim. While this sounds conceptually straightforward, it raises several

challenges, such as retrieving meaningful evidence automatically, accurately map-

ping it to the original claim, and reasoning over potentially incomplete information.

At the core of the system is a large language model (LLM), specifically Mistral-

7B, which is further fine-tuned to the task of claim verification. Even though

pre-trained models are also able to understand general-purpose language, their per-

formance on specific tasks such as fact-checking can be limited without further

adaptation [5]. Fine-tuning, which is the process of continuing model training on a

task-specific dataset, has proven effective to address this limitation [6]. Therefore,

one of the core objectives of this study is to investigate whether fine-tuning a pre-

trained model can lead to meaningful performance gains in real-world fact-checking

scenarios.

The research question that guides this work is the following:

How effective is a fast fact-checking pipeline combining Google Search-

based evidence retrieval and a fine-tuned LLM (Mistral-7B) for claim

verification?

This question is central to the technical and scientific parts of this project. The

pipeline is designed to be fast, while using search engine results instead of static

databases to verify claims. It retrieves snippets from Google’s SERP, converts them

into natural questions, and passes the retrieved evidence with the original claim to

a fine-tuned LLM, which determines whether a statement is true, false, or lacks

sufficient information. The goal is to build a system that works in an open-domain

setting and can handle a wide range of topics without relying on static sources such

as Wikipedia. The focus lies on detecting false information, as finding this is one
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of the most important and challenging aspects of fact-checking.

To evaluate the pipeline, this study uses standard fact-checking benchmarks,

specifically FEVER and SciFact, and a custom synthetic dataset (GPT2500), which

is created for this project. This allows for a detailed analysis of the system’s per-

formance. Furthermore, this study analyzes how the source quality of the retrieved

evidence affects the quality and the accuracy of the predictions. This provides

valuable insights into the limitations of the system and where improvements are

needed.

Furthermore, the ability to detect false information automatically has an impact

on journalism, education, and daily life in general. A system that can reliably verify

claims at scale could serve as a fact-checking assistant, which would help users to

discern truth from misinformation. Even if this study does not solve the problem

fully, it proposes a promising approach and presents empirical evidence.

In sum, this study explores how the recent advancements in LLMs and web-based

information retrieval can be used to build an effective and efficient fact-checking

pipeline. It offers both a practical implementation and a structured evaluation of

the system’s components, which contribute to the goal of developing an intelligent

tool to combat misinformation in the digital age.

In terms of structure, the thesis is structured as follows. Chapter 2 lays the

theoretical base by introducing the core concepts of false claim detection, Google

Search results, transformer models, fine-tuning language models, and related work

in the field of automated fact-checking. Chapter 3 presents the methodology, where

the pipeline is explained in detail. This includes each step of the pipeline, synthetic

data generation, as well as fine-tuning, which are key parts of this study. Chap-

ter 4 presents and explains the empirical results of the performance analysis across

datasets, labels, and evidence sources. To conclude, Chapter 5 provides a critical

reflection of the empirical approach while discussing the strengths and weaknesses

of the method. Additionally, possible future work is discussed.
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Chapter 2

Theoretical Background and

Foundations

This chapter elaborates on the theory behind the fact-checking pipeline and puts

it into context. It also focuses on NLP and fine-tuning language models. NLP is

the key component of the built pipeline, since the aim of this study is to develop

a system that can automatically verify information in text by comparing it with

evidence gathered from the web. NLP is a subfield of AI, focused on enabling

computers to understand, interpret, and generate human language. One of the

main parts of NLP is text classification, which involves categorizing text based on

its content to ultimately label the claims as supported, refuted, or not providing

sufficient information [7].

2.1 False Claim Detection

False claim detection is a central task in automated fact-checking, with the goal

to determine the truthfulness of statements based on external information. It is

typically regarded as a supervised classification problem, where the system assigns

a label to a claim based on its truthfulness [8]. The most commonly used labels are

SUPPORTS, REFUTES, and NOT ENOUGH INFO [9]. These labels indicate whether the

evidence supports the claim, contradicts it, or does not provide enough information

for a conclusion.

The theoretical basis for false claim detection comes from semantic textual en-

tailment, a subfield of NLP, which determines whether the meaning of one text

segment can be inferred from another. In the sense of false claim detection, the

claim is treated as a hypothesis, and the evidence as the premise. The model then

assesses whether the premise logically entails, contradicts, or provides insufficient

information to evaluate the hypothesis. In the present study, false claim detec-
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tion is the primary objective of the developed fact-checking pipeline. The system

processes the input text, retrieves evidence from Google’s SERP, and labels each

claim-evidence pair using a fine-tuned transformer model. The model then outputs

one of the three mentioned labels.

Benchmark datasets have driven research in claim verification by providing stan-

dardized evaluation frameworks. One of the most influential is the Fact Extraction

and VERification (FEVER) dataset, which is a standard benchmark for this task [9].

The FEVER dataset is a large-scale benchmark where systems are required to re-

trieve the relevant information from Wikipedia and classify whether it supports

the claim, refutes it, or if there is insufficient evidence to label the claim [9]. An-

other relevant dataset is SciFact, which adapts claim verification to biomedical

claims [10]. Furthermore, the LIAR dataset offers claim-level annotations based on

journalistic fact-checks [11]. However, many existing datasets for claim verification

operate within constrained environments, meaning they rely on fixed evidence such

as Wikipedia. While this controlled setup makes the evaluation easier, it does not

reflect the messiness of real-world information retrieval. In contrast, the developed

pipeline is designed to function in an open-domain setting, retrieving evidence dy-

namically from the web. For this reason, this study additionally uses a custom

dataset, which better reflects real-world scenarios.

2.2 Google Search Results

Search engine results are the primary entry to web-based information retrieval and

play a crucial role in the evidence gathering stage of automated fact-checking sys-

tems [12]. The outputs returned by search engines such as Google are structured into

different result types, including featured snippets, AI-generated overviews, knowl-

edge graphs, and the organic search results. Each of these results contains a different

degree of structure, reliability, and completeness, and their differences have a direct

impact on how they can be used for fact-checking. What follows is a description of

the Google SERP components used to retrieve evidence in this study.

Organic Results

For Google, the organic search results usually consist of a URL, title, and a short

snippet extracted from the page. These snippets are often not complete sentences,

since they are displayed to give an overview of the page so the reader gets some

information without the need to visit the page. The pages displayed after a request

are ranked by algorithms designed to calculate the relevance and quality of a web
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page with respect to the user’s query. While the exact algorithm is not openly

available, the general principle is to prioritize pages that are both authoritative

and contextually relevant to the query. Search engine optimization is often used to

improve these rankings naturally by structuring the content in a way that influences

the ranking factors positively.

Figure 2.1: Example of an organic search result by Google.

