
German Dataset Augmentation and

Performance Gains through

Character-Level Modeling
Bachelor Thesis

Faculty of Science, University of Bern

submitted by

Dimoth Paththiniwasam

from Colombo (LAK), Switzerland

Supervision:

PD Dr. Kaspar Riesen

Corina Masanti

Institute of Computer Science (INF)

University of Bern, Switzerland

Abstract

Grammatical Error Correction (GEC) systems are vital for automating labor-intensive

proofreading tasks, yet they often underperform in non-English language domains

due to the scarcity of high-quality annotated datasets. This thesis addresses these

challenges by enhancing a German-language dataset, the Rotstift dataset, through

synthetic data generation. A novel two-phase approach is introduced, utilizing

a fine-tuned CANINE model to predict character-level modifications and apply-

ing category-specific rules to inject errors systematically. The enhanced dataset

includes four error types—Deletion, Replacement, ß-ss, and Whitespace—and is

evaluated using mBERT on a binary classification task. Results indicate that syn-

thetic augmentation improves recall across all categories, with notable gains in the

underperforming ß-ss category, where accuracy surpasses 50%. However, accuracy

gains remain modest due to increased false positives. This work underscores the po-

tential of character-level modeling and synthetic augmentation for improving GEC

systems in resource-scarce settings, providing a foundation for further advancements

in multilingual and domain-specific applications.

ii

Contents

1 Introduction 1

1.1 Topic . 1

1.2 Overview Dataset . 2

1.3 Goal . 3

1.4 Outline . 3

2 Related Work 4

3 Theoretical Foundations 6

3.1 Transformer . 7

3.1.1 Tokens and Embeddings . 8

3.1.2 Positional Encoding . 8

3.1.3 Attention . 9

3.1.4 Position-wise Feed-Forward Networ 11

3.1.5 Encoder . 11

3.2 Hugging Face Transformer library 12

3.2.1 Tokenizer . 12

3.2.2 Heads . 12

3.3 Models . 13

3.3.1 mBERT . 13

3.3.2 CANINE . 14

3.4 Definitions . 15

3.4.1 Linguistic Definitions . 15

3.4.2 Evaluation Metrics . 15

3.4.3 Supervised Learning . 16

4 Preprocessing 17

4.1 Cleaning . 17

4.2 Synthetic Data Source . 18

iii

5 Methodology 19

5.1 Solutions . 20

5.1.1 Reasoning for model selection 20

5.1.2 Character Classification . 20

5.1.3 Labeling . 21

5.1.4 Character Classification for error injection 21

5.2 Modifications . 21

5.2.1 ß and ss . 23

6 Experimental Evaluation 24

6.1 Experiment Setup . 24

6.1.1 General Approach . 24

6.1.2 Technological Stack . 25

6.2 Baseline . 25

6.2.1 Special Token . 25

6.2.2 Hyperparameters . 25

6.2.3 Results . 26

6.3 Experiment Enhanced Dataset . 26

6.4 Enhanced Dataset Experiment . 27

6.4.1 Original Dataset (Table 6.3) 27

6.4.2 Enhanced Dataset (Table 6.4) 28

6.4.3 Comparison . 28

7 Future Work 29

A Tables 30

B Results 33

Bibliography 37

iv

Chapter 1

Introduction

This chapter introduces the challenges posed by limited annotated datasets for

Grammatical Error Correction (GEC) and outlines the approaches explored in this

study. It provides an overview of the Rotstift dataset, including its error categories

and inherent limitations, which serve as the foundation of this thesis. Finally, the

specific challenges addressed and the objectives pursued are described.

1.1 Topic

In modern proofreading agencies multiple professionals collaborate to refine and en-

hance client texts, ensuring that each document is accurate and polished. The proof-

reading process typically involves several steps, each requiring meticulous attention

to detail. Proofreaders must review every sentence carefully, addressing grammar,

punctuation, style and coherence errors thereby identifying even the smallest mis-

takes that might affect the quality or meaning of the text.

Recent advancements in Artificial Intelligence (AI) and Machine Learning (ML),

particularly in Natural Language Processing (NLP), have raised expectations for

automating labor-intensive tasks like grammatical error correction. Fully auto-

mated systems have the potential to significantly reduce the manual effort required

in proofreading. However, as Masanti et al. [1] point out, current solutions of-

ten fail to meet the requirements of professional proofreading agencies due to the

scarcity of well-annotated datasets. This limitation is especially pronounced in non-

English language domains such as German, where high-quality annotated datasets

for Grammar Error Correction (GEC)—a task focused on identifying and correcting

grammatical errors in sentences [2, 3]—are particularly scarce [4].

While the revolutionary Transformer architecture introduced by Vaswani et al. [5]

1

has significantly advanced NLP capabilities, the lack of diverse and comprehensive

datasets continues to hinder the development of effective GEC systems that meet

professional standards.

To address these challenges, synthetic dataset generation has emerged as a viable

solution. By injecting deliberate errors into correctly written sentences, it is possible

to expand existing datasets. For instance rule-based methods can algorithmically

inject errors such as typos, incorrect punctuation or character substitutions. How-

ever, these approaches often fail to capture the diversity and complexity of human

errors, as noted by Masanti et al.[1]. This highlights the need for innovative methods

that improve both dataset quality and model performance.

While advancements in AI and NLP hold great potential for automating proofread-

ing tasks, significant obstacles remain, particularly in non-English domains. Ad-

dressing these challenges requires a concerted effort to develop enhanced datasets

and robust model architectures capable of meeting professional standards. The

interplay of these advancements with existing limitations underscores the neces-

sity of ongoing research to bridge the gap between current technologies and the

expectations of proofreading professionals.

1.2 Overview Dataset

The foundation for this thesis is a dataset that has been collected since 2019 by the

proofreading agency Rotstift AG in Switzerland. This dataset comprises approxi-

mately 80,000 documents [6] containing text with grammatical or stylistic errors in

English, German, French and Italian, alongside their manually corrected versions

by the Rotstift agency. In addition, errors are already classified into different types.

