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Abstract

Human Action Recognition (HAR) has been explored extensively, yet no ex-

isting dataset addresses fine-grained human interactions specific to martial arts,

particularly Karate Kumite. This research introduces a novel dataset tailored to

this unique application, filling a critical gap in HAR research.

The dataset includes over 35,000 videos featuring six distinct action classes

recorded from four perspectives, simulating the judging process used in World

Karate Federation (WKF) competitions. Eight athletes perform in five different

configurations, representing point-scoring attempts and competitive dynamics. Ac-

tion classes cover official scoring gestures by judges (1, 2, 3 points), failed attempts

(”no point”), inactivity (”nothing happening”), and competitors exiting the com-

petition platform (”jogai”).

Ground truth labels were created by evaluating videos from all perspectives

simultaneously, enabling comprehensive judgment similar to human evaluation in

real competitions. This multi-view assessment captures contextual nuances and

action dynamics effectively.

To establish benchmarks, two models were tested. The RGB-based 3D-Xception

model performed well, achieving up to 91% accuracy in binary tasks but struggling

with six-class classification, reaching only 45% accuracy. The skeleton-based BRNN

model demonstrated performance near random chance, indicating a failure to gen-

eralize effectively.

The study also explores a voting system of ”x out of 4” perspectives, similar to

the approach used in competitions for assigning scores by judges. When using this

system with x=2, the accuracy for all binary classifiers improved by at least 3%,

while for the multiclass classifier, the accuracy increased by 10%.

The research highlights the potential and limitations of HAR models in martial

arts judging. The creation of the Karate Kumite dataset provides a valuable re-

source for advancing HAR research. Initial benchmarks indicate that existing mod-

els still require significant improvements to handle the complexities of multiclass

action recognition effectively. The proposed voting system demonstrates promise

for enhancing model robustness in real-world judging scenarios.
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Chapter 1

Introduction

In this chapter the broad perspective of the topic is developed in section 1.1, the

research questions are presented in section 1.2 and the road-map of this thesis is

structured in section 1.3.

1.1 Overview of Human Action Recognition and

Karate

Before delving into Karate-specific aspects, it is essential to provide an overview

of Human Action Recognition within a broader context. This introduction will

establish a foundational understanding of its general principles and applications.

Following this, the focus will shift specifically to Karate, discussing its unique char-

acteristics and how it fits into the broader HAR landscape.

1.1.1 Human Action Recognition (HAR)

In the last few years, with Artificial Intelligence being more present in our daily

lives, there is a need for more sophisticated and automated processes. When a

persons action is part of the process to be analyzed and recognized, the field is

called Human Action Recognition or Human Activity Recognition (HAR). Health

care, Surveillance, Sports, and others are all examples of topics of HAR.

As the reader can see in Figure 1.1, HAR is mainly part of the computer vision

field, but it can also be related to adjacent fields in a select few topics. Computer

Vision can be further split into Object Detection, Image Classification, Image Seg-

mentation and HAR, just to name a few. A problem is part of HAR, when the

human is the subject of the recognition task. This makes the boundaries between

the fields a bit more hazy. One of the possible objects being detected in Object
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Classification can be a person too and thus human. Also in Image Classification,

Humans can be one of the Classes to be recognized and classified.

Figure 1.1: HAR into a broader context
is mainly part of computer vision and can
be named as HAR, as long as Humans or
more precisely their actions are part of the
classification task.

HAR is of great importance because

it can be applied in various fields where

the details of human actions are of ut-

most importance. In Surveillance sys-

tems, reviewing all the footage cameras

have taken, to spot a particular detail

for instance or in sports trying to com-

pare a situation to various criteria in

a split-second to make a decision and

many more. The reason why HAR is

applicable to such important moments,

is largely because the details may be al-

most impossible to spot by the human

eye. It can just as well be a matter of

being too annoying and time consuming

to do it manually for a person. However, it is just a matter of computation power

for neural networks.

If given the chance and done well, HAR or artificial intelligence has the potential

to simplify and improve Human tasks. An example for one such improvement in

the last couple of years is the identification of possible diagnoses and treatment

planning for cancer for instance. This is possible, because the AI looks at the data

objectively or at least always by the same standard depending on the data it has

been feed and trained with. For this reason, this standard is called the ground

truth. Accordingly, we can see how essential the data we supply to the system is.

It needs to be of good quality and capture exactly what needs to be classified or

recognized for the model to actually learn, what we want it to. More details about

this can be found in chapter 3.

So if HAR is applicable to various sports for split-second decisions from human

perspective and also decides ”objectively” when something corresponds to a pre-

trained state or not, then theoretically it should be able to judge Karate techniques

or give out points in a competition.

1.1.2 Karate Kumite

Karate is a unarmed martial arts for self-defense and can be practiced traditionally

or competitively. It is used in various parts of the world and has an extensive
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community.

When Karate is done as a competitive sport under the main organization of the

World Karate Federation (WKF), it can be divided into two main disciplines: Kata

(forms) and Kumite (sparring). We will focus on Kumite, but for the understanding

of the reader a quick summary of Kata can be found in the appendix in section A.1

In Kumite the whole process works slightly different and is prone to less varia-

tions. But because sparring is done with two people together and every interaction

happens fast, the evaluation in a fight might be more prone to errors and can be

more difficult to judge. In general in a fight, there are approximately six to seven

allowed techniques, such as straight punches and round, side, front and rear kicks

as well as a variation of the roundkick and foot sweeps. Apart from all the attack-

ing techniques, all blocking techniques are allowed. Furthermore, nowadays each

competitor wears protective equipment such as gloves, boots, and more.

When a technique lands on one of the allowed spots on the body of the opponent

without being blocked and while fulfilling some quality criteria, the athlete can

achieve between one to three points. In a competition, a fights duration depends

on the age category between one and a half to three minutes. When a point is

being scored and a minimum of two of the four judges at the side of the fighting

ring (tatami) indicate the same point, the referee stops the fight and the point is

awarded by being indicated correspondingly. The referee may also interrupt a fight

to hand out warnings in case he sees a foul. When the time has run out or one of

the athletes has eight or more points difference to the other athlete or one of the

athletes has received more than the allowed amount of warnings, the fight ends.

As the judges have a big responsibility and almost no pause in between fights,

their judgment can vary strongly from fight to fight and may also be erroneous at

times. Even though there may be some fail-safes for the athletes sport coaches to

review some decisions, many errors still occur. An AI powered tool may be of help

in such a case to assist the human judges to avoid unnecessary errors.

1.2 Specific Research Questions

Given that the computation power of normal devices in our daily life is getting more

and more powerful, it stands to reason, that more and more complex problems of

our daily life may be approached in an automatized and AI-powered approach.

There already exist papers with many classical classification problems and many

different datasets for various purposes. With this thesis the capabilities of two state

of the art models in computer vision are tested on a new self created dataset with

two athletes doing competitive Karate Kumite.

3
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Therefore the leading questions of this thesis are the following:

• What are the key characteristics of a model capable of judging a fight, and

what types of data are essential for its development?

• To what extent can Human Action Recognition serve as a substitute for human

karate judges in prominent scenarios?

• What are the challenges and possibilities in using models to judge an entire

fight?

• What are the technical requirements and limitations of using fight-judging

models in real-time applications?

• How do human judges and AI-based judges compare in terms of accuracy,

fairness, and consistency in fight evaluation?

Thus the goals are firstly to create a respresentative dataset for Karate Kumite

and secondly to test this dataset on already existing models and therefore create

some first benchmarks for this dataset.

1.3 Structural Road-map

To answer the before mentioned questions of the thesis, there is a need to go through

a couple of topics first to understand the intricacies.