Featured Snippets

Google’s featured snippets are designed to answer the user’s question directly. Using

NLP, relevant information is taken from highly ranking webpages and directly dis-

played for the user. This structure makes them particularly valuable in this pipeline,

since the claim verification stage benefits from evidence that is both contextually

rich and concise. [13].

Figure 2.2: Example of a featured snippet by Google.
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AI Overview

Another key part of Google’s SERP is the AI Overview, the company’s newest

advancement in the search experience [14]. Google uses LLMs to summarize the

content of high-ranking webpages regarding a query. These summaries consist of

multiple sources. The goal of AI Overviews is to display a compact and accurate

response without the need to click a page [15]. AI Overviews introduce both oppor-

tunities and complications for automated fact-checking. On one hand, they display

relevant information that is compatible with claim-evidence comparison. On the

other hand, they bring known limitations of generative models, such as hallucination

and lack of attribution [16].

Figure 2.3: Example of an AI overview by Google.

Knowledge Graph

Another important part of Google’s search experience is the knowledge graph.

Knowledge graphs appear for well-known entities, for example, public figures, lo-

cations, and historical events. They provide highly structured content, including

numbers, facts, and links, in addition to traditional search results. Google takes the

relevant information from structured databases, including proprietary knowledge

bases and public datasets. The information is presented in bullet points or tabular

formats. Knowledge graphs are reliable sources to verify entity-level claims [17].
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Figure 2.4: Example of a Knowledge Graph by Google.

2.3 Transformer Models

Transformer models are a foundational technology for modern LLMs, including

those used in this study. Their architecture has significantly changed and continues

to shape NLP. They were first introduced in the paper ”Attention is All You Need”

by Vaswani et al. in 2017 [18]. Transformer models replace recurrence with atten-

tion mechanisms, which enable parallel computation and greatly improve scalability

compared to earlier sequence models such as recurrent neural networks (RNNs) or

long short-term memory networks (LSTMs).

Figure 2.5 shows the transformer architecture, with the encoder on the left and

the decoder on the right. While attention mechanisms were used before in RNNs,

the transformer architecture introduced self-attention as a core component, which

allows processing entire sequences at once.

The most important part of the transformer architecture is the attention mech-

anism, which enables the model to compute the relationships between all tokens

in a sequence at the same time. The key part is the scaled dot-product attention,

which is defined as:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V

Here, Q, K, and V are the query, key, and value matrices, which are used to measure
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how much attention each word should pay to the others. The term dk refers to the

size of the key vectors and is used to scale the attention scores.

This mechanism allows the model to look at how each word is connected to

others in a sentence, which improves its ability to capture context. To better

recognize different types of word relationships, the transformer applies multi-head

attention, where multiple attention patterns are learned in parallel. The results are

then combined to give a better understanding of the sentence. Each head focuses

on a different part of the sequence. Furthermore, the original transformer model

has two key components:

• An encoder, which processes the input and produces contextual embeddings.

• A decoder, which generates the output sequence one token at a time using

masked attention.

Each block consists of attention layers, feed-forward layers, residual connections,

and layer normalization.

Figure 2.5: Overview of the Transformer architecture from Vaswani et al. [18],
showing the encoder and decoder layers with multi-head attention and feed-forward
networks.

To allow the model to learn sequence order, positional encodings are added to the

input embeddings, either through sine functions or through learned vectors. This

allows the attention mechanism to process text in a meaningful sequence. Recent
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developments adapted the transformer into different variants tailored to specific

tasks. Primarily, these include:

• BERT introduced masked language modeling with encoder-only architecture

for understanding tasks [19].

• GPT introduced decoder-only autoregressive modeling for generation tasks [20].

This study uses decoder-only transformers, specifically Mistral-7B and GPT-4o,

which are designed for causal language modeling and autoregressive generation.

Autoregressive generation is a decoding approach in which the model predicts the

next token in a sequence using only the previously generated tokens. This step-by-

step process continues until the desired text is produced.

2.3.1 Mistral-7B

Mistral-7B is a decoder-only model launched by Mistral AI in 2023. With 7 billion

parameters, it achieves comparable performance to much larger transformer models

such as LLaMA-2 13B while keeping the model fast and efficient during training

and use [21]. The Mistral-7B architecture contains a stack of decoder blocks, but

introduces two key changes that enhance its efficiency:

• Sliding Window Attention (SWA) restricts the model’s attention to a fixed

window of nearby tokens in each layer. This helps to reduce memory usage

while still allowing the model to build an understanding of longer contexts

across layers [22].

• Grouped Query Attention (GQA) is a method where multiple attention heads

use the same keys and values but have separate queries. This helps the model

to run more efficiently without losing its ability to recognize different types of

relationships in the text [22].

Mistral uses causal masking in the attention layers so that each token can only

”see” previous tokens, which is important for generating text in order. Each layer

of the model includes multi-head attention, feed-forward networks, residual con-

nections, and normalization. It uses a byte-pair encoding (BPE) tokenizer to split

the text into smaller pieces and can process up to 8,192 tokens at the same time [23].

In this study, Mistral-7B is used in two parts:

1. The instruction-tuned model (Mistral-7B Instruct) is used to convert claims

into questions.
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2. A fine-tuned version is used as a three-way classification model that compares

the claim with the given evidence to label each one as SUPPORTS, REFUTES, or

NOT ENOUGH INFO.

2.3.2 GPT-4o

While Mistral-7B is the central model used in the pipeline, a second model, GPT-4o,

is used to generate synthetic data. GPT-4o, which stands for generative pretrained

transformer 4 omni, was introduced by OpenAI in May 2024. It is also a decoder-

only transformer model, similar to Mistral-7B, and is trained using causal language

modeling, where the next token is predicted based on the preceding tokens using

causal masking. GPT-4o is multimodal, meaning it can not only process text but

also images and audio [24]. Despite this, in the context of this study, GPT-4o is

only used in text mode to generate labeled training and validation data in JSON

format.

Compared to earlier models such as GPT-4 or GPT-4 Turbo, GPT-4o offers

significantly improved latency, efficiency, and response quality. It also uses Rein-

forcement Learning from Human Feedback (RLHF), a training method that uses

ranked human preferences to improve the model [25]. Using GPT-4o to create syn-

thetic data reflects a growing trend in NLP research: the use of LLMs as generative

labeling engines to create supervised datasets at scale, especially in domains where

data is rare or expensive to obtain [26]. Thanks to its strong generative capabilities

and efficiency, GPT-4o is particularly well-suited for creating large-scale synthetic

labeled datasets.

2.4 Fine-Tuning Language Models

LLMs such as BERT, GPT, or Mistral achieve strong performance due to pre-

training on vast amounts of text using self-supervised learning [27]. LLMs use

transfer learning to improve accuracy and performance, typically through a pre-

training phase followed by fine-tuning. To improve their performance in specific

downstream tasks, such as classification, summarization, or question answering,

they are typically fine-tuned on task-specific data.