This study focuses exclusively on the German portion of the dataset and the error

types detailed in Table 1.1. From this point forward, this dataset is referred to as

the Rotstift dataset.

The Rotstift dataset presents the following challenges. Mixed content and format-

ting artifacts, such as line breaks (\n), special symbols (e.g., Peha®), and inconsis-

tent annotations, complicate pre-processing and disrupt tokenization. Addressing

these issues is essential to create a clean dataset for training robust models.

2

Category Description Example
Incorrect → Correct

Size

Deletion Removing a single character
results in an error

Walang → Walfang 2281

Replacement Replacing a single character
causes an error

Hous → Haus 739

ß-ss The ß is replaced with ss,
which is grammatically incor-
rect

Strasse → Straße 95

Whitespace Errors caused by incorrect
placement of whitespace

Wal fang → Walfang 2403

Table 1.1: Error categories in the Rotstift dataset with examples and the quantity
in each category. All errors are subject to a specific permutation on one character
and can be found multiple times in a text

1.3 Goal

This thesis aims to address the challenges of limited annotated data in the Rotstift

dataset by generating a synthetic datasets for each error category while maintaining

its diversity. So therefore the performance of a BERT-based model on a binary

classification task, for distinguishing correct from incorrect sentences, is enhanced.

Creating synthetic datasets, however, introduces additional complexities. A reliable

collection of correctly written sentences is as critical as the foundation for injecting

errors. Without such data, synthetic datasets risk inheriting inaccuracies, which

can negatively affect model performance. Validating large-scale datasets manually

is infeasible, while automated tools often fail to capture subtle grammatical nuances

and stylistic inconsistencies. This challenge is particularly noticeable with German

grammar, where grammar depends on intricate rules involving case, gender, and

tense agreement [7].

By addressing these challenges, this thesis seeks to enhance the Rotstift dataset

and contribute to the development of more effective GEC systems.

1.4 Outline

3

Chapter 2

Related Work

Data augmentation plays a critical role in GEC systems, addressing data scarcity

while enhancing model robustness and performance. Recent studies have proposed

innovative approaches to generate high-quality synthetic data that mirrors real-

world grammatical error distributions.

Contextual Data Augmentation Wang et al. (2024) [8] introduced a con-

textual data augmentation technique that combines rule-based substitutions with

model-generated errors to create synthetic data reflecting authentic error patterns.

To ensure data quality, their approach incorporates a relabeling-based data cleaning

method, which mitigates the impact of noisy labels. Experimental results on stan-

dard GEC datasets demonstrated that this technique significantly improves model

performance, achieving state-of-the-art results with minimal reliance on additional

synthetic data.

Dynamic Data Augmentation Ye et al. (2023) [9] proposed MixEdit, a dy-

namic data augmentation method designed to generate realistic grammatical errors

without requiring extensive monolingual corpora. Their method evaluates augmen-

tation strategies using two metrics: Affinity, which measures how closely the aug-

mented data matches real-world errors, and Diversity, which assesses the variation

in generated errors. The results showed that a well-balanced augmentation strat-

egy—characterized by high Affinity and optimal Diversity—substantially enhances

the performance of GEC models, while also complementing traditional augmenta-

tion techniques.

Cycle Self-Augmenting Tang et al. (2023) [2] addressed the issue of robust-

ness in GEC models by introducing the Cycle Self-Augmenting (CSA) method. This

4

approach leverages self-generated data during the post-training phase and incorpo-

rates regularization data for cyclical training. The CSA method not only improves

model performance on clean datasets but also enhances robustness against adver-

sarial inputs, demonstrating its effectiveness in maintaining high accuracy across

varying data conditions.

These studies collectively highlight the importance of tailored data augmentation

strategies in GEC. By generating high-quality synthetic data aligned with real-world

error patterns, these approaches enable GEC models to perform more effectively,

even in low-resource settings. Moreover, methodologies such as MixEdit and CSA

provide critical insights into balancing data quality and robustness, ensuring that

augmented datasets contribute meaningfully to model training.

5

Chapter 3

Theoretical Foundations

All models discussed in this thesis are based on the Transformer [5]. Section 3.1

provides an overview of the Transformer and key mechanisms, such as Tokenizer,

Embeddings, Positional Encoding and Attention to establish a theoretical basis for

the models utilized. The Hugging Face Transformers library is introduced in section

3.2 as it was used for fine-tuning pretrained models on downstream tasks. Finally,

section 3.3 focuses on the selected models, mBERT and CANINE. mBERT was

chosen for its robust multilingual capabilities while CANINE was selected for its

character-level processing, which aligns with the character-level errors targeted for

injection in this thesis.

6

3.1 Transformer

Figure 3.1: Illustration of the Transformer from [10]. Left is a Transformer with
a single encoder-decoder stack depicted. In the center, the Multi-Head Attention
component is shown, and on the right, the Scaled Dot-Product Attention mechanism
is illustrated.

The Transformer architecture, introduced by Vaswani et al. [5] in their seminal

work Attention Is All You Need, represents a breakthrough in processing sequen-

tial data. Unlike earlier architectures such as Recurrent Neural Networks (RNNs)

or Long Short-Term Memory (LSTM)[11] networks, the Transformer processes in-

put sequences in parallel, enabling greater computational efficiency and improved

handling of long-range dependencies [5].

As shown in Figure 3.1, the Transformer consists of two main components: The

encoder and the decoder. This thesis focuses solely on the encoder as the selected

models for enhancing the Rotstift dataset employ an encoder-only architecture. The

encoder transforms an input sentence into a continuous representation that captures

contextual relationships between tokens, which serves as the basis for downstream

tasks. Before being fed into the encoder, an input sentence x is transformed into an

input matrix x ∈ Rn×d, where n, d ∈ N. This transformation occurs in three distinct

steps. The first two steps, tokenization and embedding, are detailed in subsection

3.1.1. The third step, discussed in subsection 3.1.2, introduces Positional Encoding

to incorporate information about the order of the words in the input sentence.

Once this transformation is complete, the resulting input matrix x is ready to be

processed by the encoder, as described in subsection 3.1.5.

