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Abstract

Machine Learning has numerous medical applications and provides opportunities

to improve diagnostic workflows. This thesis explores the predictive capabilities

of laboratory test data from the Swiss BioRef dataset using the XGBoost algo-

rithm. It addresses the challenges posed by the anonymized dataset by introducing

a demographic-based aggregation approach. Specifically, this study examines the

potential of laboratory test results aggregation based on age and gender to simu-

late more comprehensive patient data. The primary goal is to assess the predictive

performance of individual laboratory tests for 41 common diagnoses in the dataset

and to evaluate how the aggregation impacts the resulting accuracy of the model.

Binary classification is employed to determine whether measurements indicate a

diagnosis or not. The key findings in this work are that the model performance

significantly increases when providing the aggregated data. The evaluation reveals

that aggregating laboratory test results improves model accuracy by over 10 per-

centage points for multiple diagnoses. Furthermore, this work provides a framework

to help understand the diagnostic value of laboratory test data and intends to lay

the groundwork for validating it with real-world datasets.
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Chapter 1

Introduction

1.1 Background and Motivation

The field of Artificial Intelligence (AI) has seen rapid advancements over the last

few years. It has fundamentally transformed numerous domains, including finance,

entertainment and medicine [1, 2, 3]. Machine Learning (ML) is a subfield of AI

that focuses on creating algorithms that can analyze and learn from data to make

predictions or decisions. Supervised Learning is a sub-area of ML and is funda-

mental for prediction tasks. Especially in healthcare, accurate classification and

regression models can improve patient outcomes [4].

One of the most impactful applications of supervised ML models is disease di-

agnosis and prognosis [5]. The timely and accurate diagnosis of diseases is crucial

for improving patient outcomes. An early diagnosis can enhance treatment success

for diseases such as cancer, cardiovascular diseases or diabetes. For instance, early

detection of breast cancer through mammography significantly reduces mortality

rates [6], while identifying cardiovascular risk factors such as high cholesterol pre-

vents life-threatening events [7]. Similarly, early detection in diabetes minimizes

complications like neuropathy and kidney damage [8]. Besides that, prompt inter-

vention can help reduce healthcare costs significantly [9].

In the last few years, ML has seen remarkable developments in the medical field [10].

In the early 2000s, algorithms were mainly used to analyze medical images such as

X-rays and MRI scans [11]. This is changing because of the growing availability of

large medical datasets and the advancements in computing power, which expands

the application of ML [12]. Today, researchers are advancing precision medicine by

applying ML to incorporate multi-modal data, including epigenetic, metabolic, and

radiological information, thereby aiming to enable predictive modeling for patient-
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specific diagnostics and therapies [13]. Especially, laboratory tests such as blood

counts and urinalysis are an important component in medical decision-making, of-

fering quantitative insights into the health of patients. Because of the numerical and

structured nature of laboratory testing, it is well suited for computational methods

such as ML.[14]

The increasing availability of medical data presents significant opportunities to im-

prove diagnostic precision and efficiency. However, it also brings notable challenges,

including ensuring anonymization, addressing class imbalance, and managing the

complexity of integrating diverse data types [15]. Overcoming these challenges is

essential to fully harness the potential of ML in advancing medical diagnostics and

patient care.

1.2 Research Goals and Objectives

The dataset used in this thesis contains anonymized laboratory blood measurements

and is a part of the dataset used for the Swiss BioRef research project [16]. This

thesis aims to establish a framework that evaluates the predictive performance of

ML models on the most common diagnoses in the Swiss BioRef dataset. The dataset

includes multiple measurements for the same patients. Due to the anonymization,

the patient measurements cannot be grouped, limiting each entry to a single labo-

ratory test value, age, and administrative gender. This limitation creates challenges

in developing precise predictive models because of the lack of sufficient data.

Despite this, this thesis investigates the potential benefits of more comprehensive

patient data by artificially aggregating laboratory values from different tests. The

goal is to provide a guideline demonstrating how iteratively, including additional

laboratory values, influences the accuracy of diagnosis prediction. This analysis

evaluates how aggregating patient information impacts the performance of pre-

dictive models. Further, laboratory tests that show the best diagnosis prediction

accuracy are identified. The resulting guideline illustrates the potential applications

of diagnosis prediction for the Swiss BioRef and similar datasets.

1.3 Structure of the Thesis

The structure of this thesis is divided into five main chapters, each building on the

previous one. Chapter 2 introduces the foundational concepts of ML, its applica-

tions in medicine, and the theoretical principles behind the XGBoost algorithm.
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Additionally, related work in the field is reviewed to contextualize this research.

Chapter 3 explores the Swiss BioRef dataset, detailing its structure and the method-

ologies employed for predictive model evaluation and laboratory data aggregation.

Chapter 4 presents the experimental findings, highlighting the impact of data ag-

gregation and hyperparameter optimization on predictive accuracy across various

diagnoses, and also addresses the limitations of this thesis. Lastly, Chapter 5 sum-

marizes the key insights from this thesis and proposes directions for future research.
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Chapter 2

Theory and Background

This chapter provides the theoretical foundations for the later chapters. It revises

the most relevant literature and sets the thesis into context. It lays special focus

on XGBoost because it is the main ML algorithm used in this work, and discusses

its functionality and characteristics in detail.

2.1 Machine Learning in Medicine

This section provides a brief introduction to ML, explaining the main ideas and

concepts. Next, the application of ML in medicine is discussed, with a focus on

tasks relevant to supervised learning and classification. Finally, the challenges of

applying ML to medical data are highlighted.

2.1.1 General Introduction to Machine Learning

ML is a subfield of AI. Its general goal is to find and extract structure within

data and fit models that can make predictions, classify information, or uncover

patterns. The models learn from the provided data by leveraging statistical methods

and computational power, improving their performance on specific tasks by using

experiences to make informed decisions on new, unseen data. ML can be separated

into three primary categories: Supervised Learning, Unsupervised Learning and

Reinforcement Learning.

• Supervised Learning: In Supervised Learning, the model is trained with a

dataset that contains both inputs (features) and corresponding outputs (la-

bels). The aim is to learn a function that maps features to the correct labels.

Examples include classification problems like disease diagnosis or regression

problems such as predicting blood sugar levels.
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• Unsupervised Learning: In Unsupervised Learning, the model works with un-

labeled data and seeks to recognize hidden patterns or structures. Typical ap-

plications include clustering, where similar data points are grouped together,

and dimensionality reduction, where high-dimensional data is projected into

a lower-dimensional space for easier analysis.

• Reinforcement Learning: Reinforcement Learning is based on a reward sys-

tem in which an agent learns through interactions with its environment to

maximize cumulative rewards. This method is often applied in robotics and

optimization of complex decision-making processes.

This thesis employs classification for diagnosis prediction, situating itself within the

supervised learning domain.