Fine-tuning is the process of adapting a pretrained model to a task-specific

dataset. The model’s parameters are updated so it can perform better on the new

task, while keeping the language understanding obtained during pretraining [27].

Fine-tuning uses loss functions, such as cross-entropy for classification. This means

that the model learns by comparing its predictions to the correct answers. This
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process is often significantly faster and more data-efficient than training a model

from scratch [28].

There are several standard paradigms for fine-tuning:

• Full fine-tuning, where all the model’s parameters are updated. While this

leads to strong performance, it uses a lot of resources and is usually not done

for large models [6].

• Feature-based fine-tuning, where the pretrained model is frozen and only a

task-specific classifier head is trained on top of the output representations [29].

• Parameter-Efficient Fine-Tuning (PEFT), a family of methods that updates

only a small subset of the model’s parameters while keeping the rest frozen.

This is especially important for modern LLMs with billions of parameters [28].

Numerous studies show that fine-tuned models consistently outperform prompt-

based zero-shot or few-shot approaches on well-defined tasks. For example, in fact

verification tasks such as FEVER [10] and SciFact [30], models that are fine-tuned

on claim-evidence pairs show improved precision and consistency in classification,

compared to models used via prompting.

Overall, fine-tuning remains an important technique in modern NLP, combin-

ing general-purpose capabilities with focused performance, and enabling pretrained

transformer models to adapt efficiently to new tasks with high accuracy and effi-

ciency. In this work, fine-tuning is used to improve the model’s ability to detect

refuted claims.

2.5 Related Work

Automated fact-checking is an important application of NLP, especially with the

rise of online misinformation, conspiracy theories, and politically motivated disin-

formation. Numerous systems have been proposed and discussed to automate this

process, typically by breaking the task down into a pipeline of sub-tasks.

A survey by Zeng (2021) formulates automated fact-checking as a pipeline task,

which consists of three main stages: claim detection, evidence retrieval, and claim

validation. The survey states that an effective fact-checking system usually has

all three stages. Zeng explains that the effectiveness of automated fact-checking

systems depends heavily on two factors: the precision of the retrieved evidence

and the robustness of the claim validation [3]. The second key point of refer-

ence is the FEVER benchmark by Thorne et al. (2018), which is one of the most
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influential contributions in automated fact-checking research [9]. The pipeline de-

veloped by Thorne et al. describes fact-checking as a task of labeling claims as

SUPPORTED, REFUTED, or NOT ENOUGH INFO based on the evidence extracted from

Wikipedia. Their pipeline architecture has three steps: document retrieval, sen-

tence selection, and natural language inference (NLI). The dataset itself contains

over 185,000 claims, making it one of the largest resources for supervised learning in

fact-checking. The FEVER framework has inspired follow-up studies, which focus

on improving evidence retrieval. Furthermore, the structured nature of FEVER

provides a valuable controlled setting for testing verification models, even if the

reliance on Wikipedia limits its applicability to open-domain and real-time fact-

checking scenarios.

Together, these two works represent important directions in automated fact-

checking research: structured benchmark-driven model evaluation, and the broader

integration of language models with search and reasoning components. They under-

line the importance of high-quality datasets, efficient retrieval methods, and robust

classification systems when developing pipelines that aim to assess the truthful-

ness of claims at scale. However, many existing approaches remain limited by their

reliance on static sources like Wikipedia, and do not fully address the challenges

of open-domain, real-time fact verification. The proposed approach addresses this

gap by combining dynamic web-based evidence retrieval with fine-tuned language

models.
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Chapter 3

Methodology

This chapter outlines the design of the fact-checking pipeline. It begins with an

overview of the developed system, followed by an explanation of each processing

step. The chapter then describes the generation of synthetic data, which serves

two purposes in this work: fine-tuning the model to improve the detection of false

claims, and providing a controlled dataset for evaluating the performance of the

pipeline.

3.1 Fact-Checking Pipeline

The fact-checking pipeline processes text through a series of steps, from sentence

splitting to claim verification. The final version of the pipeline is structured as

follows:

Figure 3.1: Structure of the final pipeline.

3.1.1 Sentence Splitting

The first step in the fact-checking pipeline is the splitting of text into sentences. To

achieve this, the pipeline uses the free, open-source Python library SpaCy with the

English model ”en core web sm”. SpaCy uses the dependency parse to determine

sentence boundaries. A dependency parse is a syntactic analysis of a sentence that

represents the grammatical relationships between words as a set of directed links,

showing which word depends on others [31]. This step is necessary since the pipeline
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needs single sentences or claims to process in the next step. Once the text is split

into single sentences, they are saved to a JSONL file for further processing.

In the following code fragment, the SpaCy library and its small English model

en core web sm is loaded and the function process_text is defined in Python.

1 import spacy

2 nlp = spacy.load("en_core_web_sm")

3 # Function to process text and split it into sentences

4 def process_text(input_text):

5 doc = nlp(input_text)

6 return [sent.text.strip() for sent in doc.sents]

The function takes the string input text as input and splits it into sentences. The

function process_text returns a list of sentences, removing any leading or trailing

spaces. In the pipeline, the sentences are saved in JSONL format and are each

labeled as a claim.

3.1.2 Question Generation

In this step, the claims are converted into questions. This is highly impactful, since

Google Search responds better to questions, with regard to fast evidence finding,

than simple statements. The claims are converted into questions using Together

AI’s Mistral Instruct LLM, which is an instruct fine-tuned version of Mistral-7B.

Instruction fine-tuning is a process in which a language model is trained on datasets

consisting of instructions and corresponding responses, enabling it to better follow

user prompts and perform tasks in a conversational or task-oriented manner. [32]

The following function generate_question takes each claim as input, and converts

it into a question.

1 def generate_question(claim):

2 prompt = f"""

3 Change the following factual statement into a natural-sounding,

grammatically correct question.↪→

4 Statement:

5 "{claim}"

6 Question:

7 """

8 try:

9 response = client.chat.completions.create(

10 model="mistralai/Mistral-7B-Instruct-v0.1",

11 messages=[{"role": "user", "content": prompt}],

12 max_tokens=100,

13 temperature=0.7,

14 top_p=0.9,

15 )

16 ...
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The function sends the prompt to the Together AI API, requesting a completion

from the LLM Mistral-7B Instruct. The parameters used in the API call are the

following: Max tokens=100 limits the length of the generated response to 100 to-

kens. This ensures that the generated question does not become excessively long or

complex. Temperature=0.7 controls the creativity of the model’s response. Lower

values (close to 0) lead to more deterministic and focused outputs, and higher val-

ues (up to 2) produce more diverse and creative responses. The chosen value of

0.7 provides a balance between coherence and diversity, which proves effective for

generating meaningful questions. The final parameter top p=0.9, also known as

nucleus sampling, limits the selection of tokens to those that make up the top 90%

of the probability distribution. This helps to restrict the choices to the most likely,

but still allows for diversity.