7

3.1.1 Tokens and Embeddings

Tokenization and embedding done by a Tokenizer and Embedding-Layer respec-

tively form the first step of the Transformer’s processing pipeline, as they transform

textual data into discrete units of numerical representations.

Tokenizer

Tokenization breaks down a sentence into smaller components called tokens, which

can be words, subwords or characters, depending on the strategy used. Each token is

mapped to a unique identifier in a predefined vocabulary. For example, the sentence

“Cows eat plants” might be tokenized into [Cows, eat, plants], each assigned an ID.

Embedding

Once an input sentence is tokenized into a sequence of n tokens, each token is then

mapped to a numerical vector through an embedding layer [12]. An embedding

is understood as the numerical representation that describes the token in a high

dimensional vector space. These vectors are represented as e ∈ Rd, where d is the

embedding dimension. All token embeddings are stored in an Embedding Matrix

of size V × d, where V is the vocabulary size, and d is the dimensionality of the

embeddings.

Tokens with similar meanings or contexts are positioned closer together in the vector

space Rd, facilitating the encoding of semantic relationships. For instance, in the

embedding space, the vector difference between ”man” and ”grandpa” should be

smaller than the difference between ”man” and ”cow”. After applying an embedding

to our sequence of n tokens we obtain the input embedding x ∈ Rn×d.

3.1.2 Positional Encoding

Transformers lack inherent mechanisms to capture the order of tokens in a sequence.

To address this, Vaswani et al. [5] utilizes Positional Encoding, which adds posi-

tional information to token embeddings. The importance of positional information

is evident in examples such as the sentences “Cows eat plants” and “Plants eat

cows.”. Although these sentences contain the same words, their meanings differ

significantly due to the word order.

For each token at position pos ∈ [1, . . . , n] in a input sequence with n tokens, a

positional encoding vector PE ∈ Rd is computed using sine and cosine functions.

PE(pos,2i) = sin(pos/100002i/d) PE(pos,2i+1) = cos(pos/100002i/d),

8

(a) Scaled Dot-Product
Attention

(b) Multi-Head Atten-
tion

Figure 3.2: Illustrations from Attention is all you need by Vaswani et al. [5], showing
the pipeline of the Scaled Dot-Product Attention and Multi-Head Attention.

where i is the embedding dimension. The sum of PE and the embedding vector at

pos ensures the order is encapsulated in the embedding vector. This procedure is

done before they are fed into the encoder as shown in the Figure 3.1.

The choice of sine and cosine functions allows the model to extrapolate to sequences

longer than those seen during training [5]. Additionally, their periodicity enables

the Transformer to capture patterns in the input sequence that depend on both

absolute and relative positions of tokens. [5].

3.1.3 Attention

As previously discussed, the Transformer architecture is built around the core con-

cept of Self-Attention, also referred to as intra-Attention. Self-Attention builds up

on the concept of Attention, first introduced by Bahdanau et al. [13].

Vaswani et al. [5] describes Attention as a function that maps a Query q and Key-

Value pairs k, v to an output, where q, k, v and the resulting outputs are vectors.

The output is computed as a weighted sum of the Value v, where the weights

are determined by a compatibility function that measures the similarity between

the Query q and its corresponding Key k. In the Transformer, Self-Attention is

implemented using the Scaled Dot-Product Attention, the compatibility function,

illustrated in Figure 3.1.3 (a).

9

This mechanism calculates the weights, which quantify the influence of a specific

token on every token in the sequence including itself.

For instance, depending on the context the word Apple can be a fruit or a tech

company. In the sentence I want to eat an apple the word eat defines Apple as a

fruit. The Self-Attention would therefore place a higher weight on eat for Apple to

shift the attention there and generating a so-called contextual embedding for each

word in the sentence.

Building on the concept of Scaled Dot-Product Attention, the Transformer extends

its capability through the Multi-Head Attention, which allows the model to retrieve

the context from multiple angles simultaneously.

Scaled Dot-Product

Before Self-Attention can be applied, the input matrix x ∈ Rn×d into three distinct

matrices Queries (Q), Keys (K), and Values (V) as shown in 3.1.3 (b).

Q = x×WQ, K = x×WK , V = x×WV ,

where WQ,WK ∈ Rd×dk and WV ∈ Rd×dv .

These transformations are achieved using three separate linear layers as depicted

in Figure 3.1. Each layer with its own learnable weight matrix without adding the

biases.

To obtain the attention weights first the dot product is calculated for each query

qi ∈ Q from the Query Q ∈ Rn×dk and all the keys ki ∈ KT from the Key matrix

K ∈ Rn×dk , where i ∈ [1, . . . , n]. The result is then scaled by 1√
dk

and passed

through a softmax function to generate the weights for the corresponding value

vi ∈ V from the Value matrix V ∈ Rn×dv to be multiplied.

Attention = softmax

(
QKT

√
dk

)
V

In practice, this process is performed using matrix multiplication to yield a contex-

tualized embedding called head of the input matrix x, with each row representing

a token from the input sequence.

Multi-Head Attention

Multi-Head Attention is a extension of Self-Attention that allows the model to

contextualize each token from various angles simultaneously. The Multi-Head At-

10

tention is formally defined as follows:

MultiHead = Concat(head1, . . . , headh)W
O,

where headi = Attention(XWQ
i , XW V

i , XW V
i) and i ∈ [1, . . . , h]

Capturing the relationships between the tokens from different angles is achieved

by employing multiple heads simultaneously. These heads are then concatenated

and multiplied by WO ∈ Rhdv×d to form the final output, where h is the number

of heads. This final projection ensures the output has dimensions n× d aligning it

with the original input dimensionality, where d represents the embedding dimension

and n the number of tokens in the input sequence.

3.1.4 Position-wise Feed-Forward Networ

The Position-wise Feed-Forward Network (FFN) is a component of the Transformer

architecture, introduced by Vaswani et al. [5]. It is applied independently to each

token’s embedding in a sequence. Unlike the attention mechanism, which models

relationships between tokens in a sequence, the FFN focuses on enhancing individ-

ual token representations, capturing feature-level dependencies without considering

context from neighboring tokens.