As such, this thesis will be guided by first starting with all the theoretical

explanations and descriptions of the foundational concepts in chapter 2. Then going

over the data acquisition and all the transformation for effectively using the acquired

data, as well as defining the ground truth in chapter 3. At last the experiment on

the chosen data and the evaluation of the dataset by using the selected few models

in chapter 4. After the Evaluation a quick overview of the results with a second

look at the research question is going to be made as well as a look at possible future

work in chapter 5.
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Chapter 2

Foundational Concepts

In this Chapter the description and development of important concepts like Human

Action Recognition and Karate Kumite in section 2.1, as well as more technical

concepts like Convolutional Neural Networks (CNN) in section 2.2 and Long Short

Term Memory (LSTM) in section 2.3 in relation to Human Action Recognition

is made. Lastly a closer look at existing datasets in regards to HAR and their

limitations is made in section 2.4.

2.1 HAR and Karate Kumite

In this section, HAR is formally defined, and the fundamental Karate rules of WKF

Kumite competitions are outlined to provide a foundational understanding.

2.1.1 HAR

As an important field in Computer Vision, Human Action Recognition can be fur-

ther scaled into video-based, Sensor-based, multi-modal HAR and many more. The

difference mainly lies in which sensors are being used for the Recordings. For in-

stance, in the conference paper from Wenchao Jiang et al. [1] wearable sensors are

used for activity recognition. In the paper from Jamie Shotton et al. [2] they use

depth cameras for joint and therefore 3D pose estimation from still images. In the

paper from Yangfan Sun et al.[3] they introduce a privacy-preserving fall detection

from mmwave radar signals.

Even though many different sensors can be used, the most common are still

RGB videos. Regardless of which sensor is used in the end, what they all have

in common, is their goal to recognize Human Actions. As such they have many

possible applications. Surveillance systems, Health care, Sports, and many more.

In this thesis we are limiting ourselves to the application of RGB video-based Human
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Action Recognition on Karate and further transformations on top for skeleton-based

Human Action Recognition.

First of all, HAR should be defined more precisely. HAR can be considered

as such, when a system can accurately describe human actions and their inter-

actions through before mentioned sensors. This process typically involves several

hierarchical steps according to Hieu H. Pham et al. [4]: Human Detection, Human

Segmentation, Feature Extraction and Action Classification.

Though HAR is being applied in various fields and has gained on popularity,

there are still challenges when trying to implement such a system. As Pawan Kamar

Singh et al. remark in their paper [5], many of those challenges arise because of the

unpredictability of Human motion. Inter-class similarity (similarity between differ-

ent classes of actions), intra-class variations (variations of the same class executed

by different individuals) are examples of such unpredictability. While illumination,

camera angles and resolution are problems Pawan Kamar Singh et al. mention,

they can be circumvented by good preparations and by controlling them to a cer-

tain extent.

2.1.2 Karate

Let us begin by getting to know some of the main terms used when dealing with

Karate. The field where the athletes compete in is called a tatami. The karate

athletes are formally called Karatekas. When two athletes compete together,

they will each have either blue or red equipment for being distinguishable. The

red athlete is called Aka, while the blue athlete is called Ao. A Karateka which

takes the initiative to attack is called Tori while the one defending or countering

is called Uke. For a more complete list of the Karate terms, consult the appendix

section A.2.

Karate in general is not only a sport, but also an art. It has a fine balance

between tradition, health and sport. Karate is often also referenced as a way of life

and as self defense, which is apt, considering, that it has many philosophical and

meditative components in it. Even when doing karate as a competitive sport, there

are many traditional rules, like the bowing or the breathing which is part of a good

form in techniques. Karate has two main disciplines and in the following subsection

we are going into more details regarding Kumite and its competitive rules regarding

the World Karate Federation. A complete list set of the Rules for 2024 can be found

on World Karate Federation (WKF).
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WKF Kumite Competition

The Setup in a WKF Kumite Competition follows a simple setup, which should

allow the referee and judges the optimal angles to succeed their responsibilities

as such. In total there are seven acting referees on one tatami at a time. Each

of their responsibilities is slightly different but should when combined allow the

optimal proceeding of the competition. We will briefly talk about the respon-

sibilities of the main referee and the four judges. For more details about the

helpers, the supervisor, the tatami manager, refer to the appendix section A.3

Figure 2.1: This is the tatami setup for
Kumite. The fighting happens inside the
red square. The J’s around the corners
of the red square stand for the judges
and the R for the referee. When the ref-
eree starts, pauses or ends the fight the
Karatekas always return to the red in the
middle of the field.

In a direct encounter of 1.5 - 3 min-

utes, the Karateka, which scores more

points than the opponent and has done

less fouls than is maximally allowed,

wins. The maximally allowed fouls are

five, but in exceptional cases two fouls

may be awarded together. In case of a

draw, the Karateka, which has scored

the first point, wins. In case of losing

the advantage of the first scorer because

of a foul, the Karateka, which gets se-

lected by a majority of the judges and

the main referee, wins. To hand out

points and fouls, as well as the the final

decision of the winner in case of a draw,

everything needs to follow some quality

criteria. More details about the criteria

will be discussed in section 2.1.2.

Points

To understand point scoring events from the perspective of the judges, it is essential

to know how different techniques are evaluated based on their execution and target

area. There are three different types of points that can be scored. Every allowed

punching technique to any allowed body part of the standing opponent is worth 1

point. Every allowed leg technique is inherently worth 2 points when executed at

the torso and 3 points when executed at the head of the opponent. When doing a

sweeping technique, where the opponent falls to the ground with a directly following

punching technique, it is also worth 3 points.

7



In order for the technique to be considered a score, the technique needs to have

the potential to be effective, if it had not been controlled by the athlete. The

technique also has to acquit to the following criteria:

1. Good form (Properly executed technique).

2. Sporting attitude (Delivered without intent to cause injury).

3. Vigorous application (Delivery with speed and power).

4. Maintaining awareness of the opponent both during and after the execution of

the technique (Not turning away or falling down after completing a technique

– unless the fall is caused by a foul by the opponent).

5. Good timing (Delivery of the technique at the correct moment).

6. Correct distance (Delivery at a distance where the technique would be effec-

tive).

All of these criteria are needed for a technique to be counted as a valid point. After

discussing the different types of points and the criteria for scoring, the conditions

under which a point can be awarded from the perspective of the main referee are

examined.

• A point will only be awarded, if two or more judges indicate the same point

potential.

• In case both Karatekas execute a hit in a situation, only the first point which

matches all the point scoring criteria in the perspective of the judges will be

indicated.

• In case of one of the two Karatekas executing techniques of different point

potential, only the point will be awarded, which has more than two indications.

• In case of having one judge indicating a lower potential and another judge

indicating a higher potential point for the same Karateka, the lower point will

be awarded.

• In case of the Referee spoting a foul for a Karateka which has indicated but

yet unawarded points, it supersedes the point awarding.

.

To understand when to award a point better, some examples are needed, you

can find them in the appendix section A.6.
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Fouls

To understand when a foul gets indicated, it is important to understand how fouls

can happen. Even for a foul the criteria for scoring a point may be essential. It

remains to mention, that the body parts a Karateka is allowed to hit, are the torso

and the head only. Joints or anywhere below the belt, legs inclusive, are not allowed

to be hit. The head and neck in particular may only be ”skin touched”. If one of

the six criteria for scoring a point is not fulfilled but instead has an ”excess”, it will

count as a foul.

For Example when Aka attacks with a punch to the head of the adversary and is

too close (criterion correct distance not fulfilled), the hit will be much harder than

a skin touch. Most foul types exist, in order to prevent harm to the Karatekas. An

other example for such a foul is, when Aka hits Ao deliberately on a dangerous part

of the body like a joint, or with a dangerous or prohibited technique. The above

mentioned excess are just a few out of many. A complete list can be found in the

appendix in the table Table A.3

Fouls which make a fight more strategic or more structured exist as well. An

example for the former kind of foul is, when Aka runs away from Ao. An example

for the latter is, when Aka exits the fighting ring. The latter foul is called jogai.