3.1.3 Evidence Retrieval

In this phase of the pipeline, the JSON file containing questions is processed with the

Google Search API SerpApi to find evidence. SerpApi is a real-time API service

that allows developers to access and extract structured data from search engine

result pages (SERPs), such as Google, Bing, and others [33]. The goal is to extract

the best possible answer, so in this pipeline, the API is used to extract one of four

possible Google Search results with descending priority. The possible results are as

follows: 1. AI Overview, 2. Featured Snippet, 3. Knowledge Graph, 4. Organic

Result. By ranking the possible evidence sources, SerpApi can be used to extract the

best available evidence for a given question. The evidence is categorized by source

and saved as ”snippet” with the original question in JSON format for further use.

3.1.4 Validation

To validate the claim with the found snippet, the pipeline uses two versions of

Mistral-7B. One is the instruction-tuned base version, and the second is a fine-

tuned version. First, the instruction-tuned base model (Mistral-7B Instruct) is

used to establish a performance baseline. Then, the same model is further fine-

tuned on task-specific data to evaluate whether the additional training improves

the performance on claim verification. Each pair of claim and snippet is tokenized

and loaded into the model. The model then predicts whether the claim is supported

(SUPPORTS), refuted (REFUTES), or if there is insufficient information (NOT ENOUGH

INFO). After every claim-snippet pair is processed, the predictions are saved as

”predicted label” in the JSON file for further analysis. Further information on the

fine-tuned Mistral-7B can be found in Section 3.3 Mistral Fine-Tuning.

16



3.2 Dataset Creation - GPT2500

To evaluate the performance of the pipeline, a synthetic dataset is created. The

goal is to generate short, natural-sounding statements across ten different topics -

Health & Medicine, Climate & Environment, History, Politics & Policy, Economics,

Technology & AI, Nutrition & Food Science, Psychology, Space & Astronomy, and

Law & Rights. These topics are deliberately chosen for their complexity and diver-

sity, making the dataset particularly challenging and suitable to test the robustness

of the fact-checking pipeline. The dataset contains four primary classes: True

statements, Obvious misinformation, Subtle misinformation, and Very Subtle mis-

information. The dataset is generated using the OpenAI GPT-4 model (version:

gpt-4o-2024-08-06) via the OpenAI API [34]. For the generation, different prompts

and parameters are used for each misinformation category. To balance the diversity,

temperature settings are changed for each class. For the True statements, which

consist of verifiable, widely accepted, and stylistically varied sentences, a temper-

ature between 0.4 and 0.6 is used to balance factual consistency. The Obvious

misinformation category is designed to consist of clearly false but grammatically

correct statements. For this category, a temperature of 0.8 is used to encourage the

model to take more creative or varied approaches when generating text. The Subtle

misinformation class consists of claims that appear true but contain nuanced errors

such as imprecise terminology or subtly incorrect implications. For this category,

a temperature of 0.9 is used to allow for richer stylistic diversity. For the Very

Subtle misinformation category, a temperature of 0.9 is used as well. Additionally,

five different stylistic patterns are chosen: implicit logical leaps, context collapse,

misleading clarifications, swapped causality and statistical sleight. Implicit logical

leaps are statements that lead the reader to draw an incorrect conclusion based on

true or partially true premises. Context collapse means that the statements are

technically true but misleading due to neglect of the context. Misleading clarifica-

tion means that the sentences appear accurate but include a subtle contradiction

or factual twist. Swapped causality sentences contain reversals of cause and effect

that preserve grammatical plausibility, and statistical sleight means that factually

correct numerical data is used in misleading or manipulative framing. The goal

of this misinformation category is to push the pipeline to its limit and show the

limitations of this approach. Each entry in the dataset contains the following data

fields:
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Field Description

claim The generated statement (either factual or containing
misinformation).

label Binary classification label: either "True" or "False".
misinformation type One of "Obvious", "Subtle", "Very Subtle", or null

(for true statements).
misinformation style Applicable only to Very Subtle Misinformation; one

of five predefined styles (e.g., context collapse,
swapped causality).

topic One of the ten predefined domains (e.g., Health &

Medicine, History).
id Unique identifier for the data entry.

Table 3.1: Metadata fields for each dataset entry.

The dataset is stored in JSON format to allow efficient parsing and batch pro-

cessing. An entry is structured as follows:

1 {

2 "id": 2326,

3 "claim": "The Industrial Revolution caused the Agricultural Revolution as the

need for more efficient farming techniques arose to support the growing

urban population.",

↪→

↪→

4 "label": "False",

5 "misinformation_type": "Very Subtle",

6 "misinformation_style": "swapped_causality",

7 "topic": "History"

8 }

The GPT2500 dataset enables the evaluation of the fact-checking pipeline across

different misinformation categories and topics.

3.3 Mistral Fine-Tuning

To improve the performance of the claim verification, the instruction-tuned Mistral-

7B model is further adapted for a classification task by fine-tuning it on labeled

claim-evidence pairs. A classification head is added, and the model is trained to

predict one of three labels: SUPPORTS, REFUTES, or NOT ENOUGH INFO. Fine-tuning

is done using a parameter-efficient approach, combined with model quantization to

reduce computational cost.

3.3.1 Synthetic Data Generation

To generate training data for fine-tuning the model on the classification task in

a controlled setting, OpenAI’s GPT API is used. Data samples are generated
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from the same ten topics as the GPT2500 dataset to keep it diverse. Each en-

try consists of a claim, a snippet of supporting or refuting evidence, a label that

is either SUPPORTS, REFUTES, or NOT ENOUGH INFO, and a source type that is ei-

ther answer box snippet or organic result to mimic the evidence gathered by the

SerpApi. The answer box snippet mimics the AI Overview and the Answer Box

result by Google, while the organic result mimics the default snippet retrieved by

the SerpApi, which is the description of the first page regarding the search. This

snippet is usually cut off in the middle of the sentence. The following prompt is

used to generate the data in the required format:

1 def build_prompt(topic, label):

2 return f"""

3 Generate 5 realistic fact-checking training samples for the topic: {topic}.

4 Each sample must include:

5 - A claim

6 - A short snippet that either supports or refutes it

7 - A label: {label}

8 - A source: 'answer_box_snippet' or 'organic_result'

9 ...