3.1.5 Encoder

The encoder consists of six identical layers, each processing the entire input sentence

x simultaneously. Each contains two main components as shown in Figure 3.1:

• Multi-Head Attention (h=8)

• Position-wise Feed-Forward Network

As shown in the figure 3.1 a residual connections[14] is wrapped around each com-

ponent followed by a normalization layer [15] to stabilize training and improve

computational efficiency.

11

3.2 Hugging Face Transformer library

Transformer

Tokenizer

Head Head

Figure 3.3: Illustration from [16] showing the components implemented by Hugging
Face’s Transformers library. Each Transformer-based model can be augmented with
prebuilt heads, crafted to produce outputs for a tasks. Furthermore, each model is
employed in conjunction with a compatible tokenizer.

The Transformers library, developed by Hugging Face [16], provides a powerful

interface for working with pretrained models such as mBERT and CANINE. It

enables seamless integration of pretrained language models into diverse NLP tasks,

including fine-tuning for classification, token tagging or text generation.

3.2.1 Tokenizer

Each Hugging Face model includes a tokenizer aligned with its pretrained vocabu-

lary and structure. This ensures consistency between training and inference, facili-

tating accurate downstream task processing..

3.2.2 Heads

Hugging Face supports multiple task-specific heads, which are common in NLP

such as text classification and token tagging. These heads extend the base model

by adding output layers tailored to the specific tasks as shown in 3.3.

Binary Text Classification is task that involves predicting one of two possi-

ble classes for a given input text. For instance, determining whether a review is

”positive” or ”negative” is a common application.

12

Token Classification involves assigning labels to individual tokens in an input

sequence, making it suitable for tasks such as named entity recognition (NER) or

part-of-speech (POS) tagging. The model predicts a label for each token, enabling

it to identify entities like names, locations, or other categories [16].

3.3 Models

This section outlines the Transformer-based models utilized in this thesis: mBERT

and CANINE. Both models are supported by the Hugging Face Transformers library

and rely exclusively on the encoder stack of the Transformer architecture [5, 17, 18].

3.3.1 mBERT

The Bidirectional Encoder Representations from Transformers (BERT) model intro-

duced by Devlin et al. [17] marked a turning point in Natural Language Processing

(NLP) by enabling bidirectional context-aware representation learning. Building on

the Transformer encoder architecture, BERT is designed to capture relationships

between tokens in a sequence by attending to both preceding and succeeding tokens.

Model Architecture

mBERT’s architecture mirrors the original BERT model, consisting of multiple

Transformer encoder layers. Since BERT is focused on understanding and encoding

text, it only utilizes the encoder stack of the Transformer. Each layer incorpo-

rates self-attention mechanisms and feedforward networks to capture dependencies

between tokens, regardless of their position in the input sequence [5]. This ar-

chitecture allows mBERT to process multilingual input text effectively, creating

context-aware embeddings that generalize across languages.

Bidirectionaly

BERT and mBERT use a bidirectional attention mechanism, processing the entire

input sequence simultaneously to capture dependencies in both directions. This

is achieved through Masked Language Modeling (MLM), where a portion of the

tokens in the input sequence is masked, and the model is trained to predict them

based on surrounding context. This training objective enables the model to learn

richer representations.

For example, in a hypothetical sentence such as “The cat sat on the [MASK],” the

model can use both the left and right context to infer that the missing token is likely

13

“mat.” This demonstrates how BERT’s bidirectional attention mechanism enables

it to consider the full context of a sentence during prediction.

3.3.2 CANINE

The Character-Aware Neural Information Encoder (CANINE) introduced by Clark

et al. [18] is a Transformer-based encoder-only model that processes text directly

at the character level, eliminating the need for explicit tokenization or fixed vocab-

ularies.

Model Architecture

CANINE employs a unique architecture that integrates three Transformer encoders

[18], each serving distinct purposes within the processing pipeline:

Initial Shallow Encoder consisting of a single layer, is applied to the character

embeddings. This encoder uses local attention to contextualize the embeddings

within a limited window, capturing fine-grained local dependencies.

Deep Encoder down-samples the input step, reducing the sequence length for

efficiency. A deep Transformer encoder, similar in structure to a traditional BERT

encoder, processes this reduced sequence. The deep encoder captures long-range

dependencies and provides global contextualization.

Final Shallow Encoder is the next step after the deep encoder upsampled the

sequence back to its original length. A second shallow encoder, again consisting of

a single layer, is then applied to generate the final contextualized character embed-

dings.

Tokenization-Free Processing

A significant innovation of CANINE is its ability to process text without explicit

tokenization [18]. Traditional language models often rely on subword tokenization

methods, which can be suboptimal for certain languages and may struggle with out-

of-vocabulary words [18]. CANINE addresses this challenge by operating directly

on character sequences, thereby eliminating the need for predefined vocabularies or

tokenization steps [18]. During pretraining, CANINE employs a Masked Language

Modeling (MLM).

14

3.4 Definitions

This section introduces linguistic definitions, evaluation metrics that are utilized in

this thesis and establishes what Supervised Learning (SL) is.

3.4.1 Linguistic Definitions

Hyphenation divides words into their syllables, ensuring each part contains at

least one vowel (ge-hen, Mit-tag). Single consonants between vowels move to

the next line (Ka-me-ra), while double consonants are split (Mit-tag).

Vowels are in German a, e, i, o, u including ä, ö, ü. Vowels are essential for

forming syllables and can be short or long in duration.

Consonants are all the other letters excluding vowels. They often occur at the

beginning or end of syllables.

Diphthongs are combinations of two vowels within the same syllable, where the

sound glides from one vowel to another. In German, the common diphthongs

are au, ei, and eu (or äu), as in the words Haus, mein, and Freund.

Compound words are words formed by combining two or more words to create

a new word. In German, compound words are common and often consist of

nouns, verbs, or adjectives joined together without spaces, such as Haustür

(house door) or Arbeitsplatz (workplace).

ß-Rule in German, ß is used after a long vowel or diphthong within the same

syllable, as in Maß or Fleiß. After a short vowel, ss is used instead, as in

Mas-se.