Both of these examples may also be used by athletes strategically to play for

time. Jogai may for example be used by Aka when he is leading and only a few

seconds are left. Aka may also exit the ring, when Ao executes a sidekick and

pushes Aka out. In this case though, it will not be counted as a jogai, as it is not

self inflicted.

As the reader may notice, not every foul is easy to identify and the responsibility

for proposing the fouls has to come from the main referee. The foul will only be

issued, after a minimum of two judges follow the proposal of the main referee. That

also means, that not every foul the main referee sees, will be issued.

To underline how difficult the identification of certain situations may be and how

easily they can vary, a few examples more can be found in the appendix section A.6

Also for a more complete overview of all the possible fouls, consult the appendix

section A.5.

2.1.3 Shortcomings of Rules and error-handling

All the involved parties such as the referee and the judges are the main pillar of a

fight, without them it is impossible to carry it out. If they just as much as blink

in the wrong moment, they might miss an important detail. For example, if Ao is

connecting a hit to the head of Aka with all criteria fulfilled and only Judge A and

9



Judge C can really capture the point criteria from their angle, but Judge A blinked

in the moment when the point happened. Ao will get no point in this situation,

because judge A did not see it. In the same situation but without the criteria being

fulfilled entirely, Judge A is still indicating the last point, and judge C blinked in the

wrong moment to see that the timing was wrong and indicates the new overlapping

point. Ao will get the point even though the point should not have been given to

him. Such cases may happen more often than not. This is a shortcoming which in

most competitions cannot be bridged as errors and lapses in concentraition as well

as the need to blink occasionally is human.

In case a point gets awarded wrongfully or not at all, even though it should have

because the judges indicated it for instance, there is an option for the sportcoaches

of the Karateaks to directly intervene and request a video-review. Let us take the

last example from before, where judge A was still indicating the last hit and judge C

wrongfully indicated a point. The coach from Aka sees the wrongdoing and requests

a video review from a referee helper. If the review disproves the judges and referee,

the mistake gets corrected, the fight proceeds and the coach of Aka is still allowed to

request further reviews. If the coach was wrong, he can do no further video-review

requests and the fight proceeds without correction. The same may be done for fouls

too. This is a good approach and help for error-handling, but is not manageable

for every competition because of time limitations and the resources needed and is

thus not possible in most competitions.

In cases like this a real time AI tool might be helpful to mitigate the error and

time constraints for such video review requests.

2.2 Convolutional Neural Networks in HAR

In this section the basic and advanced concepts of Convolutional Neural Networks

(CNN) are explained as well as the used architectures for the experiments. The first

subsection focuses more on the basic concepts of CNNs. We will explore and differ-

entiate 2D-CNNs and 3D-CNNs and how 3D-CNN can be broken down to a similar

complexity to 2D-CNN with the help of depth-wise and point-wise convolutions

and residual connections. In the second subsection a few model architectures are

presented and explained with regards to the final used model for the experiments.

2.2.1 Fundamentals of CNN Architecture

Convolutional Neural Networks are the most used model types for solving problems

in computer vision. Problems such as classification, segmentation and so on. Com-
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puter vision does not just include problems concerning images, but also videos,

which are many images stacked in a little time frame. When processing images,

the term 2D-CNN, or simply CNN, is commonly used. Incorporating the tempo-

ral dimension of videos introduces an additional dimension, leading to the use of

3D-CNN.

2D-CNN and 3D-CNN

Discussing CNNs inherently refers to a type of Artificial Neural Network (ANN).

Like Keiron O’Shea and Ryan Nash said in their paper [6]: ”Convolutional Neural

Networks (CNNs) are analogous to traditional ANNs in that they are comprised of

neurons that self-optimise through learning”. That already tells us plenty of how

CNNs work. A notable difference is that CNNs are primarily used in the field of

pattern recognition for images. By encoding image-specific features directly into

their architecture, CNNs significantly reduce the number of parameters needed,

enhancing efficiency and performance in image-related applications.

Images mainly consist of three dimensions, two of them spatial (height and width

of the image) and one in depth. The depth in images stands for the coloring and is

often called channels. When using gray-scale images, the channel used is just one.

When using colored images, the channels it consists of are three.

When using CNNs to process an image, the image is carried through layer after

layer, where the number of neurons on the first layer consist of height by width by

channels h×w× c of the input image. The last layer holds the amount of neurons

of classes in the used dataset. The layers in between the input layer and the last

layer are called hidden layers and are mostly either convolutional layers, pooling

layers or fully connected layers.

Figure 2.2: Simplification of a CNN archi-
tecture with an image of vegetables going
through one convolutional layer, a pooling
layer, followed by a fully connected layer
and a classification at the end.[7]

Let us break down the simple CNN

in Figure 2.2 as an example. The first

layer is the input layer and holds the

pixel values of the image. The second

layer here is a convolutional layer and

determines the output of neurons by

calculating the scalar product between

the weights and the input and runs it

through the activation function, which

is often times the rectified linear unit

(ReLu). The next layer is a pooling

layer and reduces the size of the features

of every dimension. The last layer is a
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fully connected layer and connects all the neurons together and runs them trough

an activation function to get a score which is also the prediction. For a more de-

tailed and mathematical approach the reader may take a look at the paper from

Alex Krizhevsky et al.[8]

Depending on the kernel (or filter) size, stride size and the padding of a con-

volutional layer, as well as the defined output channels of the layer, the feature

representation that results, may be completely different after an activation. Let us

look at the example in Figure 2.2 The filter is a 3x3 with no padding, and stride

of 1x1 and the output channels should be three. The image, in our case just ran-

dom numbers which shall represent the pixels, is of size 6x6. When going through

the first filter we may get 5, stride the 3x3 grid to once to right and get 6 and

the next one, which is also the green colored one, results in 8. Using a 4x4 filter

would produce a completely different result, as more pixels per stride are consid-

ered. Selecting additional output channels would increase feature representations

and, consequently, the number of parameters. In the context of the image, the

output channels correspond to the stacked blue squares. A larger stride would skip

more pixels per step, covering fewer individual pixels. With a padding the size can

be prevented from getting smaller by padding the outer rows and columns with

zeros. The pooling layer also has a filter and stride, which work the same way,

but here have a direct impact on the output size. Although this is not so for the

output channels. The fully connected layers do not have to define all the different

parameters. Fully connected layers just connect neurons with the adjacent layer of

neurons. The output layer before the soft max, which gives the score representation,

is generally a fully connected layer.

3D-CNN work exactly the same as 2D-CNN do, but with the additional di-

mension of time. Time is often also described as depth. It is not the same depth

as channels though. Consider applying a convolutional layer to a 4-frame video.

The process is similar to handling a single image, but the four frames are stacked

along an additional dimension. Instead of using h×w× c, the depth is introduced,

resulting in h× w × d× c.

Separable Convolutions

Of course this additional dimension makes the computation and amount of param-

eters a lot higher. According to Francois Chollet et al. [9] there is a way to reduce

the computation time and make it more efficient by introducing separable convo-

lutions. Separable convolutions are convolutions, that separate the way the filter

works. As you can see in Figure 2.3. That means instead of doing a 3x3x3 filter,

a 1x3x3 is used first as a depthwise convolution, and then on the result a 1x1x1
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pointwise convolution.

Figure 2.3: A Depthwise convolution of
1x3x3 followed by a pointwise convolution
of 1x1x1 is computed instead of the tra-
ditional 3x3x3 convolution.

As Francois Chollet et al. describe

in their paper, first a depth-wise con-

volution gets applied to reduce the di-

mensions separately and after that, a

point-wise convolution (1x1) is applied

to project the channels onto a new chan-

nel. This makes it much more efficient

and faster, but at the cost of context

which may go missing through the sep-

aration. Still, the author of the paper

calls this concept likely to become a fundamental component of CNN design.

Residual Connections

When we start using different architectures, we notice, that accuracy of a model

gets saturated and then degrades quickly, as the depth of the model increases. This

is also called the degradation problem. This degradation is not due to overfitting,

but rather due to the difficulty of the optimization in deeper networks. To solve

this problem Kaiming He et al. [10] propose to use residual connections.