10 Respond with ONLY a valid JSON array of 5 objects. No explanations, no

markdown.↪→

11 """

The training dataset consists of 3,800 SUPPORTS, 6,000 REFUTES and 3,600 NOT

ENOUGH INFO samples. The class distribution is intentionally imbalanced to un-

derscore the importance of detecting refuting evidence. This is a key function in

fact-checking systems. As a result, the REFUTES class is oversampled to ensure the

model is strongly exposed to a diverse range of negative examples. To prepare the

data as input for the model, a preprocessing function merged the claim and snippet

fields into a single string and applied truncation and padding:

1 def preprocess(example):

2 text = f"Claim: {example['claim']} Evidence: {example['snippet']}"

3 inputs = tokenizer(text, truncation=True, padding="max_length",

max_length=256)↪→

4 label_map = {"SUPPORTS": 0, "REFUTES": 1, "NOT ENOUGH INFO": 2}

5 inputs["label"] = label_map.get(example["label"])

6 return inputs

The final dataset is split up into a training and a validation dataset following a

90% / 10% split.

3.3.2 LoRA-Based Adaptation

Due to the size of the Mistral-7B model, fine-tuning is done using Low-Rank Adap-

tation (LoRA) combined with 4-bit quantization. This approach ensures that only
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a small subset of parameters needs to be updated [35]. With this setup, less GPU

memory is required. The LoRA settings are as follows:

1 lora_config = LoraConfig(

2 r=32, # The rank of the low-rank matrices inserted into the linear layers

3 lora_alpha=32, # A scaling factor applied to the LoRA updates

4 lora_dropout=0.22, # Dropout rate applied to the LoRA layers to improve

generalization↪→

5 target_modules="all-linear", # Specifies that LoRA should be applied to all

linear layers in the model↪→

6 use_rslora=True, # Enables rank-scaling

7 bias="none", # Indicates that no biases should be adapted; only weights are

modified↪→

8 task_type="SEQ_CLS" # Declares that the task is sequence classification,

allowing the LoRA system to apply task-specific logic↪→

9 )

The base model is loaded with the Hugging Face Transformers library [36].

Additionally, 4-bit quantization is used. This process approximates 16-bit floating-

point numbers with a 4-bit representation, which allows the model to be loaded and

fine-tuned on much weaker hardware.

1 quant_config = BitsAndBytesConfig(

2 load_in_4bit=True, #Enables 4-bit loading

3 bnb_4bit_use_double_quant=True, #Applies nested quantization for higher

precision↪→

4 bnb_4bit_quant_type='nf4', #Uses "NormalFloat4", a robust quantization type

5 bnb_4bit_compute_dtype=torch.float16 #Uses 16-bit floating point for

intermediate computations↪→

6 )

The base model is loaded with this quantization configuration and prepared for

LoRA-based fine-tuning using the Hugging Face PEFT (Parameter-Efficient Fine-

Tuning) library, which provides implementations of LoRA and other parameter-

efficient techniques for LLMs. PEFT refers to a family of methods that fine-tune

only a small subset of a model’s parameters, significantly reducing computational

cost while maintaining performance [37].

1 model = AutoModelForSequenceClassification.from_pretrained(

2 model_ckpt,

3 quantization_config=quant_config,

4 num_labels=3,

5 device_map="auto"

6 )

The PEFT library wraps the model and inserts LoRA layers while keeping most

of the base model frozen in place. The training is done using the Hugging Face
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Trainer API. After each epoch, checkpoints are saved and based on validation loss,

the best-performing model is kept and exported. This training strategy combined

efficient adaptation with memory optimization, making it well-suited for the Nvidia

GeForce RTX 3070 Ti GPU used.
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Chapter 4

Experimental Evaluation

This chapter evaluates the performance of the fact-checking pipeline introduced in

Chapter 3. The goal is to evaluate its ability to correctly classify claims based on

the given evidence. This is done with three different benchmark datasets, as well as

two validation configurations: the base Mistral-7B Instruct with a prompt and the

same model fine-tuned for the three-way claim verification presented in Section 3.3.

This evaluation provides insights into the effect of fine-tuning and the correctness

of the predictions of the fact-checking pipeline.

4.1 Evaluation Datasets

To ensure a complete evaluation, the pipeline is tested on three datasets with varying

characteristics. In the following table, S, R, and NEI stand for SUPPORTS, REFUTES,

and NOT ENOUGH INFO respectively.

Dataset Domain Purpose / Focus S R NEI

FEVER Wikipedia Tests general classification 1,075 400 525

SciFact Scientific literature Specific scientific knowledge 331 173 –

GPT2500 Mixed (synthetic) Varying difficulty levels 1,000 1,500 –

Table 4.1: Overview of evaluation datasets and label distribution.

The first dataset used, FEVER (Fact Extraction and VERification), is a well-

known and widely used fact-checking benchmark, consisting of 185,000 claims that

were manually written based on Wikipedia content. Each claim is given a la-

bel (SUPPORTS, REFUTES, or NOT ENOUGH INFO) and evidence sentences. From this

dataset, the first 2,000 claims are used to evaluate the pipeline.

The second dataset used to evaluate the pipeline is SciFact. This is a domain-
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specific dataset targeting scientific fact-checking. The claims were taken from sci-

entific papers, primarily in the biomedical domain. In addition to the claim, sup-

porting or refuting evidence was extracted from research abstracts and added to the

dataset. This dataset introduces additional linguistic and logical complexity due to

the technical nature of its content. The possible labels are SUPPORTS and REFUTES.

Lastly, the GPT2500 dataset is used to evaluate the pipeline on different levels

of complexity, as explained in Section 3.2. This dataset also serves as the represen-

tative case for testing the pipeline.

These datasets include a wide range of language styles and claim types, which

allows for a diverse evaluation of how well the system performs in realistic and syn-

thetic scenarios. They are publicly available, including retrieved evidence and model

outputs for both the base and the fine-tuned model (see Appendix B: Datasets).

4.2 Setup

The evaluation is done to compare two versions of the Mistral-7B model with the

fact-checking pipeline:

Base Model

The instruction-tuned Mistral-7B Instruct, used in a zero-shot setup. For each
claim-evidence pair, the following prompt is used:

1 def build_prompt(claim, snippet):

2 return f"""

3 You are a fact-checking assistant. You will be given a claim and a piece of

evidence (a snippet).↪→

4 Determine whether the evidence SUPPORTS, REFUTES, or provides NOT ENOUGH INFO

to verify the claim.↪→

5

6 Respond with one of the following labels only: SUPPORTS, REFUTES, NOT ENOUGH

INFO.↪→

7

8 Claim: "{claim}"

9 Evidence: "{snippet}"

10

11 Label:

12 """.strip()

The model outputs are stored in JSON format for further evaluation.

Fine-Tuned Model

The same Mistral-7B model is used, which is further fine-tuned on a synthetic

dataset of labeled claim-evidence pairs as described in Section 3.3. This version
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uses a classification head and directly predicts one of the three labels without the

need for a prompt.