3.4.2 Evaluation Metrics

The evaluation metrics that are used to quantify the performance of an model is

presented in this section. Beforehand a clarification what True Positive (TP), False

Positive (FP), True Negative (TN) and False Positive (FP) is given. To do this

a scenario is needed where a model predicts whether a given sentence is written

correctly or not. In this case, Positive refers to predictions assigned to the class

correct and Negative refers to predictions assigned to the class incorrect. If the

prediction aligns with the label assigned to the input then it is a True Positive or

True Negative. On the other hand, a False Positive occurs when the model predicts

a sentence as correct but it is actually incorrect and False Negative occurs when a

sentence is predicted as incorrect but is actually correct.

15

Accuracy measures the proportion of correctly classified instances (both correct

and incorrect) out of the total number of instances. It is calculated as:

Accuracy =
TP + TN

TP + TN + FP + FN

Precision Precision is metric that quantifies the frequency with which a machine

learning model accurately predicts the positive class.

Precision =
TP

TP + TN

Recall represents a measure of the frequency with which a model accurately detects

positive cases among all genuine positive examples in the dataset.

Recall =
TP

TP + FN

3.4.3 Supervised Learning

In this thesis the downstream tasks that are used to fine-tune the pretrained models

are supervised. This means the dataset the model is trained on model on labeled.

Meaning that data provides an input and the desired output (labels). The model can

adjust its prediction by comparing its prediction with the label. This comparison

is done with a loss function.

16

Chapter 4

Preprocessing

As outlined in section 1.2, the challenges inherent in this thesis require a meticu-

lously executed preprocessing procedure. In Section 4.1, the method employed to

prepare the data for fine-tuning and for generating synthetic datasets is described

in detail. In section 4.2, the selected external source for injecting the error patterns

identified in the Rotstift dataset is presented, along with the rationale behind its

selection.

4.1 Cleaning

The Rotstift dataset contains incorrect sentences and their corresponding corrected

versions. To ensure the data quality required for fine-tuning the dataset underwent

preprocessing steps to address inconsistencies and noise.

The correct textual data and their corresponding incorrect counterparts were di-

vided into sentences using the Python library sentence-splitter 1. This process gen-

erated one list of sentences for each input source. The resulting lists were then

compared pairwise. Sentences at the same position in the two in the lists that did

not match character-by-character are retained for further processing. Those are the

sentences that are written incorrectly or correctly.

To resolve encoding inconsistencies, the textual data was converted to ASCII format

and non-printable characters were removed. The complete set of printable charac-

ters used in this step is detailed in appendix A.1. After cleaning, the dataset was

ready for the fine-tuning phase.

1https://github.com/mediacloud/sentence-splitter

17

4.2 Synthetic Data Source

To augment the Rotstift dataset with synthetically generated errors, an external

source of grammatically correct sentences was required. The selection criteria for

this source were as follows:

Correctness The dataset must consist of grammatically correct sentences to en-

sure the reliability of the injected errors. Manual verification was impractical

due to the dataset’s required size, so the source must inherently meet high

grammatical standards.

Open Source To avoid legal issues, the source must be in the public domain or

open source, allowing unrestricted use for research purposes.

The selected dataset was derived from the publicly available decisions 2 of the

Federal Supreme Court of Switzerland (FSCS), known as Bundesgerichtsentscheide

(BGE). The FSCS employs a rigorous multi-layered review process involving judges

and clerks, ensuring high grammatical precision and consistency in its published

decisions3. Only decisions written in German were used in this study. The processed

FSCS dataset served as the foundation for injecting errors systematically.

2Webscraped from: https://bger.li/
3https://www.ch-info.swiss/en/edition-2021/die-gerichte-des-bundes/fakten

18

Chapter 5

Methodology

This chapter begins by outlining the two-phase strategy used to inject errors into

the FSCS dataset: A prediction phase and a subsequent modification phase. In

section 5.1, the overall solution is introduced, explaining how a fine-tuned CANINE

model [18] is used to detect potential error positions for each category. This section

also includes the rationale for selecting CANINE, emphasizing its character-level

processing capacity to handle typographical issues in German text.

Section 5.1 covers the token classification process, where CANINE is adapted to

label individual characters as either “retain” or “modify.” The labeling procedure,

discussed in subsection 5.1.3, constructs training labels by comparing pairs of incor-

rect and correct sentences from the Rotstift dataset. These labels guide the model

in learning, where errors are most likely to occur, and Generating Labels for Error

Injection describes how the trained model’s outputs are then applied to the FSCS

dataset to predict positions for artificial errors.

Building on these predictions, section 5.2 details how the algorithm modifies tagged

positions to inject the identified errors. First, Deletion removes the target character.

Next, Replacement swaps the character with a plausible alternative derived from a

curated dictionary. The algorithm for Whitespace errors is illustrated in figure 5.1,

demonstrating how spacing around words, commas and hyphens is manipulated

to produce irregularities. Finally, the rules for handling ß and ss are explained,

highlighting the validation step that ensures ß is only inserted where linguistically

appropriate.

19

5.1 Solutions

The solution proposed uses a fine-tuned CANINE [18] on each error category except

ß-ss to predict potential error positions in text. During the prediction phase, the

model was trained to classify whether each character in a sentence should be retained

or modified. The modification phase applies predefined rules to alter characters at

the predicted positions for each error category.

5.1.1 Reasoning for model selection

The CANINE model was chosen for its ability to process text at the character level

without requiring tokenization. Errors such as typos, substitutions, and deletions

occur at the character level, and tokenization could split characters crucial for error

detection and injection. CANINE’s architecture avoids this issue, making it well-

suited for languages with complex orthographies like German. Furthermore, its

demonstrated effectiveness in handling diverse text structures aligns closely with

the task requirements [18].

5.1.2 Character Classification

The CANINE model was fine-tuned for a token classification task at character level.

This approach directly aligns with the character-level errors targeted in this thesis.

Fine-tuning involved the following steps:

Input Data The correct sentences from the Rotstift dataset are used.

Labels For each sentence, a label vector was created with the same length as the

input sentence (in characters, including whitespaces). Each character was

assigned one of two labels called retain and modify.