Classification

Classification is a subarea of Supervised Learning that categorizes data points into

predefined classes. For this, a classification model is trained to learn a function

that assigns inputs to the correct class label. Classification problems are common

in different areas, such as image recognition, spam filtering, and diagnosis predic-

tion. Some of the most widely used classification algorithms are decision trees,

support vector machines (SVMs), neural networks, and gradient boosting methods

like XGBoost.

The performance of classification models can be evaluated with the help of dif-

ferent metrics:

• Confusion matrix: The confusion matrix (Figure 2.1) provides a detailed

breakdown of model predictions, showing the number of true positives (TP),

true negatives (TN), false positives (FP), and false negatives (FN).

• Accuracy: Accuracy, as shown in Equation 2.1, is the proportion of correctly

classified data points (both true positives and true negatives) to the total

number of data points.

Accuracy =
TP + TN

FP + FN
(2.1)

• Precision, Recall and F1-score: As shown in Equation 2.2, precision is cal-

culated as the ratio of true positives to the sum of true positives and false

positives. Similarly, recall (Equation 2.3) evaluates the model’s ability to iden-

tify all relevant instances, and the F1-score (Equation 2.4) combines these two
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metrics into a harmonic mean.

Precision =
TP

TP + FP
(2.2)

Recall =
TP

TP + FN
(2.3)

F1-score = 2× Precision× Recall

Precision + Recall
(2.4)

Figure 2.1: Confusion matrix illustrating the distribution of true positives (TP),
true negatives (TN), false positives (FP), and false negatives (FN) for the evaluated
model.

2.1.2 Applications of Machine Learning in Medicine

There are numerous medical application fields in which ML can be of significance.

Obermeyer et al. predict that ML models will take away most of the work of

radiologists and anatomical pathologists because their main task is to work with

digitized images that can also be given to algorithms [17]. The creation of large

image datasets combined with advancements in computer vision will soon enable

machines to perform better than humans. Further, they describe that diagnostic

precision will be improved as ML algorithms generate differential diagnoses, recom-

mend high-value tests, and reduce unnecessary testing, ultimately enhancing the
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efficiency and accuracy of the diagnostic process.

Building on this, Rajkomar et al. explore how ML can extend beyond imaging

tasks to augment the broader work of clinicians [18]. They conclude that, by lever-

aging the vast amounts of data from electronic health records (EHRs) and medical

image archives, ML can enhance diagnostic accuracy, aid in early risk detection,

and support the development of personalized treatment plans. Additionally, intel-

ligent systems can optimize workflows, enabling clinicians to dedicate more time to

direct patient care. Rather than replacing clinicians, ML offers the opportunity to

optimize processes and enhance decision-making through data-driven insights.

Challenges of Applying Machine Learning to Medical Data

A prerequisite to successfully applying ML models is the availability of large and

high-quality datasets. However, medical data is often complex and presents signifi-

cant challenges [15]. When working with EHRs, extracting relevant data is difficult

because the data can be stored in structured or unstructured formats [19]. Labora-

tory test results or vital signs are stored in a structured manner within the EHRs

and can therefore be easily extracted. Other types of data, such as progress notes,

discharge summaries or radiology test results, are stored unstructured in text or

images, making them harder to process and analyze without advanced techniques

like Natural Language Processing or Computer Vision [20]. While structured data

is more straightforward to extract other issues arise like the heterogeneity in data

recording practices across healthcare facilities [21]. This complicates the devel-

opment of robust models that generalize well and show good performance across

different datasets.

Another challenge that often arises with medical data is anonymization. It is nec-

essary to protect patient privacy [22]. Due to the removal of unique identifiers,

anonymization can make it impossible to link multiple measurements to the same

patient, resulting in the loss of temporal or contextual information that is important

for the successful application of ML. This lack of connectivity hinders the ability

to identify patient-specific trends or relationships. Additionally, anonymization fre-

quently demands the removal of demographic or clinical details that can be helpful

for the validation of results and thereby hinder the interpretability of the results.

Another common issue in medical datasets is class imbalance, meaning one or more

classes have significantly fewer samples than others [23]. An imbalanced dataset

can lead to biased ML models that favor the majority class and perform poorly

when predicting underrepresented classes like rare diagnoses. Techniques such as
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undersampling or SMOTE (Synthetic Minority Oversampling Technique) address

this issue and help models better detect rare diagnoses [24].

Related Work

The following examples highlight related work that leverages laboratory test results

for the classification of diagnoses or diseases, showcasing the application of ML

techniques in medical diagnostics.

Gunčar et al. explore the potential of ML to enhance diagnostic processes for

hematologic diseases using laboratory blood test results [25]. For their study, they

developed two models using a random forest algorithm. The models were trained

with different amounts of parameters, the first with all available 181 parameters and

the second with a reduced set of 61 commonly measured parameters. The models

were evaluated on two tasks, predicting the most likely hematologic disease and

identifying the five most likely diseases. Both models showed promising accuracies

of 59% and 57% for the most likely disease and 88% and 86% for the five most

likely diseases. The model accuracies were compared to the diagnostic accuracy

of hematology specialists and general internal medicine physicians. In the clinical

setting, the models performed comparably to specialists and significantly outper-

formed the general internal medicine physicians. The researchers conclude that a

reduced parameter set can effectively capture disease ”fingerprints” and ML mod-

els have the potential to support physicians in making early and accurate diagnoses.

Park et al. explore the use of ML and Deep Learning to predict diseases using

laboratory test results [26]. The data used includes 5,145 cases, encompassing

326,686 laboratory test results and covering 39 classified diseases. For training and

evaluation a total of 88 features are used including 86 laboratory tests, age and

sex. They individually evaluated XGBoost, LightGBM, and Deep Neural Network

(DNN) and combined them as an ensemble model. XGBoost performed the best

in predicting the top 5 most likely diseases, achieving an accuracy of 93% and an

F1-score of 78%. The LightGBM model performed similarly, reaching an accuracy

of 91% and an F1-score of 76%. The DNN model, which was optimized with two

hidden layers, achieved an accuracy of 91% and an F1-score of 80% but excelled in

classifying specific diseases such as sepsis, scrub typhus, and viral hepatitis. The

ensemble model created from the three models showed the best performance with

the highest F1-score of 81%. The models were also compared with five physicians,

consistently showing superior performance in identifying both the most likely dis-

ease and the top five diseases.
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The thesis by Gribi utilizes the same dataset as this work [27]. The challenge

of anonymization in the Swiss BioRef dataset is addressed by grouping subsequent

measurements with matching age and gender, creating an aggregated dataset for

analysis. His work focuses on ten specific diagnoses: the four most common in

the dataset, three chosen because of their classification potential (Type 2 Diabetes

Mellitus, Duration of Pregnancy, and Iron Deficiency Anemia), and three least com-

mon diagnoses with more than 1,500 cases. Gribi utilizes unbalanced datasets for

his analysis, which reflects the real-world distribution of diagnoses. For each of

the ten diagnoses a dataset is created for binary classification and evaluated using

XGBoost. The chosen diagnosis is therefore defined as the positive class and all

others are treated as the negative class. His results include a maximum F1-score

of 78% for the pregnancy diagnosis, with an average F1-score of 39% across all ten

diagnoses. The conclusion drawn is that the performances are poor compared to

similar tasks in the literature, mainly due to class imbalance, but highlights the

dataset’s potential for ML applications.