Figure 2.4: Illustration of the Inception
Module, showcasing parallel operations
on the input, including 1×1, 3×3, and
5×5 convolutions, as well as 3×3 max
pooling. Each operation preserves spa-
tial dimensions with 1×1 convolutions ap-
plied to reduce computational cost. Out-
puts from all branches are concatenated
to form the final feature map.

Residual connections, also known as

shortcut connections, are a key con-

cept in the design of Residual Networks

(ResNets). They are a type of con-

nection in a neural network that allows

the output of a layer to bypass one or

more subsequent layers and be added

directly to the output of those layers.

This is typically achieved by performing

an identity mapping, where the output

of a layer is added to the output of a

layer further down the network, without

any additional parameters or computa-

tional complexity.

The purpose of residual connections

is to mitigate the degradation problem

that occurs in very deep neural networks, where adding more layers can lead to

higher training error. By using residual connections, the network can learn to

perform identity mappings more easily, which can help in training deeper networks.
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If the optimal function for a set of layers is close to the identity mapping, it is easier

for the network to learn the necessary adjustments or residuals as they are called,

with reference to the identity mapping, rather than learning the entire function

from scratch.

In the context of the paper from Kaiming et al. [10], residual connections are

used to create residual blocks, which are the building blocks of ResNets. These

blocks are designed to learn residual functions with reference to the input and the

output of the block is the sum of the input and the residual function learned by

the block’s layers. This approach has been shown to ease the training of very deep

networks and has led to significant improvements in image recognition tasks. One

such block can be seen in Figure 2.4. More about the inception module in the next

subsection.

2.2.2 Review of CNN Models

The CNN architecture exists for many years now and there have been many papers,

which have tried and succeeded at optimizing some short comings of the original by

adding new kind of layers, making it deeper or applying different layers in parallel.

In this subsection we will cover the Inception and the Xception model architecture.

Inception

Introduced the first time in the ImageNet Large-Scale Visual Recognition Challenge

2014 and later presented in a paper [11], the inception architectures main idea is

to create a deep CNN, that can efficiently utilize computational resources while

achieving high performance in image classification and detection tasks. This is

achieved by a few key concepts: Inception Module, Dimension Reduction, Sparse

Structure Approximation, Efficient Dense Computations, Balanced Computational

Budget and Auxiliary Classifiers. To get the gist of it, let us take a brief closer look

at the named key concepts.

The inception module is a building block, that allows the network to process vi-

sual information at various scales in parallel. As already mentioned in section 2.2.1,

different kinds of filter size produce different kinds of results, because they focus on

more or less context. The inception module introduces four different convolutions

in parallel (1x1, 3x3, 5x5, max-pooling) and concatenates the results before hand-

ing it over as an input to the next layer. In Figure 2.4 the reader may look at the

inception module.

To prevent an enormous computational complexity, the inception module uses

1x1 convolutions to reduce the dimensionality of the input before applying the more
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expensive 3x3 and 5x5 convolutions. This reduces the number of input channels to

these larger filters and thereby decreases the computational load, making it more

efficient in the process.

Sparse Structure Approximation is what the authors of the Inception model call

a clustering of neurons by correlated outputs and connecting them to the previous

layer. This makes the network able to process the visual information more efficiently.

Instead of using non-uniform sparse data structure, which is inefficient, the inception

architecture uses dense components that can exploit optimized numerical libraries.

This is what the authors call Efficient Dense Computations.

With Balanced Computational Budget, the design is guided by a computational

budget, so that the network does not become too large and computationally expen-

sive.

Upon considering all the facts metioned above, let us conclude with Auxiliary

Classifiers. During training, the network includes additional or as they call it aux-

iliary classifiers, connected to intermediate layers, so that propagating gradients

back is more efficient, as it does not need additional resources because of the better

training of deeper layers.

The inception architecture is a significant advancement in the field of computer

vision, offering a practical and efficient approach to constructing deep neural net-

works.

Xception

The Xception model, introduced by Francois Chollet in the paper ”Xception: Deep

Learning with depthwise Separable Convolutions” [9], is a CNN architecture that

builds upon the inception model. The key innovation of Xception is the replace-

ment of Inception modules with depthwise separable convolutions, which are more

efficient and effective at utilizing model parameters. The Inception models are

known for their cross-channel and spatial correlations separately. Xception takes

this concept a step further by separating the dimensions completely. This is achieved

through the use of depthwise separable convolutions as described in the last para-

graph of section 2.2.1.

The Xception architecture is designed to be simple and modular, making it easy

to define and modify. It has 14 modules with linear residual connections [10] around

them, except the first and last modules. This design choice, along with the use of

the mentioned separable convolutions [9], contributes to the models efficiency and

performance.

In Summary, the model represents a significant advancement in the design of

CNN, offering a more efficient architecture that simplifies the network while main-
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taining or improving performance on image classification task. A closer look at the

implemented Xception architecture can be taken in the appendix section A.7.

2.3 LSTM and Pose Estimation in HAR

In this section Recurrent Neural Networks and Long-Short-Term-Memory will be

explained. Further, Pose Estimation in HAR is briefly introduced for feature ex-

traction and at the end, the in the experiments used BRNN model is explained in

regards to the extracted features.

2.3.1 Fundamentals of LSTM

Reccurrent Neural Networks

Recurrent Neural Networks (RNNs) are a class of artificial neural networks designed

to handle sequential data, such as time series, text sequences, and other data where

the order of the elements matters. Unlike traditional feedforward neural networks,

which process input data independently, RNNs have connections that allow them to

maintain a memory of previous inputs, which is crucial for understanding context

in sequential data.

The key to this memory is the hidden state, which acts as a kind of scratchpad

for the network. As the RNN processes each element in a sequence, the hidden

state is updated based on the current input and the previous hidden state. In this

way, the network is able to keep track of information it has seen before, which is

essential for tasks where the order of the data is important.

RNNs achieve this through recurrent connections, which loop back from the

output of the network to the input. This creates a feedback loop that allows the

network to maintain information across time steps. When an RNN is unrolled in

time, it can be seen, that it is essentially a chain of repeating modules, each passing

information to the next.

Training an RNN involves a process called Backpropagation Through Time

(BPTT), which is a variation of the standard backpropagation algorithm used in

feedforward networks. BPTT works by unrolling the network through all time steps

and then computing the gradients of the error with respect to the weights across

all these steps.

However, RNNs can face challenges such as vanishing and exploding gradients.

Vanishing gradients occur when the gradients become too small during backpropa-

gation, making it difficult for the network to learn long-range dependencies. Con-

trarily, exploding gradients happen when the gradients grow too large, leading to
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numerical instability.

To overcome these issues, more sophisticated RNN architectures have been de-

veloped, like LSTM and Gated Recurrent Units (GRU). These models include spe-

cial mechanisms, such as gates, that control the flow of information and help to

maintain long-term dependencies in the data.

In summary, RNNs are powerful tools to work with sequential data, capable of

learning complex patterns and relationships over time. Their ability to maintain a

hidden state and process sequences makes them a go-to choice for many applications

in natural language processing, time series analysis, and beyond.

LSTM cells

In the paper ”Deep Learning with Long Short-Term Memory for Time Series Pre-

diction” [12] LSTM networks are introduced as a specialized type of RNN designed

to overcome the limitations of standard RNNs in learning long-range dependencies

in time series data.

Figure 2.5: Structure of an LSTM mem-
ory block showing the flow of information
through the forget gate (ft), input gate
(it), input update (zt), and output gate
(ot). These gates control the updates to
the cell state (ct) and the hidden state
(ht), enabling the network to selectively
remember or forget information over time.
The sigmoid (σ) and tanh (ϕ) activations
regulate the gating operations.