Loss Function The Cross-Entropy Loss is used and is defined as

L = − 1

N

N∑
i=1

C∑
c=1

yi,c log(ŷi,c),

where N is the number of samples, C is the number of classes, yi,c is the true

label, and ŷi,c is the predicted probability for class c. was used to optimize

the model during fine-tuning. In this case C = 2 and the resulting formula is

calculates as followed:

(y log(p) + (1− y) log(1− p))

20

5.1.3 Labeling

The label vectors were generated by comparing incorrect sentences from the Rotstift

dataset with their corresponding corrected versions. Each character in the correct

sentence received a label. To generate labels for training, each incorrect sentence was

compared character by character with its corresponding correct sentence. Differ-

ences between the two were identified, and any character in the incorrect sentence

that did not match the correct version was labeled as modify. Characters that

matched were labeled as retain.

5.1.4 Character Classification for error injection

After fine-tuning, the model was applied to the FSCS dataset of grammatically

correct sentences. For each sentence, the model produced a label vector indicating

potential positions for error injection. These predictions provided the foundation

for generating realistic synthetic datasets with injected errors.

5.2 Modifications

Once a position is identified as modify, predefined rules are applied to introduce

errors specific to each category. The following subsections outline the rules imple-

mented for different error types.

Deletion

The modification process for deletions is straightforward and intuitive: The tagged

character is directly removed from the text.

Replacement

When the model processes a text, it identifies locations requiring modifications but

does not suggest specific replacements. Randomly replacing the tagged characters

is ineffective. It risks disrupting the patterns inherent to specific error categories

and impeding generalization. To address this issue, a dictionary is created for each

character set, consisting of three elements: The incorrect character at the center,

along with its preceding and succeeding characters. This dictionary is derived from

mismatches between the correct and incorrect texts in the Rotstift dataset. For

each character set a list of replacement candidates is generated. The corresponding

list is created by the mismatch on character level between the center character in

the correct written sentences and the character in the incorrect written sentences.

21

Iterate over positions p in P

p inside a word?

isCompoundWord(w)?

Yes

isComma(p+1)?

No

Split compound word w

Yes No

Delete whitespace at p+2

Yes

isHyphenated(p)?

No

Add whitespace around hyphen

Yes

isWhitespaceType(p)?

No

Replace with thin space

Yes

Insert whitespace at p

No

Figure 5.1: Illustrates the flow of algorithm to inject whitespace errors

An injection is done when a character set from the dictionary matches a tagged

character along with its preceding and succeeding character. The central character

in the set is replaced with a randomly chosen character from the corresponding

list of candidates. This dictionary contains 1,569 unique character sets and their

respective replacement options. As an example, table A in the appendix illustrates

the first 50 entries.

Whitespace

This subsection presents an algorithm for injecting whitespace-related errors into a

sentence. Given a sentence S and a set of tagged positions P , the algorithm iterates

over each position p ∈ P and applies one of several whitespace transformations. By

selectively inserting, deleting, or altering whitespace in different contexts, it can

simulate various typographical errors or stylistic inconsistencies. The overall flow

of this process is illustrated in figure 5.1.

Word Boundaries If p in S lies inside a word w, the algorithm checks whether

w is a compound word . If so, it splits w at each boundary with whitespace.

The words then are cased accordingly to German grammar.

Comma Whitespace If the position before p in S is a comma, any whitespace

immediately following that comma is removed, thereby introducing spacing

22

errors.

Hyphen Spacing If p contains a hyphen, the algorithm adds extra whitespace

around that hyphen, creating abrupt or undesirable spacing breaks.

Special Whitespace Types If p points to whitespace in S, the algorithm delib-

erately replaces it with either no space or an incorrect type of space.

Default Insertion In cases not covered above, the algorithm inserts an extra

whitespace at Position p in the Sentence s

5.2.1 ß and ss

For this error category, identifying patterns in the positioning of error injections is

unnecessary. As a result, a fully algorithmic approach was adopted.

In Switzerland, the ß -rule is not applied universally, necessitating an additional

validation step before injecting these errors. To address this, the following algorithm

was developed to determine whether ß can validly replace ss :

Algorithm 1 Validation of ß-rule

1: Input: Word w containing ss
2: Output: Boolean indicating whether ss can be replaced by ß
3: hyphenate(w) = {s1, . . . , sn}
4: for all si ∈ hyphenate(w) do
5: if ss ∈ si then
6: if The preceding character to ss is a long vowel or diphthong then
7: return True
8: end if
9: end if

10: end for
11: return False

23

Chapter 6

Experimental Evaluation

This chapter presents the conducted experiments and the corresponding results. In

section 6.1 the general experiment setup is presented. Then, section 6.2 focuses on

establishing a baseline performance using the only the cleaned data stemming from

the Rotstift dataset. The performance is measured on a binary text classification

task using the mBERT and quantified by the evaluation metrics Accuracy, Recall

and Precision.

6.1 Experiment Setup

In 6.1.1 the general experiment setup is described that is applied to all experiments.

Then the technologies that are utilized are presented in Subsection 6.1.2

6.1.1 General Approach

A given dataset consist of sentences and the corresponding label. The label is correct

or incorrect. Further the dataset is balanced meaning one half is labeled correct

and the other half incorrect. Then the dataset is divided into a test set and training

set and both are roughly balanced too. The test set consist of 40% of the datasets

size and 10% of the training set is used for validation during fin-tuning. With that

said the model is then fine-tuned on a binary classification task to identify if a given

sentence is grammatically correct or incorrect. The performance is then evaluated

on the test set.

24

Category Test Set Training Set Validation Set

Deletion 915 1229 137

Replacement 366 327 38

ß-ss 38 51 6

Whitespace 962 1297 144

Table 6.1: Showing the size of the test, train and validation set in each error category

6.1.2 Technological Stack

The experiments are implemented in Python using the Transformers- [16], Dataset-

and Evaluation library by Hugging Face. The training is executed on Google Colab

with a NVIDIA A100 GPU.