For both models, the rest of the pipeline remains unchanged. The same set

of input samples is used across the evaluations to ensure equal comparison. The

output labels are saved to the input dataset and compared against the ground truth

to compute the evaluation metrics.

All experiments are conducted on a machine with a Nvidia GeForce RTX 3070

Ti GPU (8GB VRAM), 32GB RAM, and an AMD Ryzen 7 7800X3D 8-Core CPU.

Additionally, quantized model loading and parameter-efficient fine-tuning are en-

abled to make the experiment possible under these hardware constraints.

4.3 Evaluation Metrics

To evaluate the performance of the classification models, the standard multi-class

evaluation metrics are used: precision, recall, F1-score, and macro-averaged F1-

score. These metrics are chosen because it is a multi-class task and there is a class

imbalance. While accuracy can be misleading in these scenarios, precision, recall,

and the F1-score offer a more detailed view of the model’s performance for each

class individually.

A one-vs-all (OvA) approach is used. For each class (SUPPORTS, REFUTES, and

NOT ENOUGH INFO), the model’s predictions are evaluated as if that class is the

positive label while the other two are considered negative. This allows for the

computation of class-wise precision, recall, and F1-score. The formulas used are as

follows:

Precision

Precisionc =
TPc

TPc + FPc

Precision measures the proportion of correct positive predictions for a given class

c. It answers the question: out of all the examples predicted as class c, how many

predictions are actually correct? High precision indicates that the model is not

over-predicting a class.

Recall

Recallc =
TPc

TPc + FNc

Recall measures how many of the actual examples of class c are correctly identified

by the model. It answers the question: out of all the true instances of class c, how
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many does the model capture? High recall means that the model is effective at

capturing all relevant instances.

F1-Score

F1c = 2 · Precisionc · Recallc
Precisionc +Recallc

F1-score is the harmonic mean of precision and recall for class c. It provides a single

score that balances both false positives and false negatives. This is especially useful

when the class distribution is imbalanced, which is often the case in fact-checking.

To report a single, overall measure of model performance, the class-wise F1-

scores are macro-averaged:

Macro-averaged F1-score =
1

C

C∑
c=1

F1c

Where C = 3 is the number of classes. This approach treats all classes the same,

regardless of how often they appear in the data, ensuring that the performance of

minority classes is properly reflected.

4.4 Results

The experimental evaluation focuses on two main objectives:

1. To assess the general effectiveness of the fact-checking pipeline across datasets

from different domains.

2. To examine the performance improvement gained through fine-tuning the

Mistral-7B model compared to its base instruction-tuned version.

To achieve this, the pipeline is evaluated on three datasets: FEVER, SciFact, and

GPT2500. These datasets cover different domains and structures, allowing for a

varied evaluation. However, to avoid redundancy and maintain clarity, only the

GPT2500 dataset is presented in detail and serves as the representative case while

the FEVER and SciFact datasets are shown and explained briefly. The complete

evaluation results for the FEVER and SciFact datasets can be found in the Ap-

pendix.
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4.4.1 GPT2500

Figure 4.1: Confusion matrix for
GPT2500 before fine-tuning.

Figure 4.2: Confusion matrix for
GPT2500 after fine-tuning.

Figures 4.1 and 4.2 show the confusion matrices for the GPT2500 dataset before and

after fine-tuning. With the base model, which is seen in Figure 4.1, SUPPORTS sam-

ples are classified relatively well, with 916 correctly identified, but a large portion

of the 1,475 REFUTES samples are misclassified. Specifically, 970 are labeled as NOT

ENOUGH INFO and 304 as SUPPORTS, which indicates a strong bias of the base model

towards predicting NOT ENOUGH INFO. After fine-tuning, Figure 4.2, the number of

correctly identified REFUTES samples increases substantially to 925, demonstrating

a much better ability to detect refuting evidence. However, this improvement came

at a trade-off: the number of correctly classified SUPPORTS samples decreases from

916 to 764, with 219 now being misclassified as REFUTES. This trade-off suggests

that while fine-tuning improves the detection of refuting evidence, it introduces new

confusion between SUPPORTS and REFUTES classes.

Figure 4.3: Evaluation metrics for
GPT2500 before fine-tuning.

Figure 4.4: Evaluation metrics for
GPT2500 after fine-tuning.
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This trend is further visible in the class-wise precision, recall, and F1-score shown in

Figures 4.3 and 4.4. Before fine-tuning, the model performs strongly on SUPPORTS,

achieving a high recall of 0.92 and F1-score of 0.83. However, the performance of

the REFUTES class is extremely poor, with a recall of 0.13 and an F1-score of just

0.24, despite a high precision of 0.98. This reflects a strong bias towards labeling

claims as supportive, and an uncertainty in identifying misinformation.

After fine-tuning, the performance across both classes becomes more balanced.

The F1-score of the REFUTES class increases substantially to 0.70, with recall improv-

ing to 0.62, indicating improved sensitivity to refuting evidence. The performance

on SUPPORTS remains stable, with an F1-score of 0.73, which is a slight decrease that

suggests a trade-off in favor of making more cautious predictions. This reduction

is mainly due to a drop in recall from 0.92 to 0.76. After fine-tuning, the model is

less willing to classify a claim as SUPPORTS without strong evidence, which increases

REFUTES detection but slightly reduces correct SUPPORTS prediction.

Figure 4.5: Detailed REFUTES perfor-
mance for GPT2500 before fine-tuning.

Figure 4.6: Detailed REFUTES perfor-
mance for GPT2500 after fine-tuning.

Figures 4.5 and 4.6 provide a detailed look at the model’s ability to detect

refuted claims, broken down by misinformation type: Obvious, Subtle, and Very

Subtle. These plots focus exclusively on claims whose ground truth label is REFUTES,

and report the model’s precision, recall, and F1-score for each subgroup.

Before fine-tuning, the model shows extremely low recall across all categories,

particularly for Subtle and Very Subtle misinformation, indicating that it fails to

identify the majority of refuted claims. It is important to note that the precision is

misleading in these plots since only truly refuted claims are evaluated and therefore

false positives are excluded. After fine-tuning, the performance improves a lot across

all misinformation types. Recall for Obvious misinformation rises from 0.18 to 0.82,

and the corresponding F1-score improves from 0.30 to 0.90. Subtle misinformation

shows similar results with the F1-score going from 0.20 to 0.85. Even the Very

Subtle misinformation class sees a significant increase in F1-score from 0.20 to 0.45.

These plots show that with increasing subtleness, the difficulty for the model to
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predict correctly increases as well.

Figure 4.7: Macro-averaged F1-score for
GPT2500 by misinformation type before
fine-tuning.

Figure 4.8: Macro-averaged F1-score for
GPT2500 by misinformation type after
fine-tuning.