LSTMs are equipped with a unique

structure called a memory block, see

Figure 2.5, which is the core component

that enhances their ability to model

long-term dependencies. This mem-

ory block contains three types of gates:

input gates, output gates, and forget

gates. These gates are composed of mul-

tiplicative units and are responsible for

controlling the flow of information into

and out of the memory cell.

The input gates determine how

much new information is allowed to flow

into the memory cell, while the forget

gates decide how much of the previous

information should be retained. The output gates then control how much of the

memory cell’s information is used to compute the output activation of the memory

block.

The paper explains that the memory cell within the LSTM is in charge of remem-

bering the temporal state of the neural network. The gates work in conjunction

with the memory cell to ensure that the LSTM can effectively handle long-term

dependencies in time series data.

In summary, the paper presents LSTMs as a robust solution for time series
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prediction tasks, capable of capturing complex patterns and dependencies over time

due to their specialized architecture with memory cells and gates.

Bidirectional Recurrent Neural Network

A bidirectional RNN (BRNN) consists of two separate RNN layers: one that pro-

cesses the input sequence in the normal, forward direction, and another that pro-

cesses the input sequence in the reverse direction. Each layer scans the sequence

from one end to the other, producing outputs at each time step. The outputs from

both the forward and backward layers are then typically combined at each time

step, either by concatenation or by summation, to form the final output of the

bidirectional RNN [13].

The bidirectional approach is particularly useful in tasks, where the context from

both the past and the future is important for understanding the current input. For

example in natural language processing tasks like machine translation, knowing the

words that come before and after a particular word can significantly improve the

model’s ability to understand the meaning of the sentence.

In case of the hierarchical recurrent neural network for skeleton-based action

recognition, making the RNN bidirectional allows the network to better capture the

temporal dynamics of human actions by considering the movement of skeleton joints

both before and after the current frame. This leads to more accurate recognition of

actions, as the network can leverage the context from the entire sequence, not just

the preceding frames [13].

2.3.2 You Only Look Once

The You Only Look Once (YOLO) object detection system is a unified, real-time

model that processes images to predict bounding boxes and class probabilities in

one evaluation. Developed by Joseph Redmon et al.[14], YOLO is designed to be

simple, fast, and accurate. It divides the input image into a grid and each cell in

the grid predicts bounding boxes and class probabilities for objects whose centers

fall within the cell.

YOLO uses a convolutional neural network with 24 convolutional layers followed

by 2 fully connected layers, inspired by the GoogLeNet architecture. The network is

trained to minimize a loss function that includes terms for bounding box coordinates

and confidence, with adjustments to prioritize the localization of objects over the

confidence of empty cells.

The system is trained on full images and directly optimizes detection perfor-

mance, which allows it to maintain high average precision while being extremely
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fast. YOLO can process images in real-time at 45 frames per second, with a smaller,

faster version capable of processing 155 frames per second.

YOLO outperforms other real-time systems in terms of mean average precision

and is less likely to produce false positives on background than other methods. How-

ever, it struggles with localization accuracy, especially for small objects. Despite

this, YOLO’s generalizability is high, making it robust for various applications and

domains, including real-time video processing.

YOLO-Pose is an innovative extension of the YOLO object detection framework,

specifically engineered to excel in the task of multi-person pose estimation. Unlike

its predecessor, which is primarily focused on detecting and classifying a wide range

of objects within an image, YOLO-Pose is tailored to not only identify individuals

but also to meticulously map out their 2D poses by pinpointing key body joints.

This specialized application sets YOLO-Pose apart, as it delves into the intricacies

of human form and posture within visual data.[15]

The core distinction between YOLO-Pose and the standard YOLO model lies

in their respective outputs and methodologies. YOLO object detection delivers

bounding boxes encapsulating objects and their corresponding class labels, func-

tioning as a versatile tool for general object recognition. YOLO-Pose, however,

enhances this by providing not just the bounding boxes for humans but also a de-

tailed skeleton map, indicating the precise locations of various body joints for each

person detected. This advancement is achieved through a heatmap-free approach

that directly optimizes the Object Keypoint Similarity (OKS) metric, a departure

from conventional two-stage methods reliant on heatmaps.

Training and optimization strategies also diverge between the two models. YOLO

object detection is honed to maximize accuracy in object localization and classifi-

cation, whereas YOLO-Pose is trained end-to-end to simultaneously optimize for

both bounding box precision and the OKS metric, a hallmark of pose estimation

tasks.

Both models are celebrated for their computational efficiency, making them con-

tenders for real-time processing. However, YOLO-Pose introduces the additional

complexity of pose estimation while maintaining the framework’s renowned speed

and efficiency. This balance makes YOLO-Pose particularly well-suited for appli-

cations that demand a nuanced understanding of human figures, such as action

recognition, augmented reality, and interactive systems.

In summary, YOLO-Pose builds upon the robust foundation of the YOLO frame-

work, expanding its utility to cater to the specific needs of human pose estimation

with its unique ability to provide detailed skeleton maps alongside object detection.
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2.3.3 Skeleton Based Action Recognition with BRNN

Skeleton based action Recognition is straight forward in what it means. As already

mentioned in subsection 2.3.2, the joints and thereby the skeleton from people can

be extracted from images. When trying to analyse action pattern like in HAR based

on the extracted skeletons, it is called Skeleton based action Recognition (SB-AR).

–

Figure 2.6: Novel method proposed by
Yong Du et al. [13] to make a prediction
about an action by analysing the skele-
tons. The skeleton is first separated into
their limbs and layer after layer put back
together.

For SB-AR there are many ap-

proaches, from the using Graph Convo-

lutional Networks to using RNNs and

many others. In this thesis we have

reconstructed a model from the pa-

per ”Hierarchical Recurrent Neural Net-

work for Skeleton Based Action Recog-

nition” from Yong Du et al. [13]

The authors of the paper proposed

hierarchical recurrent neural network

(RNN) for SB-AR divide the human

skeleton into five parts: two arms, two

legs and a trunk, see Figure 2.6. This di-

vision is significant as it allows the net-

work to model the movements of these individual parts and their combinations,

which is crucial for effectively recognizing various human actions.

The significance of dividing the human skeleton into these parts lies in the fact

that simple human actions are often performed by only one part of the body, such

as punching with the arms or kicking with the legs. More complex actions , such as

running, involve the coordination of multiple parts, which require the synchronized

movement of arms, legs, and the trunk.

By separately processing the data from each skeleton part through its own bidi-

rectional RNN (BRNN), the network can learn the spatial and temporal features

specific to each body part. As the representations from these subnets are hierarchi-

cally fused in higher layers of the network, the model can capture the interactions

between different body parts and recognize actions that are composed of movements

from multiple parts of the body.

This part-based feature extraction and hierarchical fusion approach enhance

the network’s ability to model the complexity and variety of human actions. It

also enables the network to focus on the most informative joints and movements

for action recognition, potentially leading to improved accuracy and robustness in

classification tasks.
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2.4 Existing Datasets and Their Limitations

HAR is a large field with many possible applications. Sports is one of the fields

that can profit the most from HAR. There are already many occurrences in sports,

where some systems use AI to evaluate human situations. In the table ?? there are

a few of the sport oriented datasets. As of now however, no dataset is focused on

a competitive background in martial arts or simple bouts in a martial arts. This

can stem from the complexity of the situation of bouts. Two competitors directly

interact with each other in close proximity and most of the time with many other

people present at the scene. There are already sophisticated classifiers for speech,

emotions, body language, simple actions with distinct features. But there are not

any, which try to classify complex movements, which may look similar to each other

in martial arts. This legitimates the question and the demand for such a dataset.