6.2 Baseline

This section presents how the baseline is determined to compare and quantify the

influence of the enhancement. This is done by fine-tuning a mBERT model on

datasets for each error category. The performance on the test set for each error

category is quantified by Accuracy, Precision and Recall. The size of the dataset in

each error category is listed in the Table 6.1. To be clear for each dataset a newly

initialized mBERT is used.

6.2.1 Special Token

For the mBERT that is fine-tuned on the Whitespace dataset there was an addi-

tionally step. As mentioned in 3.2 the corresponding Tokenizer to the pretrained

model is provided. The Tokenizer that is used for mBERT is a subword Tokenizer

[18]. The information about whitespace is lost during tokenizing, which is actually

crucial in this setting. Therefore a special Token [SPACE] was added and every

whitespace was replaced with this token before tokenizing. Therefore the model

needs to create a embedding for this token.

6.2.2 Hyperparameters

The hyperparameters that are used for fine-tuning mBERTBase for each error cate-

gory on the cleaned Rotstift dataset are shown in the Table 6.2.

25

Category Learning Rate Batch Size Epochs Weight Decay

Deletion 10−6 32 20 0.01

Replacement 10−6 16 10 0.01

ß-ss 5 ∗ 10−5 16 8 0

Whitespace 10−6 32 20 0.01

Table 6.2: Hyperparameter used for each error category to train mBERT

Category Accuracy Recall Precision

Deletion 50.71% 38.52% 53.50%

Replacement 41.58% 41.31% 43.95%

ß-ss 50.00% 47.61% 55.55%

Whitespace 50.10% 54.64% 47.04%

Table 6.3: Results from mBERTBase

6.2.3 Results

The Table 6.3 shows, that Deletion and Whitespace achieve the highest Accuracy,

likely because they have the most training data, thus generalizing better. By con-

trast, Replacement does not even reach 50% Accuracy, which is worse the randomly

guessing given the balanced dataset. In ß-ss the model is exactly 50% which in-

dicates that it does not generalize. As illustrated in the confusion matrices in the

appendix B.2 Deletion and Whitespace maintain a high number of correct classifi-

cations while ß-ss suffers from more misclassifications.

6.3 Experiment Enhanced Dataset

In this section, the experimental evaluation is replicated under the same conditions

and hyperparameter settings outlined in Table 6.2. The only modification lies in

the size of the training set, which is doubled by incorporating the synthetically

generated dataset for each category. The new training set maintain its balanced

property. Importantly, the test set remains unchanged thereby facilitating a direct

comparison between the original and modified experiments. This approach allows

26

Category Accuracy Recall Precision

Deletion 54.09% 46.84% 48.98%

Replacement 47.54% 61.02% 50.63%

ß-ss 53.00% 55.93% 51.03%

Whitespace 48.65% 52.21% 43.32%

Table 6.4: Results from mBERTEnhanced

for an assessment of the impact of the enhanced dataset on the overall performance

of the model.

6.4 Enhanced Dataset Experiment

The results in Table 6.4 reveal a nuanced impact of dataset enhancement. Accuracy

shows a slight improvement for Deletion, Replacement, and ß-ss but stagnates or

slightly declines for Whitespace. However, recall consistently improves across all

categories, suggesting the enhanced dataset increased the model’s sensitivity to

identifying incorrect sentences.

Notably, the category ß-ss now achieves an accuracy of 53.00%, crossing the 50%

threshold, and a recall of 55.93%, which indicates better generalization to this

error type. This improvement underscores the potential of the enhanced dataset in

addressing weaker categories, although further efforts are required to balance recall

and precision.

The Whitespace category exhibits the lowest precision at 43.32%, highlighting a

trade-off between increased recall and a rise in false positives. These results suggest

that while the enhanced dataset improves error detection, it does not consistently

translate into higher accuracy due to the accompanying increase in false alarms.

6.4.1 Original Dataset (Table 6.3)

The results from the baseline dataset show that Deletion andWhitespace achieve the

highest accuracy, likely benefiting from more abundant training examples and less

intrinsic complexity. By contrast, Replacement and ß-ss fail to exceed 50% accuracy,

performing worse than random guessing on a balanced dataset. As illustrated in the

confusion matrices (Appendix B.2), Deletion and Whitespace exhibit higher correct

27

classification rates, while ß-ss suffers from a greater proportion of misclassifications.

6.4.2 Enhanced Dataset (Table 6.4)

Doubling the dataset size with synthetic examples introduces noticeable changes.

Accuracy improves modestly for Deletion and ß-ss, with ß-ss surpassing the 50%

mark, indicating progress toward generalization. Replacement sees significant im-

provement in recall, rising to 61.02%, while Whitespace exhibits minor changes.

These findings suggest that while the enhanced dataset increases recall for all cate-

gories, accuracy gains remain limited. The synthetic data appears to amplify error

detection but also contributes to more false positives, preventing accuracy from

scaling proportionally.

6.4.3 Comparison

Comparing the original and enhanced datasets highlights key trends:

Improved Recall The enhanced dataset consistently boosts recall across all cat-

egories, indicating that the model identifies a greater number of incorrect

sentences.

Minimal Accuracy Gains Accuracy remains largely stagnant or sees only minor

improvements, as increased recall is offset by a rise in false positives.

Category-Specific Effects ß-ss benefits most from the enhanced dataset, show-

ing notable improvements in accuracy and recall, suggesting the added syn-

thetic data helped the model generalize better for this category.

Trade-Offs Deletion and Whitespace continue to dominate in accuracy, but their

performance gains remain limited, suggesting that the augmented dataset

alone cannot fully address existing bottlenecks.

28

Chapter 7

Future Work

Overall, the experiments demonstrate that enhancing datasets with synthetic exam-

ples can improve recall, particularly for under performing categories. However, the

modest accuracy gains indicate that future work should explore more diverse and

sophisticated augmentation techniques to reduce false positives and translate recall

improvements into broader performance gains. Future work can explore integrat-

ing seq2edit models, which are designed to directly predict edit operations rather

than full-text rewrites, offering a more efficient approach to error correction tasks.