In contrast to the previous analysis, which focuses exclusively on refuted claims,

Figures 4.7 and 4.8 show the macro-averaged precision, recall, and F1-score for

all three classes, SUPPORTS, REFUTES, and NOT ENOUGH INFO, grouped by misinfor-

mation type. Misinformation type None means the claim is true and there is no

misinformation present. Macro-averaging calculates each score independently for

the three classes and averages them, giving equal weight to each label regardless of

whether there is a class imbalance. This provides a more balanced view of overall

classification performance.

From the results indicate that the overall performance is relatively consistent

across the None, Obvious, and Subtle classes, with macro F1-scores ranging from

0.28 to 0.30 after fine-tuning. However, the Very Subtle category, even after fine-

tuning, shows only a moderate improvement in macro-averaged F1-score from 0.07

to 0.15. Similarly, the recall rises from 0.04 to 0.10. This confirms the earlier

observation that with more subtle misinformation, the model’s ability to predict

correctly decreases. It is important to note that since this plot includes true claims

as well, the performance differences reflect not only the model’s ability to detect

misinformation, but also its ability to support accurate claims.

Figure 4.9: GPT2500 snippet count by
source.

Figure 4.10: F1-score by source after
fine-tuning.
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Another important analysis is the distribution of snippet sources, which is shown

in Figure 4.9. Figure 4.10 shows the corresponding F1-score for each source after

fine-tuning. When compared directly, a clear mismatch comes to light. The most

frequently retrieved source, which is the organic result with 1,565 samples, delivers

the weakest results, reaching an F1-score of only 0.46 after fine-tuning. In contrast,

sources such as ai overview and knowledge graph, which are rarely retrieved, per-

form the best. This shows that retrieval quantity does not equal retrieval quality.

This is a clear bottleneck in the overall effectiveness of the pipeline and will be

further discussed in Chapter 5.

4.4.2 FEVER

To complement the main evaluation, the pipeline is tested on the FEVER dataset,

which was previously introduced as a standard benchmark for claim verification

using Wikipedia-based evidence. A summary of the performance is shown below,

while additional plots can be found in the Appendix.

Figure 4.11: Evaluation metrics for
FEVER before fine-tuning.

Figure 4.12: Evaluation metrics for
FEVER after fine-tuning.

Figures 4.11 and 4.12 show the evaluation metrics before and after fine-tuning.

Initially, the model is strongly biased towards SUPPORTS and NOT ENOUGH INFO,

which led to very poor results for the REFUTES class. Fine-tuning significantly

improves the REFUTES predictions, increasing the F1-score from 0.13 to 0.45, and the

recall from 0.07 to 0.56. The performance on the SUPPORTS class remains stable with

a slight decrease in recall from 0.84 to 0.70 and a slight decrease in F1-score from

0.79 to 0.72. Similarly, the performance of the NOT ENOUGH INFO class decreases

after fine-tuning, with the most noticeable drop being the recall, which decreases

from 0.62 to 0.36.

It is important to note that the developed fact-checking pipeline does not use

evidence from Wikipedia. This mismatch can lead to errors, especially if claims in

the dataset are outdated or rely on information that is not accessible through the
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given evidence retrieval mechanisms. While FEVER is not an ideal benchmark to

test the pipeline, it still provides valuable insight into how fine-tuning affects the

model’s performance.

4.4.3 SciFact

In addition to the FEVER dataset, the model is also evaluated on the SciFact

dataset. As explained previously, it focuses on scientific claims taken from research

abstracts. Additional plots can be found in the Appendix.

Figure 4.13: Evaluation metrics for Sci-
Fact before fine-tuning.

Figure 4.14: Evaluation metrics for Sci-
Fact after fine-tuning.

Figures 4.13 and 4.14 show the evaluation metrics before and after fine-tuning.

Initially, the model achieved a strong performance on the SUPPORTS class, but per-

formed poorly on the REFUTES class. Fine-tuning significantly improves the REFUTES

class, increasing the recall from 0.11 to 0.42 and the F1-score from 0.19 to 0.52, while

precision decreases from 0.86 to 0.68. The performance of the SUPPORTS class re-

mains stable, with similar precision and F1-score, and a slight drop in recall from

0.71 to 0.63.

It is important to note that SciFact contains relatively difficult claims, as they

were taken from specific scientific literature. Despite this challenge, the results show

that fine-tuning significantly improves the model’s performance in detecting refuted

claims, even if the claims are highly technical and domain-specific.

4.5 Discussion

The empirical results show that fine-tuning the Mistral-7B model significantly im-

proves its performance for the fact-checking task. This is especially visible in the

results for the REFUTES class, which is the main objective of this work. Before

fine-tuning, the model had a strong bias towards predicting the SUPPORTS class and

failed to detect many instances of misinformation, especially for subtle or very subtle
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claims. After fine-tuning, recall and F1-score for the REFUTES class increases signif-

icantly across all datasets, confirming the hypothesis that task-specific adaptation

can improve the model towards more decisive and robust decisions. However, while

the hypothesis is supported overall, there are still limitations that remain, especially

in handling very subtle misinformation and in retrieving relevant evidence.

Furthermore, the analysis shows that not all improvements are from fine-tuning

alone. The pipeline architecture introduced in this study shows where performance

gains occur, and where bottlenecks are present. For example, the performance

varied not only across classes but is also dependent on the type of misinformation

and the source of the retrieved evidence. The system consistently struggled with

very subtle misinformation. Additionally, the source-based analysis shows that the

most frequently retrieved evidence, which is the organic result, performs the worst.

In contrast, the sources that are retrieved the least, for instance, AI Overviews and

knowledge graphs, perform the best.

When evaluated in the context of existing research, the findings align well with

previously reported improvements observed for fine-tuning and parameter-efficient

adaptation, which have shown improvements in classification accuracy and related

metrics without the need for full retraining. Finally, the evaluation strategy used in

this work proved particularly valuable to analyze the system’s behavior and identify

areas to improve. By combining synthetic and real-world datasets, and analyzing

the outputs across multiple areas (class, misinformation type, source), this work

offers evidence where future improvements should be made.
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Chapter 5

Conclusion, Limitations and

Future Work

5.1 Conclusion

The primary aim of this study is to investigate how effective a fast, modular fact-

checking pipeline can be when combining Google Search-based evidence retrieval

with a fine-tuned LLM, specifically Mistral-7B. This goal is divided into two main

objectives: first, to design and implement a robust pipeline capable of verifying

claims automatically and efficiently, using real-time web data; and second, to im-

prove the classification accuracy of the system by fine-tuning the language model

on synthetic task-specific data.