To address this gap, we propose a new dataset centered on competitive Karate

Kumite. The next section discusses this dataset in detail, covering its creation

process, structure, and features. This dataset is intended for evaluation using the

two models referenced earlier: Xception and the BRNN model.
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Dataset Description #Videos #Classes
SportsSloMo[16] 8,000+ sports

video clips across
22 categories

130,000 22

FineSports[17] Multi-person
sports videos
with fine-grained
annotations

10,000 12 / 52

3DYoga90[18] RGB videos and
3D skeletons of
yoga poses

6,177/5,526 90 poses

SportsHHI[19] Human-human in-
teractions in bas-
ketball and volley-
ball

11,398 keyframes 34

MultiSports[20] Multi-person
videos with
spatio-temporal
sports actions

3,200 4

KaKumite4P
(ours)

Basic karate ku-
mite interactions
for RGB videos
and 2D-skeletons
from four perspec-
tives

8952/35808 6

Table 2.1: Sports-related datasets with human interaction. Comparing number of
videos and number of classes to our proposed dataset
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Chapter 3

Dataset Acquisition

In this chapter an overview of the data acquisition process is shown with the setup in

section 3.1, followed by the instructions given to the Karatekas, the organization of

the data in section 3.2, the ground truth, data cleaning process and augmentation

of the data in section 3.3 and at last the datasplits done for the experiments in

section 3.4 and the relevance of this new dataset.

3.1 Acquisition Method and Setup

Depending on the kind of data needed the aquisition method may vary. For our

Dataset only rgb video cameras are used. To be more precise, four GOPRO Hero 10

cameras are used. Because the Karateka which needs to be recorded has to move as

fast and precise as in real competitions, the actual camera settings were as follows.

The resolution was set on 3840x2160, while the recorded frames per second are set

to 30. The cameras are used with the wide angle setting and the stabilization is set

to standard.

(a) Camera A (b) Camera B (c) Camera C (d) Camera D

Figure 3.1: Individual camera views of the Tatami setup.
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Figure 3.2: The cam-
era is set up exactly one
meter from the tatami
corner away on the di-
agonal. Denoted by
a is the angle between
camera and the middle
axis, and by b the dis-
tance from the ground to
the camera lens exactly
one meter up from the
ground.

As already shown in Figure 2.1 and in Figure 3.1

the judges and the cameras respectively are situated in

all four angles of a tatami. It is concluded to be the

best camera positions in comparison to having them set

to the middle of a side. The second position method

would have made recording the fight situations in the

angles down right impossible. The tatami used for the

dataset is ordered into 6x6 meter instead of the standard

required 8x8. The cameras were positioned one meter in

the diagonal away from the tatami, exactly one meter

high and with approximately eleven degrees, so that the

middle of the tatami is focused directly, see Figure 3.2.

Because the recordings are done on various dates and

the cameras need to be removed and re-positioned each

time, the positioning may vary to a small degree.

To make the recordings as clutter free as possible from

variables, the mirrors in the practice facility have been

occluded with covers and at the time of recording only

the two confronting Karatekas are effectively observable

by the four cameras, see Figure 3.3. The lighting is one

of the variables which are not controlled, as there are too

many windows in the room.

3.2 Instructions and Data Organisation

What always may vary, are the technique combos each athlete has in their arsenal.

To make this somewhat effective and representative, the Karatekas receive some

instructions before a fight. Afterwards they have the opportunity to have a fight

(a) Covering the first half
of the dojo.

(b) Covering the mirrors in
the second half of the dojo.

Figure 3.3: Covering the mirrors for the Camera setup is essentital, so that the
athletes are not represented twice from some perspectives through the mirrors.
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of 1.5 minutes and try to accomplish their objective. The objective they generally

have to fulfill is, to score points. Depending on the instructions, the points they

need to score may be a bit easier to achieve or more difficult to reach. In the

table Table 3.1 are the five main scenarios used for the goals followed in the next

paragraph. As the reader is able to see, the scenarios have different instructions for

Tori and Uke, respectively for Aka and Ao.

Scenario Description
1 Aka provokes Ao, Ao attacks, and Ao scores a point.
2 Aka provokes Ao, Ao attacks, and Aka absorbs the hit and coun-

terattacks to score a point.
3 Aka provokes Ao, Ao attacks, and Aka reacts to score a point at

the same time.
4 Aka and Ao fight freely with a focus on scoring a specific point

combination
5 Try to press the opponent into making a foul (e.g., jogai) or dilute

a point by pushing the opponent outside the ring while scoring or
being scored on.

Table 3.1: Overview of training instructions and goals.

The first scenario in Table 3.1 is mainly to gather some simple points and to

achieve a near optimal timing. In the second and third scenarios, the main goal is

to have disturbances, so the opposing athlete tries to defend, while either absorbing

and countering, or directly countering. In the fourth and fifth scenarios the goals

are to make the scenes as near to the competition situations as possible. As such the

first to third scenarios are used by focusing on hand techniques and once more for

leg techniques. But as the hand techniques are not always just used for scoring, but

also for connecting various parts of combinations together, the athletes are allowed

to still use hand techniques when using leg techniques to score the points. In the

seventh instructions the athletes received scenario four and fight as they normally

would, entirely free. In the eighth instruction they should try to press the opponent

to make a foul like jogai, or sometime even dilute a point by pushing the opponent

outside of the ring while scoring or being scored on. After having done one round

the athletes are instructed to change their protectors to the other color and all the

instructions are repeated. In this way eight trained athletes are paired up in five

different combinations for a as good a represenation sample as possible.
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3.3 Ground Truth, Cleaning and Transforming

After recording and making the data usable for models to train, it is necessary

to cut the videos in exactly the same amount of frames after synchronizing the

perspective of the videos. After careful deliberation, the number of frames per

datapoint have been chosen to be 120 frames or four seconds long. Firstly, because

most situations are longer than two second and shorter than five and therefore may

be better representations of fights at competitions. And Secondly, because this

length is still from a computational standpoint doable in a realistic timeframe.

After cutting the Data, it is organized by recording date as a first letter, in-

struction change as a number (which is incremented every time the instructions

are changed), Camera perspective, and lastly the number of the cut clip, like so:

A0A 0001.

Code Description

nh Nothing happening

np No points

1pK 1 point - Aka

1pO 1 point - Ao

2pK 2 points - Aka

2pO 2 points - Ao

3pK 3 points - Aka

3pO 3 points - Ao

fK Foul - Aka

fO Foul - Ao

pE Point each

fE Foul each

fp Foul and point

D Delete

Table 3.2: Categories of out-
comes and their codes.

After cutting the 29 hours of video material and

organizing the videos accordingly into the four sec-

ond fights, it needs to be further organized into cat-

egories. For an easier setup and because in karate

mainly only one score per athlete is given, a single-

label setup is preferred.

As one of the main goals of the thesis is to have

a judge substitute, it is paramount to be able to

judge at least the points. So it appears meaningful

to make a label category for each point type as

well as the no point type. To enlargen the details,

the categories are further split into who marked

the first point in the four second sequence. As

everything else would be just put into no points

the category has been further split. Firstly into

the nothing happening category, added so, that ”no

points” can be further differentiated into when the

athletes tried to score a point but did not fulfill

all the criteria (no point) or did not try to score a

point (nothing happening). Secondly, for when a

foul happened, four additional categories are added, a foul for each athlete color, as

well as when both athletes do a foul at the same time and lastly for the case when

a foul is scored but at the same time a point, the foul and point category is added.
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(a) Camera perspective A (b) Camera perspective B

(c) Camera perspective C (d) Camera perspective D

Figure 3.4: Frame of a original video form all four perspectives. The chosen frame
is one of the most important ones in an action sequence, for there are many criteria,
which may fail here. The athlete in red (Aka), is trying to score 1 point with a
punch, while blue (Ao) is too slow while tying to get away.

At the end, the categories are as shown in the table Table 3.2: nothing happening

(nh); no points (np); 1 point - Aka (1pK); 1 point - Ao (1pO); 2 points - Aka (2pK);

2 points - Ao (2pO); 3 points - Aka (3pK); 3 points - Ao (3pO); Foul - Aka (fK);

Foul - Ao (fO); Point each (pE); Foul each (fE); Foul and point (fp); Delete.