Leveraging such models may reduce computational overhead while maintaining high

accuracy, particularly for localized error types like Deletion and Replacement. Ad-

ditionally, incorporating generative approaches, such as the one demonstrated by

Malmi et al.[19] in their work on LASERTagger could further enhance the diversity

and quality of synthetic datasets by generating context-aware edits. These meth-

ods can complement rule-based techniques by producing realistic training data that

better aligns with the natural variability in text errors. Combining these strategies

with larger, multilingual transformer models could also enable cross-lingual general-

ization and improved performance in diverse application settings. Lastly, employing

active learning mechanisms to iteratively improve the model by incorporating user

corrections during deployment could provide a robust pathway for refining both

detection and correction capabilities in dynamic environments.

29

Appendix A

Tables

30

Table A.1: Printable ASCII Characters (Character Codes 36–127)
Code Character
36 $
37 %
38 &
39 ’
40 (
41)
42 *
43 +
44 ,
45 -
46 .
47 /

48–57 0–9
58 :
59 ;
60 ¡
61 =
62 ¿
63 ?
64 @

65–90 A–Z
91 [
92 \
93]
94 ˆ
95
96 `

97–122 a–z
123 {
124 —
125 }
126 ˜

31

Character Set Top Replacements
Red [é, R, d]
itä [i, d]
nzi [t, i, n, e]
tzu [t, u]
zut [z]
ute [u, e, G]
tei [t, i, w]
eil [e, l, t]
ile [i]
len [l, n, u]
das [d, s, e, m]
ass [a]
Sie [e, S]
ab [a]
dem [d, m]
Dez [D]
eze [e, c]
zem [z]
emb [e]
mbe [m]
ber [b, r, s, ü]
die [d, e, t]
Gel [G]
ele [e]
leg [l, n]
ege [e]
gen [g, n, o, S]
enh [i, e, h]
nhe [e, n]
hei [i, h]
eit [t, e, r, s]
hab [h, b]
abe [e, a, h]
ben [n, b, a, w]
gab [b, g, e]
end [d, e, h, l]
rcg [g]
ode [e, o]
der [r, d, n, o, i, u, s, l]
per [p, r]

Table A.2: Character sets and their replacements (first 40)

32

Appendix B

Results

33

(a) Deletion (b) Replacement

(c) ß-ss (d) Whitespace

Figure B.1: Confusion Matrices for mBERTBase

34

(a) Deletion (b) Replacement

(c) ß-ss (d) Whitespace

Figure B.2: Confusion Matrices for mBERTEnhanced

35

36

Bibliography

[1] Corina Masanti, Hans-Friedrich Witschel, and Kaspar Riesen. Novel bench-

mark data set for automatic error detection and correction. In Elisabeth

Métais, Farid Meziane, Vijayan Sugumaran, Warren Manning, and Stephan

Reiff-Marganiec, editors, Natural Language Processing and Information Sys-

tems, pages 511–521, Cham, 2023. Springer Nature Switzerland.

[2] Zecheng Tang, Kaifeng Qi, Juntao Li, and Min Zhang. Beyond hard samples:

Robust and effective grammatical error correction with cycle self-augmenting,

2023.

[3] Wei Zhao, Liang Wang, Kewei Shen, Ruoyu Jia, and Jingming Liu. Improving

grammatical error correction via pre-training a copy-augmented architecture

with unlabeled data. In Jill Burstein, Christy Doran, and Thamar Solorio,

editors, Proceedings of the 2019 Conference of the North American Chapter of

the Association for Computational Linguistics: Human Language Technologies,

NAACL-HLT 2019, Minneapolis, MN, USA, June 2-7, 2019, Volume 1 (Long

and Short Papers), pages 156–165. Association for Computational Linguistics,

2019.

[4] Jakub Náplava, Milan Straka, Jana Straková, and Alexandr Rosen. Czech

grammar error correction with a large and diverse corpus. Transactions of the

Association for Computational Linguistics, 10:452–467, 2022.

[5] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you

need. CoRR, abs/1706.03762, 2017.

[6] https://prg.inf.unibe.ch/index.php/research/

a-prose---advanced-proofreading-services/ Accessed on 12-15-2024.

[7] Sebastian Kürschner and Damaris Nübling. The interaction of gender and

declension in germanic languages. Folia linguistica, 45(2):355–388, 2011. Peer-

Review vorhanden.

37

[8] Yixuan Wang, Baoxin Wang, Yijun Liu, Qingfu Zhu, Dayong Wu, and Wanxi-

ang Che. Improving grammatical error correction via contextual data augmen-

tation, 2024.

[9] Jingheng Ye, Yinghui Li, Yangning Li, and Hai-Tao Zheng. Mixedit: Revisiting

data augmentation and beyond for grammatical error correction, 2023.

[10] Anne-Sofie Maerten and Derya Soydaner. From paintbrush to pixel: A review

of deep neural networks in ai-generated art, 2024.

[11] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural

Computation, 9:1735–1780, 11 1997.

[12] Valentin Khrulkov, Oleksii Hrinchuk, Leyla Mirvakhabova, and Ivan V. Os-

eledets. Tensorized embedding layers for efficient model compression. CoRR,

abs/1901.10787, 2019.

[13] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine

translation by jointly learning to align and translate. In Yoshua Bengio and

Yann LeCun, editors, 3rd International Conference on Learning Representa-

tions, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track

Proceedings, 2015.

[14] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual

learning for image recognition. CoRR, abs/1512.03385, 2015.

[15] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hinton. Layer normalization,

2016.

[16] Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement De-

langue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Fun-

towicz, and Jamie Brew. Huggingface’s transformers: State-of-the-art natural

language processing. CoRR, abs/1910.03771, 2019.

[17] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT:

pre-training of deep bidirectional transformers for language understanding.

CoRR, abs/1810.04805, 2018.

[18] Jonathan H. Clark, Dan Garrette, Iulia Turc, and John Wieting. CANINE:

pre-training an efficient tokenization-free encoder for language representation.

CoRR, abs/2103.06874, 2021.

[19] Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil Mirylenka, and Ali-

aksei Severyn. Encode, tag, realize: High-precision text editing. CoRR,

abs/1909.01187, 2019.

38