To achieve these goals, a system is developed that consists of four stages: sen-

tence splitting, question generation, evidence retrieval, and claim-evidence classifi-

cation. For classification, Mistral-7B is used in two variants: as an instruction-tuned

version and as a custom fine-tuned version, which is trained on a self-created syn-

thetic dataset, containing claim-evidence pairs with labels. The synthetic dataset

is specifically designed to simulate the evidence snippets retrieved by the SerpAPI

in the evidence retrieval stage.

The empirical evaluation covers three datasets: GPT2500, FEVER, and Sci-

Fact, where GPT2500 is used as the representative dataset for in-depth analysis.

Across all evaluation metrics, the results confirm the effectiveness of fine-tuning

Mistral-7B to the domain-specific task. Most importantly, the recall and F1-score

for the REFUTES class improves substantially after fine-tuning, addressing one of the

key weaknesses of the instruction-tuned model, which initially struggled to identify

refuted claims and is often biased towards the SUPPORTS class. Further breakdowns

by misinformation type and snippet source show important structural insights. The
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model performs much better on obvious false claims and verifiable truths, but strug-

gles with subtle misinformation. Additionally, a key observation is that the most

frequently retrieved evidence sources perform the worst, whereas more structured

sources such as AI Overviews or knowledge graphs, even though they are less com-

mon, are far more effective.

When evaluating the research question, How effective is a fast fact-checking

pipeline combining Google Search-based evidence retrieval and a fine-

tuned LLM (Mistral-7B) for claim verification?, the empirical evaluation of

the system indicates that this approach technically works, is relatively efficient, and

presents competitive classification results, especially after fine-tuning. The system

is capable of verifying a wide range of claims using real-time web content. It offers a

dynamic alternative to traditional fact-checking pipelines that rely on static sources.

While the results are promising, certain limitations remain, especially in evidence

retrieval and in handling subtle misinformation, which are discussed in the following

section.

In conclusion, this study contributes a working prototype of a real-time, LLM-

based fact-checking pipeline. It demonstrates the strengths of combining web search

with transformer models, highlights the measurable benefits of task-specific fine-

tuning, and provides a detailed analysis of where the limitations remain. These

insights lay the groundwork for future research and could help guide the develop-

ment of more reliable and practical fact-checking systems.

5.2 Limitations

While the developed fact-checking pipeline shows promising results, especially after

fine-tuning the validation model, several limitations at both the system level and

the overall project level remain.

Limitations of System Components

One key limitation is the evidence retrieval step. The system uses Google’s SERP,

which presents challenges in both accessibility and evidence quality. The SerpAPI

has strict rate limits as well as usage costs, which limits the number of requests and

makes it difficult to scale or experiment with different retrieval strategies. Further-

more, many of the retrieved snippets, especially from the organic search results, are

not complete sentences, or are very vague and unreliable as evidence.

A second challenge is the question generation step, where claims are converted

into questions to improve the evidence retrieval. The issue is that the quality of the
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generated questions is not systematically evaluated. As a result, conversion errors,

such as misinterpreting the original claim or introducing unintended ambiguity, can

lead to irrelevant or low-quality search results.

Furthermore, the FEVER dataset poses a limitation due to the origin of the

evidence. It exclusively relies on Wikipedia and does not reflect the inconsistency

of real-world web data. Therefore, the performance on the FEVER dataset can be

misleading due to the resulting evidence mismatch.

Project-Level Limitations

From a broader perspective, the pipeline assumes that the input is already a clearly

formulated claim. It does not perform claim detection, which is an important step

in many real-world fact-checking applications. Without this, the system is limited

in an open text setting.

Another important goal of this work is to improve the detection of refuted

claims. While fine-tuning significantly increases recall and F1-scores, the model still

struggles with subtle misinformation. The system also performs poorly on political

statements or quotes, such as ”Person X said Y”. The problem lies in how the

evidence is retrieved. Many statements by people, especially when made recently,

will not be found with the current evidence retrieval setup. These limitations lead

to a number of possible improvements, which are discussed in the following section.

5.3 Future Work

While this study shows that a fact-checking pipeline using Google search-based

evidence retrieval and a fine-tuned language model has great potential, it also high-

lights areas where future work is needed. The main research question, whether such

a system can effectively verify claims, has been answered positively, although there

are some limitations remaining.

First, the quality of the retrieved evidence remains the most important bottle-

neck with regards to improving the verification accuracy. Replacing the current re-

trieval mechanism with a more advanced system could significantly improve the per-

formance of the pipeline. This could mean integrating document rerankers, source

credibility scoring, or dedicated retrieval models that are optimized for factual con-

sistency. Furthermore, the question generation step, which transforms claims into

questions, could be improved. Since the question generation model is not evalu-

ated in isolation, future work should consider a more controlled question generation

strategy or alternative prompting approaches. Another important limitation is the
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lack of claim detection. Currently, the pipeline can only process claims as input. For

real-world applications such as automated news or social media fact-checking, future

systems need to include a claim-filtering mechanism that can automatically extract

relevant claims. Furthermore, while the pipeline shows significant improvements in

detecting refuted claims, the performance on subtle and very subtle misinformation

remains relatively weak. Addressing this will improve the overall performance of

the developed system.

In conclusion, while the pipeline presents a strong baseline and shows that fine-

tuning transformer models can significantly improve claim classification, further

work is needed to improve the retrieval precision, question generation, claim identi-

fication, and detection of subtle misinformation. Each of these areas shows a clear

path for advancing the system towards a deployment in real-world fact-checking

scenarios.
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Appendix A

Evaluation Results for the

FEVER and the SciFact datasets

A.0.1 FEVER

Figure A.1: Confusion matrix for
FEVER before fine-tuning.

Figure A.2: Confusion matrix for
FEVER after fine-tuning.

Figure A.3: Evaluation metrics for
FEVER before fine-tuning.

Figure A.4: Evaluation metrics for
FEVER after fine-tuning.
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Figure A.5: F1-score for FEVER by
source before fine-tuning.

Figure A.6: F1-score for FEVER by
source after fine-tuning.

Figure A.7: Snippet count for FEVER by source.
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A.0.2 SciFact

Figure A.8: Confusion matrix for Sci-
Fact before fine-tuning.

Figure A.9: Confusion matrix for Sci-
Fact after fine-tuning.

Figure A.10: Evaluation metrics for
SciFact before fine-tuning.

Figure A.11: Evaluation for SciFact
after fine-tuning.

Figure A.12: F1-score for SciFact by
source before fine-tuning.

Figure A.13: F1-score for SciFact by
source after fine-tuning.
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Figure A.14: Snippet count for SciFact by source.
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Appendix B

Datasets

The datasets used to evaluate the performance of the pipeline, including retrieved

evidence and model outputs for both the base and the fine-tuned Mistral-7B model,

are available at:

https://github.com/doeniz/fact-verification-datasets-with-evidence/tree/main/datasets
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