Important to note is however, that while establishing the ground truth with

these categories, the videos are not judged as each one video on their own, but

always four videos of the same situation together. As the main goal of the whole

judge setup around the tatami is to see and indicate the point and the ”at-least-two-

judges”-rule (see Article 8.1 in the WKF Kumite Competition Rules) exists, so that

the point not only appears as a point, but in and of itself achieves all the criteria

needed, it makes sense to judge the situation as a whole from all four perspectives

together.

In the picture Figure 3.4 the point would not be indicated from the Figure 3.4b

perspective, because it is clearly visible that the punch is missing the target. From

the perspectives Figure 3.4a and Figure 3.4c we could argue, that it does not look

wrong or even good. In the picture Figure 3.4d, the perspective may not give enough

information as to if the point would be right or not. If we combine the perspectives,

however, the picture changes. When combining all the perspectives, the result is
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what in competitions is desired, but cannot be achieved, because four people would

need to communicate in the split second it happens, which clearly is impossible.

After establishing the ground truth, the data, which was deemed not usable

has been discarded. Possible reasons for the cleaning are additional people or more

than the athletes appearing in the video, someone being injured, one of the cameras

malfunctioning or other similar reasons.
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(a) Label distribution of all the labels after
the cleaning and before the data transfor-
mation.
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(b) Label distribution of all the labels after
the data transformation.

Figure 3.5: Label distribution of all the
labels before and after the data transfor-
mation. In total there are 8952 videos be-
fore and 35808 videos after the mirroring
and cropping. In blue and red are sep-
arately depicted how many of the points
annotated in the classes are scored by Aka
or Ao respectively.

Also part of the cleaning, is going

trough all the fouls again and separate

the jogais from the rest, into two new

categories, as the rest of the fouls are

not enough to be actually trained on.

At the end of the cleaning the video-

data, 8952 video files are left. With-

out any augmentation and transforma-

tion, the label distribution is as shown

in the picture Figure 3.5a. To inten-

sify the videodata and to have more of

it for the training stage, all the video-

data is augmented by mirroring the

data horizontally, which already dou-

bles the amount, and then cropped it

into two big squares to double it again.

The number of all the video files after

this augmentation is 35808, the reader

can see the distribution of the classes

on Figure 3.5b. More precisely, the

videos are first cropped from 3840x2160

to 3340x2160 pixels and then further

into squares of the size of 2160x2160

pixels into a left-crop and a right-crop.

Furthermore having squares as images

or videos makes it easier for many mod-

els to be used out of the box. Addition-

ally the pixelcolor is normalized for every pixel so that the computation of the

Xception model is less resource intense.

As a last transformation for the Xception model, the videos are either scaled

down in resolution from 2160x2160 to 244x244 or in case of the BRNN model,

the coordinates for every joint is extracted by YOLOv8 and combined with the
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(a) Camera perspective A (b) Camera perspective B

(c) Camera perspective C (d) Camera perspective D

Figure 3.6: Frame of a original video, after extracting the joints with YOLO and
mapping them on a black background for visualization. In the dataset made for
the BRNN, the joints are not mapped on a background, but have an additional
confidence score for the coordinates of each joint. In this frame one athlete, is
trying to score 1 point with a punch, while the other one is trying to evade.

confidence score of each joint. As such, at the end there are two datasets. One with

the videodata with a 244x244 pixel resolution and one with the extracted joints and

their confidence scores as shown in a mapping of these joints directly onto a black

background in Figure 3.6.

3.4 Datasplits and classes

After only the six classes remaine, they are combined into different datasplits. As

shown in the table Table 3.3, the subsets are binary at first and for the last few sets

more situations are combined. The differentiation between Ao and Aka is not used

in our datasplits. The datasplits are consistently chosen in sets of four to ensure,

that all camera perspectives are well represented. The subsequent division into

training, validation, and test sets was carried out with the same level of attention

to detail, maintaining a balanced representation of perspectives across these subsets.

Additionally, to ensure class balance, the size of each class was limited to match

the class with the fewest videos within the intended split.
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Datasplit classes number of videos

npVS1p no points, 1 point 9728
npVS2p no points, 2 points 5920
npVS3p no points, 3 points 2688
npVSj no points, jogai 3328
npVSalla no points, 1 point, 2 points, 3

points, jogai, nothing happening
8064

npVSallb no points, 1 point, 2 points, 3
points, jogai, nothing happening

35808

Table 3.3: Classes and number of videos for all the datasplits. Both npVSall are
the same, with the only difference, that the split denoted by a is balanced and the
split denoted by b is unbalanced.
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Chapter 4

Experimental Evaluation

4.1 Search and Evaluation metrics

In This section we discuss how the choosen hyperparameters are choosen and what

the experimental setup is. Further the evaluation metrics for the models and the

search are also part of this section.

4.1.1 Hyperparameter Search

To find the best possible hyperparameters for the chosen datasplits, a hyperparam-

eter search was conducted. As such, the framework Optuna has been used for a

grid search to make it more systematic and faster. The limitations of each hyper-

parameter and what kind of parameter to look for, was decided beforehand and the

search was conducted for every datasplit separately.

As seen in the table above in Table 4.1 the parameters to vary are the learn-

ing rate with a range of 0.01 to 0.00001, accumulation step as a substitute for

the batch size (because of memory limitations) in the range of 2 to 64, the opti-

mizer between Adams and SGD (without varying the momentum), the learning rate

Hyperparameter Start of Range End of Range

Learning Rate 0.01 0.00001
Accumulation Step 2 64
Scheduler StepLR ReduceLROnPlateau
Optimizer Adams SGD
Patience 1 5
Factor 0.1 0.001
Stopper Patience 2 25
K-Fold 4 10

Table 4.1: Hyperparameter search ranges
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scheduler between StepLR and ReduceLROnPlateau, the patience and the factor

for the scheduler. More details can be gleaned from Table 4.1. Not in the referenced

table, but important to note is, that the maximum number of epochs being used

for training is not more than 50, because of time and resource constraints.

To choose the most robust parameters for the comparatively small datasplits,

k-fold-validation is being used to evaluate them. The number of folds used for this,

has also been varied to a certain extend (between 4 and 10) but has ultimately been

chosen to be eight after a few preliminary tests.

Using this methodology and conducting approximately 30 to 60 experiments per

datasplit on four Nvidia RTX 3090 by distributed training, a set of near-optimal

hyperparameters are found. More about that in section 4.2.

Equally of interest are the metrics on which the evaluation of the entire search

depends, as they play a crucial role in determining the overall effectiveness of the

said search. In the following section, we will explore these metrics in more detail.

4.1.2 Model Metrics

Taking into account that we are looking for hyperparameters of a model by cross

validation, we have three possible places to evaluate something on. On the training

set and the evaluation set for every epoch in every fold and the test set at the

end of every fold. Furthermore, the dataset is devided into 70% being used for the

training-/validationset and 30% for the testset.

To see if the model is actually learning, any of the available metrics can be used,

but the most common one is the loss. This is because the loss tends to decrease, if

the model is picking up on what it is learning in each epoch. However, just looking

at the loss on the training set, does not tell much about how effective the model

is. This is, because the model might overfitt the training data, capturing specific

patterns without developing the ability to generalize to unseen data. Therefore,

additional evaluation on the validation or test data is necessary to determine its

true performance.

Considering that some of the classes in the datasplits may not be evenly dis-

tributed, we may be dealing with imbalanced datasets. A simple but still pretty

effective metric for handling this is the F1-Score. The F1-Score combines precision

and recall into a single number, which helps avoid bias toward either one. This way,

it balances false positives and false negatives equally, making it a solid choice for

imbalanced data. To get a better feel for how learning is going in each epoch, we

thus calculate the F1-Score to observe and to use as a means of evaluation.

After the search, the model with the chosen hyperparameters is trained by split-
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ting the dataset into 70% for the training and validationset and 30% for the testset.

For the training- and validationset ratio it is further split into a 70/30 split. The

evaluation for these sets is being held with F1-Score, accuracy, precision, recall and

the confusion matrix as well as the loss for seeing how good the model generalizes.