2.2 XGBoost

This section describes the XGBoost algorithm, focusing on its application to binary

classification tasks using tree-based boosting. Further, the algorithm’s functionality,

advanced features, and hyperparameter are detailed below.

2.2.1 XGBoost Algorithm Overview

XGBoost (eXtreme Gradient Boosting) is an ML algorithm designed for efficiency

and high predictive performance, first introduced by Chen and Guestrin [28]1. XG-

Boost stands out from other gradient boosting algorithms because of its scalability

and computational efficiency, making it suitable for large datasets. Given its high

accuracy and speed, XGBoost has become a popular choice in various domains,

including medicine. For example, there are a number of papers using XGBoost for

disease prediction [26, 29, 30, 31].

Gradient Boosting

Gradient boosting is the core concept underlying XGBoost and was originally devel-

oped by Friedman [32]. It builds an additive model by sequentially combining weak

learners, typically decision trees, to minimize prediction errors iteratively. Weak

1The official XGBoost implementation is available at https://github.com/dmlc/xgboost.
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learners refer to shallow trees that perform slightly better than random guessing.

They tend to have high bias and are not very powerful individually. Therefore, each

tree is constructed to correct the errors made by the previous ones, progressively

improving the model’s accuracy.

Given a dataset D = {(xi, yi)}ni=1, where xi ∈ Rm represents the input features

and yi the target values, gradient boosting constructs an additive model:

ŷ
(t)
i = ŷ

(t−1)
i + ft(xi), (2.5)

where:

• ŷ
(t)
i is the prediction at iteration t,

• ŷ
(t−1)
i is the prediction from the previous iteration,

• ft(x) is the new decision tree added to reduce the prediction error.

The objective function, which is minimized at each iteration, is defined as:

L(t) =
n∑

i=1

ℓ(yi, ŷ
(t)
i ), (2.6)

where ℓ is the loss function. Log-loss is commonly used for binary classification

tasks. To optimize ft(x), the gradient of the loss function with respect to the

predictions ŷi from the previous iteration is calculated:

gi =
∂ℓ(yi, ŷi)

∂ŷi
. (2.7)

This gradient indicates how the model should adjust its predictions to minimize

error. The gradient boosting process efficiently reduces the overall loss by iteratively

updating predictions through successive trees.

2.2.2 Advanced Features of XGBoost

XGBoost incorporates advanced features that enhance its performance and usabil-

ity in real-world applications. These include robust handling of missing data and

effective regularization techniques to prevent overfitting.

Handling Missing Data

XGBoost provides a built-in mechanism to handle missing data during training

and inference. Instead of discarding incomplete records or resorting to imputation,
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XGBoost automatically determines the most suitable branch for missing features

when splitting nodes. For each split in a tree, features with missing entries are

assigned a default direction, either left or right. During the training process, the

algorithm evaluates both possible directions and selects the one that results in

the greatest improvement in the model’s performance. Specifically, the decision is

based on evaluating the loss function for both directions and choosing the direction

that minimizes the error. This strategy ensures that missing values are handled

effectively, minimizing their impact on the model.

Regularization

XGBoost employs L1 (Lasso) and L2 (Ridge) regularization to prevent overfitting,

a common challenge in high-dimensional datasets. Regularization adds a penalty

term to the objective function, discouraging overly complex models and improving

generalization.

The regularized objective function for XGBoost is defined as:

L =
n∑

i=1

ℓ(yi, ŷi) + λ
T∑

k=1

w2
k + α

T∑
k=1

|wk|, (2.8)

where:

• ℓ(yi, ŷi) is the loss function (e.g. squared error or log-loss),

• T is the number of leaves in the tree,

• wk is the weight of leaf k,

• λ is the L2 regularization parameter, and

• α is the L1 regularization parameter.

The L1 term (α
∑

|wk|) reduces the complexity of the model by encouraging some

weights to become zero, effectively removing unnecessary branches. The L2 term

(λ
∑

w2
k) prevents the weights from becoming too large, leading to smoother and

more stable predictions. Together these techniques help prevent the model from

overfitting.

2.2.3 Hyperparameter Tuning

XGBoost is a highly flexible ML algorithm with numerous hyperparameters influ-

encing its performance and behavior. In this thesis, XGBoost is applied specifically
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for binary classification tasks, where the goal is to categorize instances into one of

two possible classes. Further, the tree-based booster gbtree is used. When using

gbtree for binary classification tasks, hyperparameters of the algorithm control

aspects like tree structure, learning process, and regularization. Proper tuning of

these hyperparameters is crucial for achieving optimal predictive accuracy and gen-

eralization. Table 2.1 outlines the key hyperparameters for the XGBoost classifier

with a tree booster.

Hyperparameter Description

n estimators Number of decision trees.
max depth Maximum depth of a tree; controls model complexity.
learning rate Step size shrinkage; balances weight updates between iterations.
subsample Fraction of samples used for training each tree; prevents overfitting.
colsample bytree Fraction of features used for each tree.
min child weight Minimum sum of weights required for child nodes; prevents overfitting.
gamma Minimum loss reduction required for a split; regularizes the tree.
alpha L1 regularization term; adds sparsity to the model.
lambda L2 regularization term; prevents overfitting.
scale pos weight Balances positive and negative classes for imbalanced datasets.
objective Specifies the learning task (e.g., binary:logistic for binary classification).
tree method Algorithm for constructing trees (e.g., hist for large datasets).

Table 2.1: Key hyperparameters for the XGBoost classifier using gbtree.

This thesis uses Bayesian optimization to tune the hyperparameters [33]. Bayesian

optimization builds a probabilistic model of the objective function to find the opti-

mal hyperparameter settings. Bayesian optimization is chosen because it has lower

computational costs than grid or random search while ensuring robust optimization.
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Chapter 3

Dataset and Methodology

This chapter introduces the dataset used and its original background. It also high-

lights the creation of subsets to create datasets for specific diagnoses. Further, the

aggregation approach is explained and the evaluation of the models is discussed.

3.1 Dataset

This section introduces the dataset used in this thesis, sourced from the Swiss

BioRef research project. It outlines the dataset’s origin, structure, and the features

selected for ML analysis.

3.1.1 Swiss BioRef Dataset

This thesis uses a large part of a medical dataset created for the Swiss BioRef re-

search project [16]. Swiss BioRef is a nationwide initiative that aims to provide a

standardized framework for calculating and evaluating patient-group-specific refer-

ence intervals in laboratory medicine. Patient-group-specific reference intervals are

ranges of laboratory test values that incorporate factors such as age, sex, and spe-

cific diagnoses to provide a more accurate and individualized interpretation of test

results. The whole dataset comprises harmonized laboratory data from four ma-

jor Swiss hospitals: Inselspital Bern, University Children’s Hospital Zurich, CHUV

Lausanne, and Swiss Paraplegic Research. This thesis uses only data from the

Inselspital Bern.

3.1.2 Structure of the Dataset

The dataset consists of 5,967,847 anonymized laboratory blood test results collected

from 186,265 patients. It includes measurements from 39 different laboratory tests
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(see Table B.1 in the Appendix), each recording the test performed, the value

measured, and patient information such as age and gender. The laboratory tests

are encoded using Logical Observation Identifiers Names and Codes (LOINC) [34].

Each entry includes up to five relevant diagnoses, classified according to the 10th

Revision of the International Classification of Diseases, German Modification (ICD-

10-GM) [35]. In total, each measurement consists of 21 features, as detailed in

Table B.2 in the Appendix.

The following uses only nine features of the dataset (see Table 3.1. Features used

as patient or case identifiers and features related to laboratory equipment used for

the blood tests are excluded. These features are assumed to be irrelevant for pre-

dictive modeling and do not hold additional information relevant to ML algorithms.

Therefore, the rest of the thesis omits these features.

Labtest LabResultValue Diag01 Diag02 ... Diag05 Age Gender
- - - - - - - -

Table 3.1: The nine features of the Swiss BioRef dataset assumed relevant for ML.

3.2 Evaluation of the Best Predictors for Diag-

noses

The evaluation of the best predictors for diagnoses involves a systematic approach to

identify and analyze the most relevant features in the dataset. This begins with the

creation of subsets tailored for binary classification, enabling a focused assessment

of diagnostic relevance.

3.2.1 Subset Creation for Diagnosis Evaluation

The first step of the analysis involves identifying the most common diagnoses in the

dataset. This is achieved by calculating the frequency of each diagnosis across all

measurements and aggregating the occurrences from the columns Diag01 to Diag05.

A threshold of 2% relative frequency is applied to select diagnoses for further inves-

tigation. This process narrows the analysis from over 1,300 unique entries to just

41 diagnoses (see Figure 3.1).
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Figure 3.1: Bar plot displaying the 50 most common diagnoses in the Swiss BioRef
dataset. Diagnoses with a relative frequency exceeding 2% are represented by blue
bars, while those below this threshold are shown in grey. The red dotted line
indicates the 2% frequency threshold.

For each of the 41 diagnoses exceeding the threshold, separate subsets are created

for each of the 39 distinct laboratory tests to enable binary classification. First, a

copy of the original dataset is created and filtered to include only measurements

corresponding to the selected laboratory test. Next, a new column named Diag

is added. If the target diagnosis appears in any row, Diag is assigned a value of

1; otherwise, it is assigned 0. The columns Diag01 through Diag05 and Labtest

are then removed. In the final step, undersampling is applied to obtain balanced

subsets and reduce the number of undiagnosed cases. This process labels each mea-

surement as diagnosed (1) or undiagnosed (0), yielding balanced subsets for each

of the 41 diagnoses in combination with all 39 laboratory tests and resulting in a

total of 1599 subsets.
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3.2.2 Performance Evaluation Using XGBoost

The XGBoost algorithm is used to evaluate the predictive performance of the indi-

vidual laboratory tests for the diagnoses. Therefore, the subsets created in the pre-

vious step are evaluated using XGBoost with standard parameters. Using standard

parameters ensures a consistent baseline and avoids variability from hyperparame-

ter tuning. This approach isolates the inherent predictive value of each laboratory

test for each diagnosis.

For the evaluation, each subset is split into a training set (70%) and a test set

(30%). Subsets with fewer than 1,000 measurements are excluded to ensure reliable

results. Since the subsets are balanced, accuracy is chosen as the primary eval-

uation metric to assess how well the model distinguishes between diagnosed and

undiagnosed cases. The predictive performance of different laboratory tests is com-

pared for the same diagnosis, with higher accuracy indicating stronger predictive

relevance.

The results from this step provide the foundation for the data aggregation discussed

in the next section. By identifying the best-performing tests, the aggregation can

be performed on the base of quantitative insights.

3.3 Data Aggregation

This section explains the methodology for combining laboratory test results to cre-

ate enriched subsets. The aggregation process uses age and gender to merge labo-

ratory values from multiple measurements while ensuring biological plausibility.

3.3.1 Demographic-Based Data Aggregation

Multiple measurements in the dataset must belong to the same patient since it

consists of 5,967,846 laboratory blood test results from 186,265 patients. But be-

cause the dataset, as discussed in Section 3.1, is anonymized it is impossible to

link multiple laboratory measurements to the same patient. Therefore, a data ag-

gregation approach based on demographics is implemented to address this issue

and create subsets with more comprehensive information. The approach utilizes

the two available demographic features, age and gender, from the dataset to com-

bine laboratory test results across measurements. This method ensures that the

aggregated information remains biologically plausible and preserves demographic

consistency. By creating the enriched subsets, it becomes possible to evaluate the
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performance of binary classification in a setting that approximates having complete

patient information.

3.3.2 Creation of Aggregated Subsets

The first steps to create aggregated subsets is to identify the laboratory test with

the highest predictive accuracy for each diagnosis, as determined in Section 3.2.

The subset of the best-performing laboratory test is selected as the base subset.

The base subset serves as the foundation for the further aggregation. It contains

the features Age, Gender, LabResultValue and Diag. The feature LabResultValue

is renamed to LabResultValue0.

The aggregation process is performed in a class-specific manner. For diagnosed

cases, only diagnosed measurements are considered for aggregation and vice versa.

Mathematically, letD0 denote the base subset containing the feature LabResultValue0,

and let Di represent the subsets of laboratory tests ranked by accuracy. For each

additional laboratory test Di, a new feature LabResultValuei is introduced. Ag-

gregation is performed by matching entries in D0 and Di based on the demographic

attributes age (A) and gender (G). Specifically, for an entry x ∈ D0, the matching

set Mi is defined as:

Mi = {y ∈ Di | A(x) = A(y), G(x) = G(y)} (3.1)

A fallback mechanism is applied if Mi is empty. In this case, entries from Di are

matched with D0 such that the gender (G) remains the same, and the age (A) of

the matching entries is within a range of ±2 years of the age of x. The updated

matching set is defined as:

M fallback
i = {y ∈ Di | |A(x)− A(y)| ≤ 2, G(x) = G(y)} (3.2)

From the matching set Mi (or M
fallback
i if Mi is empty), a laboratory value is sam-

pled randomly and assigned to LabResultValuei in D0. This process is repeated

iteratively, adding new features LabResultValuei until n selected laboratory tests

are aggregated.

Illustrative Example for Aggregation Process

This following example illustrates the demographic-based aggregation for a Diag-

nosis X. The base subset D0 contains one measurement from the best-performing

laboratory test (Test A). The objective is to add a measurement from the second-
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best performing laboratory test (Test B) using the defined aggregation process.

The base subset D0 contains the following entry:

Age Gender LabResultValue0 (Test A) Diag

50 Male 7.5 1

Table 3.2: Base subset D0 with one measurement from the best-performing labora-
tory test (Test A) for Diagnosis X.

The subset D1 contains measurements from the second-best performing laboratory

test for Diagnosis X:

Measurement Age Gender LabResultValue (Test B) Diag

Measurement 1 50 Male 8.2 1
Measurement 2 52 Male 7.8 1
Measurement 3 48 Male 7.9 1
Measurement 4 50 Female 8.1 1
Measurement 5 50 Male 8.0 1

Table 3.3: Subset D1 contains multiple measurements from the second-best per-
forming test (Test B) for Diagnosis X with potential matching entries.

The matching process proceeds as follows:

1. Exact Match:

• Filter D1 for entries with the same age and gender as the measurement

in D0 (Age = 50, Gender = Male).

• Result: Measurements 1 and 5 match.

2. Fallback Match:

• If no exact match is found, filter D1 for entries with the same gender and

an age within ±2 years of the base measurement.

• Result: Measurements 2 and 3 satisfy the fallback criteria (Age = 52

and Age = 48, Gender = Male).

3. Sampling:

• Randomly sample one value from the matching set. For this example,

Measurement 1 is chosen with LabResultValue = 8.2.

The base subset D0 is updated to include the new measurement from Test B:
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Age Gender LabResultValue0 LabResultValue1 Diag

50 Male 7.5 8.2 1

Table 3.4: Updated base subset D0 after aggregation.

This process is repeated for all measurements in D0 and for additional laboratory

tests to create a dataset with multiple laboratory test values for each diagnosis.

By aggregating laboratory values in this manner, the dataset simulates comprehen-

sive patient information. This stepwise approach enables a systematic evaluation

of how the inclusion of additional laboratory tests affects predictive performance,

providing a framework for understanding the potential impact of richer datasets in

medical diagnostics.

3.4 Evaluation of Aggregated Subsets

To study the effect on the model’s performance of subsets with more laboratory test

values, we create the subsets step by step. We start with one test and add one test

at a time, up to 20 tests for each diagnosis. After adding each test, we evaluate the

model with the subset to see how it affects accuracy. In order to reduce random-

ness and get reliable results, the process is repeated seven times for each diagnosis.

We evaluate every subset twice: once with XGBoost using default hyperparameters

(see Table B.4) and once with Bayesian optimization to adjust the hyperparameters.

Each time the aggregated subset is evaluated, the data is split into a training set

(70%) and a test set (30%). XGBoost is then used to evaluate classification per-

formance through two protocols. First, default parameters are applied to establish

a baseline for predictive performance. Second, Bayesian optimization is employed

to fine-tune the hyperparameters, using 3-fold cross-validation to evaluate model

performance during the tuning process. A detailed overview of the hyperparame-

ters used for tuning, including their descriptions and ranges, is provided in Table 3.5.

The results of this evaluation serve two main purposes. First, they quantify the

diagnostic value added by aggregating additional laboratory tests, highlighting the

potential for richer datasets to improve predictive performance. Second, they pro-

vide insights into the effectiveness of hyperparameter optimization, demonstrating

its role in enhancing classification accuracy. This thesis establishes a framework

for understanding the potential of performing diagnosis prediction with blood mea-
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surements by systematically evaluating aggregated subsets.

Hyperparameter Description Range/Value

n estimators Number of decision trees 100–300
max depth Maximum depth of each tree 3–7
learning rate Step size shrinkage to prevent overfitting 0.01–0.2
subsample Fraction of samples used for tree building 0.6–1.0
colsample bytree Fraction of features used per tree 0.6–1.0
alpha L1 regularization weight to enforce sparsity 0–5
lambda L2 regularization weight to reduce overfitting 0–10

Table 3.5: Overview of the hyperparameters used for XGBoost with aggregated
subsets, including their descriptions and the corresponding ranges.
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Chapter 4

Results and Discussion

4.1 Evaluation Results

This section presents the experimental results obtained from the evaluation process.

It starts with evaluating the predictive performance of laboratory tests on individual

diagnoses. It continues with the impact of demographic-based aggregation and

hyperparameter tuning on the model performance. The last part addresses the

limitations of the approach.

4.1.1 Predictive Performance of Laboratory Tests

The evaluation of individual laboratory tests is conducted as described in Sec-

tion 3.2.2, utilizing the XGBoost algorithm with standard parameters to ensure

consistency. For each diagnosis, the accuracy of subsets corresponding to individ-

ual laboratory tests is measured, with higher accuracy indicating stronger predictive

potential. All subsets that contain fewer than a 1,000 measurements are excluded

from the analysis.

The evaluation results are visualized in Figure 4.1 as a heatmap. Diagnoses are

represented on the x-axis by their ICD-10-GM codes, arranged alphabetically to re-

flect the hierarchical structure of the ICD-10-GM classification, where codes sharing

the same initial letter belong to the same diagnostic category. Laboratory tests are

displayed on the y-axis and can be identified by their LOINC codes. The laboratory

tests are sorted numerically.

For the diagnosis O09 (Supervision of high-risk pregnancy), several laboratory tests

demonstrate strong predictive accuracy. This indicates that specific laboratory val-
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Figure 4.1: Heatmap of accuracies for each laboratory test (y-axis, LOINC codes)
across the most common diagnoses (x-axis, ICD-10-GM codes) in the Swiss BioRef
dataset. Grey fields indicate subsets excluded due to insufficient data. Labora-
tory tests 68438-1 (25-Hydroxyvitamin D3+25-Hydroxyvitamin D2) and 20448-7
(Insulin in Plasma or Serum) are omitted as no subset contains more than 1,000
measurements.

ues are reliable indicators for identifying high-risk pregnancies. Additionally, the

diagnoses N17 (Acute kidney failure) and N18 (Chronic kidney disease) show sim-

ilar predictive performance for the same laboratory tests. The laboratory tests

that achieve high predictive accuracy for both kidney-related diagnoses include

59826-8 (Creatinine in Blood), 22664-7 (Blood Urea in Serum or Plasma), 62238-1

(Estimated Glomerular Filtration Rate), and 14682-9 (Serum Creatinine in Serum

or Plasma). The diagnoses C77 (Secondary and unspecified malignant neoplasm

of lymph nodes), C78 (Secondary malignant neoplasm of respiratory and digestive
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organs), and C79 (Secondary malignant neoplasm of other sites) share common lab-

oratory tests with strong predictive performance. Specifically, 789-8 (Erythrocytes

in Blood), 718-7 (Hemoglobin Concentration in Blood), and 4544-3 (Hematocrit in

Blood) are particularly effective in predicting these diagnoses.

Figure 4.2: Ranking of the top laboratory tests (y-axis, LOINC codes) with the
highest accuracies for each diagnosis (x-axis, ICD-10-GM codes). The top five
tests are highlighted. Empty spaces indicate subsets excluded due to insufficient
data. Laboratory tests 68438-1 (25-Hydroxyvitamin D3+25-Hydroxyvitamin D2)
and 20448-7 (Insulin in Plasma or Serum) are omitted as no subset exceeds 1,000
measurements.

Figure 4.2 ranks the laboratory tests for the diagnoses. For each diagnosis, the

five laboratory tests with the highest predictive accuracy are highlighted. Notably,

certain laboratory tests are good predictors across multiple diagnoses. 11557-6

(Carbon Dioxide Partial Pressure in Blood), 11556-8 (Oxygen Partial Pressure in

23



Blood), 4544-3 (Hematocrit in Blood), 1988-5 (C-Reactive Protein in Serum or

Plasma), and 20564-1 (Oxygen Saturation in Blood) consistently perform well and

exhibit an average rank below 10 across all diagnoses. The figure also indicates

that the laboratory test 11557-6 (Carbon Dioxide Partial Pressure in Blood) is

among the best predictors for the diagnoses I10 (Essential hypertension), I21 (Acute

myocardial infarction), I25 (Chronic ischemic heart disease), I34 (Nonrheumatic

mitral valve disorders) and I50 (Heart failure). These results show that specific

laboratory tests exhibit similar predictive performance for related diagnoses. This

could reflect the underlying physiological or pathological commonalities.

4.1.2 Effect of Demographic-Based Aggregation

Figure 4.3 illustrates the impact of demographic-based aggregation on the model

accuracy for 15 diagnoses of the 41 most common. The line plot displays the pro-

gression of accuracy as additional laboratory test values are aggregated, starting

from a single laboratory test and increasing incrementally up to 20 laboratory tests.

This approach evaluates how the inclusion of more predictors affects the model’s

performance. Results for the remaining diagnoses are provided in Appendix A.

The line plot consistently shows an upward trend, indicating that aggregating ad-

ditional laboratory tests generally enhances accuracy across all diagnoses. Certain

diagnoses, such as N18 (Chronic kidney disease), N17 (Acute kidney failure), and

I50 (Heart failure), exhibit substantial improvements of over 10 percentage points in

accuracy. On the other hand, diagnoses like E11 (Type 2 diabetes mellitus) and I34

(Nonrheumatic mitral valve disorders) show only marginal gains, suggesting that

these conditions may be more challenging to predict even with more test values

available. It could also suggest that the additional aggregated tests provide limited

information and are not particularly relevant to these diagnoses.

Many diagnoses significantly improve when the first few laboratory tests are added.

For instance, E87 (Disorders of fluid, electrolyte, and acid-base balance), I50 (Heart

failure), X59 (Exposure to unspecified factors causing external injury), and S02

(Fracture of skull and facial bones) exhibit marked increases in accuracy with the

addition of the first few laboratory tests. After these initial improvements, the

accuracy starts to plateau and shows only minimal further improvements. This

behavior can be attributed to the method by adding laboratory tests based on

their ranking, as illustrated in Figure 4.2. The laboratory tests with the highest

predictive value are incorporated first, contributing significantly to the accuracy
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Figure 4.3: Line plots illustrating the progression of model accuracy as additional
laboratory tests are aggregated for 15 selected diagnoses (x-axis: number of lab-
oratory tests, y-axis: accuracy). Each line represents the mean accuracy for a
diagnosis, with shaded areas indicating the standard deviation.

improvements. Conversely, tests with lower predictive accuracy are added later,

which explains the eventual plateau in performance as their contribution becomes

negligible. However, some diagnoses deviate from the trend to first improve and

25



then plateau. For example, X59 (Exposure to unspecified factors causing external

injury), U99 (Medical surveillance and observation cases), and N39 (Other disor-

ders of the urinary system) exhibit a sudden increase in accuracy after previously

plateauing. This ”jump” could suggest that certain tests added later in the sequence

may actually be better predictors than they are ranked.

4.1.3 Impact of Hyperparameter Tuning

Figure 4.4 presents the accuracies achieved when aggregating laboratory tests from

1 to 20, comparing results obtained with and without hyperparameter tuning using

Bayesian optimization. For the majority of diagnoses, the performance of the model

without hyperparameter tuning closely approximates that of the model optimized

via Bayesian methods. The figure shows 15 of the 41 analyzed diagnoses, the re-

maining results are provided in Appendix A.

On average, across all diagnoses and iterations, the XGBoost model tuned with

Bayesian optimization demonstrated a marginally higher accuracy, with an im-

provement of approximately 0.7 percentage points compared to the model without

hyperparameter tuning. The most notable performance difference was observed in

the diagnosis I34 (Nonrheumatic mitral valve disorders), where the optimized model

achieved an average accuracy increase of 1.6 percentage points over 20 iterations.

Conversely, the smallest performance difference is found for the diagnosis O09 (Su-

pervision of high-risk pregnancy), where the Bayesian-optimized model outperforms

the unoptimized model by only 0.2 percentage points.

4.1.4 Limitations

The most significant limitation of the results lies in the aggregation of laboratory

test values. Due to the anonymization of the dataset, the aggregation is performed

on the demographic attributes age and gender rather than linking tests to the same

patient. While this approach simulates richer subsets and provides valuable in-

sights, it is important to note that the results are only indicative. They must be

validated with datasets where all laboratory tests unequivocally belong to the same

patient to ensure the practical relevance of the findings.

Another notable limitation is that the diagnoses are assigned prior to the labo-

ratory tests instead of being derived from them. The diagnoses are included in

the dataset to indicate the patient’s association with a specific group, as the data

were originally collected to establish reference values [16]. Consequently, diagnoses
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Figure 4.4: Line plots comparing the accuracy achieved when aggregating labora-
tory tests (x-axis: number of laboratory tests, y-axis: accuracy) for 15 diagnoses,
with and without hyperparameter tuning using Bayesian optimization. Each line
represents the mean accuracy for a diagnosis, with shaded areas indicating the stan-
dard deviation.
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serve as metadata about the measurements rather than outcomes of the laboratory

tests. This challenges the assumption of a direct statistical relationship between

the laboratory results and diagnoses.

Another major limitation concerns the balancing of the subsets derived from the

original dataset. The original subsets are like most medical datasets naturally imbal-

anced, meaning there are a lot more of undiagnosed measurements than diagnosed.

For this evaluation, balanced subsets were created to ensure a fair evaluation of

model performance. However, such balancing does not reflect real-world distribu-

tions. If these methods were applied to the imbalanced subsets, the performance

might decline, and accuracy alone would no longer suffice as a reliable evaluation

metric. In imbalanced datasets, metrics like precision, recall, or the F1-score are

essential to evaluate the model’s effectiveness.

Finally, computational constraints posed a limitation. Hyperparameter tuning with

Bayesian optimization was intentionally limited to ensure feasibility across 20 it-

erations for each of the 41 diagnoses. This restricted depth of tuning may have

affected the model’s optimal performance. A more extensive and thorough tuning

process could yield better results.
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Chapter 5

Conclusions and Future Work

5.1 Conclusion

The primary objective of this thesis was to evaluate the potential of laboratory

blood test values for diagnosing medical conditions using binary classification. The

thesis explores how combining laboratory tests can enhance diagnostic accuracy by

employing the XGBoost algorithm, a demographic-based data aggregation approach

and hyperparameter tuning using Bayesian optimization. Constructing derived sub-

sets from an anonymized dataset provides a structured framework for simulating

patient data and enables the assessment of individual and aggregated laboratory

test performance. Our key findings are the identification of laboratory tests with

high predictive accuracy for specific diagnoses and how the aggregation of different

test values improves the model performance.

The evaluation shows that the accuracy achieved by the XGBoost model improves

significantly with the aggregation of additional laboratory test values. For instance,

the diagnoses N18 (Chronic kidney disease) and N17 (Acute kidney failure) show an

accuracy of over 10 percentage points when key laboratory tests are aggregated. In

particular, adding the first few laboratory tests, which have the highest predictive

potential when evaluated individually for a diagnosis, enhances the performance.

Hyperparameter tuning further optimizes the model’s accuracy, though the im-

provement is modest, with an average of 0.7 percentage points across all diagnoses

and iterations.

Despite the promising results, they must be interpreted cautiously due to several

limitations. Although the aggregation of laboratory tests simulates real-world con-

ditions, it falls short of fully capturing the complexity of actual patient data, as it

relies on randomness and assumptions about the relationships between laboratory
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tests and diagnoses. As a result, these findings should be viewed as indicative and

require validation using non-anonymized datasets with true patient-level records.

Another limitation stems from the balancing of subsets for binary classification.

Naturally, undiagnosed cases far outnumber diagnosed ones in medical datasets,

but balancing these subsets may have artificially inflated the model’s classification

accuracies. Without balancing, alternative metrics such as precision, recall, or the

F1-score would offer a more nuanced and realistic evaluation of the model’s perfor-

mance.

These findings underscore both the potential and the challenges of applying ML

to medical diagnostics. While the results emphasize the value of leveraging labo-

ratory test data for predictive modeling, they also emphasize the need for further

validation and adaptation to real-world datasets to ensure practical applicability.

5.2 Future Work

The results obtained in this thesis show the potential of ML for predicting medical

diagnoses, yet further validation is necessary. Future studies should cross-check

these findings using datasets where the laboratory tests definitively belong to the

same patient. Working with such datasets would circumvent the reliance on ran-

domness and aggregation, thus providing a clearer understanding of the true predic-

tive power of laboratory tests. Additionally, comparing the rankings of laboratory

tests identified in this study with insights from medical practitioners would offer

valuable references. Verifying whether the laboratory tests that contribute signif-

icantly to the prediction of certain diagnoses align with the tests typically relied

upon by medical professionals would enhance the practical relevance of these find-

ings.

Another direction for future work involves exploring other ML models and con-

ducting more extensive hyperparameter tuning to compare their performance with

XGBoost. Evaluating different algorithms, such as neural networks or ensemble

models, could provide insights for improving diagnostic predictions. Additionally,

preprocessing the dataset with outlier detection could help refine the data before

applying ML algorithms. Since medical datasets are often affected by extreme val-

ues, outlier detection can enhance the robustness and reliability of the models.

Future research can also explore the effect of balanced subsets compared to un-

balanced ones. For this, the current approach can be replicated but with unbal-
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anced sets. The model’s performance could then be assessed using metrics such as

F1-score, precision, and recall rather than relying solely on accuracy. This would

provide a better understanding of the model’s behavior when addressing the addi-

tional challenge of unbalanced data. Since data imbalance is common in medical

datasets, evaluating the model under these conditions can show insights into the

practical applicability.

Finally, this thesis only considers the 41 most common diagnoses in the dataset,

but future research can expand the scope to include more diagnoses, especially rare

diagnoses. Analyzing and predicting rare diagnoses is often more challenging due

to insufficient data and overlapping clinical presentations with more common con-

ditions. This overlap can lead to misdiagnoses, making it harder for ML models to

distinguish between rare and common diagnoses.
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Appendix A

Additional Figures of Results
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Figure A.1: Line plots illustrating the progression of model accuracy as additional
laboratory tests are aggregated for 15 selected diagnoses (x-axis: number of lab-
oratory tests, y-axis: accuracy). Each line represents the mean accuracy for a
diagnosis, with shaded areas indicating the standard deviation.
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Figure A.2: Line plots illustrating the progression of model accuracy as additional
laboratory tests are aggregated for 11 selected diagnoses (x-axis: number of lab-
oratory tests, y-axis: accuracy). Each line represents the mean accuracy for a
diagnosis, with shaded areas indicating the standard deviation.
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Figure A.3: Line plots comparing the accuracy achieved when aggregating labora-
tory tests (x-axis: number of laboratory tests, y-axis: accuracy) for 15 diagnoses,
with and without hyperparameter tuning using Bayesian optimization. Each line
represents the mean accuracy for a diagnosis, with shaded areas indicating the stan-
dard deviation.
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Figure A.4: Line plots comparing the accuracy achieved when aggregating labora-
tory tests (x-axis: number of laboratory tests, y-axis: accuracy) for 11 diagnoses,
with and without hyperparameter tuning using Bayesian optimization. Each line
represents the mean accuracy for a diagnosis, with shaded areas indicating the stan-
dard deviation.
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Appendix B

Supplementary Tables
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LOINC Description

2823-3 Potassium [Moles/volume] in Serum or Plasma
2951-2 Sodium [Moles/volume] in Serum or Plasma
5894-1 Prothrombin time (PT) actual/Normal
1988-5 C reactive protein [Mass/volume] in Serum or Plasma
14749-6 Glucose [Moles/volume] in Serum or Plasma
14682-9 Creatinine [Moles/volume] in Serum or Plasma
6690-2 Leukocytes [#/volume] in Blood by Automated count
777-3 Platelets [#/volume] in Blood by Automated count
718-7 Hemoglobin [Mass/volume] in Blood
789-8 Erythrocytes [#/volume] in Blood by Automated count
4544-3 Hematocrit [Volume Fraction] of Blood by Automated count
787-2 MCV [Entitic volume] by Automated count
785-6 MCH [Entitic mass] by Automated count
786-4 MCHC [Mass/volume] by Automated count
6301-6 INR in Platelet poor plasma by Coagulation assay
788-0 Erythrocyte distribution width [Ratio] by Automated count
32623-1 Platelet mean volume [Entitic volume] in Blood by Automated count
62238-1 Glomerular filtration rate/1.73 sq M.predicted [Volume Rate/Area] in Serum,

Plasma or Blood by Creatinine-based formula (CKD-EPI)
5902-2 Prothrombin time (PT)
1743-4 Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5’-P
30239-8 Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma by With P-5’-P
22664-7 Urea [Moles/volume] in Serum or Plasma
11558-4 pH of Blood
11557-6 Carbon dioxide [Partial pressure] in Blood
11556-8 Oxygen [Partial pressure] in Blood
2075-0 Chloride [Moles/volume] in Serum or Plasma
14979-9 aPTT in Platelet poor plasma by Coagulation assay
20564-1 Oxygen saturation in Blood
59826-8 Creatinine [Moles/volume] in Blood
14927-8 Triglyceride [Moles/volume] in Serum or Plasma
14647-2 Cholesterol [Moles/volume] in Serum or Plasma
14646-4 Cholesterol in HDL [Moles/volume] in Serum or Plasma
39469-2 Cholesterol in LDL [Moles/volume] in Serum or Plasma by calculation
59261-8 Hemoglobin A1c/Hemoglobin.total in Blood by IFCC protocol
46418-0 INR in Capillary blood by Coagulation assay
83071-1 25-Hydroxyvitamin D2+25-Hydroxyvitamin D3 [Moles/volume] in Serum

or Plasma by Immunoassay
69419-0 Cholesterol in LDL [Moles/volume] in Serum or Plasma by Direct assay
68438-1 25-Hydroxyvitamin D3+25-Hydroxyvitamin D2 [Moles/volume] in Serum or Plasma
20448-7 Insulin [Units/volume] in Serum or Plasma

Table B.1: All 39 laboratory tests contained within the Swiss BioRef dataset. The
tests are sorted from the most common to the least common in the dataset.
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Feature Description

SubjectPseudoIdentifier Patient identifier
AdministrativeCase Case identifier
DataProviderInstitute Data provider identifier
Labtest Description of the laboratory test
LOINC LOINC code corresponding to the test
LabResultValue Measured value
LabResultUnit Unit of measurement for the corresponding value
Diag01 ICD-10-GM code of relevant diagnosis 1
Diag02 ICD-10-GM code of relevant diagnosis 2
Diag03 ICD-10-GM code of relevant diagnosis 3
Diag04 ICD-10-GM code of relevant diagnosis 4
Diag05 ICD-10-GM code of relevant diagnosis 5
Age Patient’s Age
AgeUnit Age unit
AgeType LOINC identifying the age type
AdministrativeGender Patient’s administrative gender
device udi Unique device identifier from the Global Unique Device Identification Database
testkit udi Device type identifiers from the Global Medical Device Nomenclature
testkit type Unique test kit identifier from the Global Unique Device Identification Database
RFIKey device Test kit type identifiers from the Global Medical Device Nomenclature

Table B.2: Complete list of features of the Swiss BioRef dataset.
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Diagnosis Number of Cases Frequency(%) Description

I25 962,055 16.12 Chronic ischemic heart disease
I10 727,065 12.18 Essential (primary) hypertension
N18 516,478 8.65 Chronic kidney disease (CKD)
I50 498,619 8.36 Heart failure
Z95 442,007 7.41 Presence of cardiac and vascular implants and grafts
I48 396,243 6.64 Atrial fibrillation and flutter
I11 332,533 5.57 Hypertensive heart disease
N17 328,894 5.51 Acute kidney failure
E78 315,122 5.28 Disorders of lipoprotein metabolism and other lipidemias
E11 307,736 5.16 Type 2 diabetes mellitus
Y84 255,273 4.28 Medical procedure causing abnormal reaction or later complication
I63 255,180 4.28 Cerebral infarction (stroke)
X59 244,867 4.1 Exposure to unspecified factor causing injury
E87 225,363 3.78 Other disorders of fluid, electrolyte, and acid-base balance
S06 225,355 3.78 Intracranial injury
I21 211,929 3.55 Acute myocardial infarction (heart attack)
Z92 211,504 3.54 Personal history of medical treatment
I70 207,207 3.47 Atherosclerosis
T81 202,664 3.4 Complications of procedures, not elsewhere classified
R47 200,260 3.36 Speech disturbances
I35 198,955 3.33 Nonrheumatic aortic valve disorders
J96 188,906 3.17 Respiratory failure, not elsewhere classified
D62 187,967 3.15 Acute posthemorrhagic anemia
Z86 176,765 2.96 Personal history of certain other diseases
G40 166,949 2.8 Epilepsy
O09 165,229 2.77 Supervision of high-risk pregnancy
G81 164,962 2.76 Hemiplegia and hemiparesis
A41 163,834 2.75 Sepsis
C77 145,894 2.44 Secondary and unspecified malignant neoplasm of lymph nodes
C78 144,179 2.42 Secondary malignant neoplasm of respiratory and digestive organs
N39 142,302 2.38 Other disorders of urinary system
B96 141,788 2.38 Other bacterial agents as the cause of diseases
D68 137,795 2.31 Other coagulation defects
J44 130,080 2.18 Chronic obstructive pulmonary disease (COPD)
C79 129,548 2.17 Secondary malignant neoplasm of other sites
U99 127,101 2.13 Medical surveillance and observation cases
I34 126,771 2.12 Nonrheumatic mitral valve disorders
D69 124,446 2.09 Purpura and other hemorrhagic conditions
J18 123,277 2.07 Pneumonia, organism unspecified
S02 120,852 2.03 Fracture of skull and facial bones

Table B.3: Most common Diagnoses in the Swiss BioRef dataset.
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Hyperparameter Description Default Value

n estimators Number of decision trees. 100
max depth Maximum depth of a tree; controls model complexity. 6
learning rate Step size shrinkage; balances weight updates between iterations. 0.3
subsample Fraction of samples used for training each tree; prevents overfitting. 1.0
colsample bytree Fraction of features used for each tree. 1.0
min child weight Minimum sum of weights required for child nodes; prevents overfitting. 1
gamma Minimum loss reduction required for a split; regularizes the tree. 0
alpha L1 regularization term; adds sparsity to the model. 0
lambda L2 regularization term; prevents overfitting. 1
scale pos weight Balances positive and negative classes for imbalanced datasets. 1
objective Specifies the learning task (e.g., binary:logistic for binary classification). reg:squarederror

tree method Algorithm for constructing trees (e.g., hist for large datasets). auto

Table B.4: Default values of hyperparameters for the XGBoost classifier using
gbtree. Default values are based on the official XGBoost documentation (ver-
sion 2.1.3).
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