But given, that the setup in a Karate fight is for four referees sitting around the

tatami and the final evaluation is only meaningful, when the action on its own is

according to the ground truth and not just from one perspective, it is worth con-

sidering using a majority voting or a x out of 4 perspectives voting on the testset.

This voting is also useful for the transferability to real life situations, as a minimum

of (x=) two out of four referees have to evaluate a situation similar to be able to

allocate a point.

Besides the beforementioned metrics, as a way to see, how good the model can

distinguish the classes, Matthew D. Zeiler and Rob Fergus introduced t-SNE in their

paper [21]. We will make use of this mode of visualization as well. Additionally

for seeing if the regions of interest and focus in the different datasplits are similar

to each others for the model, saliency maps are used, as they are quite useful for

visualizing focuspoints of the model over time according to the paper of Avlin G.

Policar and Blaz Zupan [22].

4.2 Results and Discussion

In this section we will talk about the chosen hyperparameters from the grid search

in detail and discuss the results through the received metrics.

Down below, in Table 4.2 the reader can see a quick overview of the results

with F1-score and Accuracy, as well as the precision and the recall on the different

datasplits for the two different models used. These are the results of the best

hyperparameters found through the hyperparameter search and run with the whole

dataset instead of the crossvalidation. In the table it can be seen, that the Xception

model can generalize quite well in regards to the binary datasplits. Also when

comparing all the different situations (six classes) together the model shows better

than random accuracy. The same cannot be said about the BRNN model. As in

the third and fourth rows of the table visible, the accuracy as well as the F1-score

aligns with complete coincidence. For that reason, this section will be mainly about

the Xception model results, unless otherwise stated.

As such in Table 4.3, the hyperparameters of the search for the Xception model

are presented. Notably, the accumulation step, the scheduler and the patience for

the scheduler are similar in most datasplits, however, not the learning rate and the

factor for the scheduler. The ”Number of Epochs” before stopping might stand out
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Metric npVS1p npVS2p npVS3p npVSj npVSalla npVSallb

Xception Model
Xception F1-score 0.7800 0.8920 0.8638 0.9148 0.4288 0.4191
Xception Accuracy 0.7812 0.8925 0.8638 0.9160 0.4541 0.6041
Xception Recall 0.7799 0.8930 0.8669 0.9122 0.4540 0.4122
Xception Precision 0.7833 0.8994 0.8690 0.9214 0.4565 0.4768

BRNN Model
BRNN F1-score — — — — — —
BRNN Accuracy — — — — — —
BRNN Recall — — — — — —
BRNN Precision — — — — — —

Table 4.2: F1-Score, Precision, Recall, and Accuracy for different data splits and
both models. Note: The BRNN model did not generalize, hence its metrics are not
shown as they are completely coincidential.

immediately because of the way it is portrayed in the table. The reason for the

separation, is that this measurement does not directly apply to the hyperparameter

search, but for the real training later on. What stands out about this value however

is, that the Number of epochs are so little before the model starts overfitting. In the

case of the datasplit npVS2p it only needs 3 epochs to achieve the best results. This

could be an indication of the used model being too complex for the task, or the data

being easily sepearble. When we look at the Accuracy and F1-Score respectively

of the npVSall datasplits however, it can be seen that the the metrics are still at

approximately 42%, after 10 epochs, which indicates, that the used model is either

too simple to capture the features or does not have enough data or would need to be

further fine tuned. A bit further down, we will take a closer look at this behaviour.

Taking a closer look at the linegraphs at Figure 4.1, we have the number of

epochs on the x axis and the metric value on the y axis. We can see that the

binary classifiers for the 1p and 2p classifiers are rather uneventful and the metrics

Parameter npVS1p npVS2p npVS3p npVSj npVSalla npVSallb

Learning Rate 0.0069 0.0076 0.0051 0.0099 0.0075 0.0024
Accumulation Step 15 12 13 13 15 14
Optimizer SGD SGD SGD SGD SGD SGD
Scheduler StepLR StepLR StepLR StepLR StepLR StepLR
Factor 0.0158 0.0921 0.0590 0.0157 0.0086 0.0142
Patience 4 1 5 5 5 5

Number of Epochs 9 3 6 14 10 9

Table 4.3: Parameter Configuration for Different Data Splits on the Xception model
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(a) Loss, Accuracy and F1-score for the
npVS1p datasplit. Earlystopping done af-
ter 9 epochs.

(b) Loss, Accuracy and F1-score for the
npVS2p datasplit. Earlystopping done af-
ter 3 epochs.

(c) Loss, Accuracy and F1-score for the
npVS3p datasplit. Earlystopping done at
6 epochs.

(d) Loss, Accuracy and F1-score for the
npVSj datasplit. Earlystopping done at 14
epochs.

Figure 4.1: The Loss, Accuracy and F1-scores for the binary datasplits. X-Axis
depicts the amount of Epochs with the last one being the Testing. The Y-Axis
depicts the metrics value between 0 and 1.

stop improving quite fast, after 9 epochs or 3 respectively. The jogai classifier is

the same, though it needs a bit longer to find its optimum. For the 3p classifier

however, it looks like a rather more eventful ride, seeing as it has more up and

downs and crossing between the validation and training metrics.

The linegraphs for the multiclass classifiers in Figure 4.2, are rather uneventfull

as well, though they keep a high loss until the end and lower metrics in general. In

Figure 4.2b, we can see, that it is an unbalanced dataset, as the Accuracy and the

F1-Score are not overlapping.

When looking at the confusion matrices of the different datasplits, we can ob-

serve a good balance of true positives and true negatives for all the binary datasplits

in Figure 4.3, this is shown by having a deeper color in the left upper and right

lower corners. In regards to False positives and false negatives in all the datasplits

the false positives outweigh the false negatives slightly, but not excessively as seen
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(a) The Loss, Accuracy and F1-scores for
thenpVSalla datasplit. Earlystopping done
at 10 epochs.

(b) The Loss, Accuracy and F1-scores for
the npVSallb datasplit. Earlystopping done
at 9 epochs.

Figure 4.2: The Loss, Accuracy and F1-scores for the multiclass datasplits. X-Axis
depicts the amount of Epochs with the last one being the Testing. The Y-Axis
depicts the metrics value between 0 and 2.

with a lighter blue color in the right upper and left lower corners and as it is also

represented in Table 4.2.

When looking at the Figure 4.4, the distinction is less clear in regards to what

the model has to do. For the balanced one Figure 4.4a it is still alright, though

there is seems to be some slight confusion, when needing to classify no points (np)

situations. Remembering the labeling stage, the np situations are labeled as such,

when the athletes tried to score a point, but were not fulfilling all the criteria.

This makes this class inherently a blend of all the classes, with only some small

distinctions between all of them. We will examine this further, when looking at

the Figure 4.6 further down. What stands out however, is that in the binary

classifications the false positives were more common, while here the false negatives

are more common. The confusion between the 1p and 2p, the 2p and 3p, the 3p

and jogai are also happening a few times.

When looking at the Figure 4.4b, however it is difficult to make sense of it at first

glance, because the np and nh situations are clearly more pronounced. The other

classes are in comparison underrepresented. There are still a few things standing

out. The 1p and np situations being confused more often for example, even though

this time, there are again more false negatives for the 1p than in the balanced

datasplit in Figure 4.4a or the binary confusion matrices in Figure 4.3. Other then

that, there is almost no rightly classified occurrence of the 3p situation, though the

1p situation and the 2p situation are classified right more often than in the balanced

datasplit.
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(a) Confusion Matrix of the npVS1p datas-
plit.

(b) Confusion Matrix of the npVS2p datas-
plit.

(c) Confusion Matrix of the npVS3p datas-
plit.

(d) Confusion Matrix of the npVSj datas-
plit.

Figure 4.3: The Confusion Matrices for the binary datasplits. Darker shade of blue
is better on the top left to the bottom right in the diagonal. For the other fields it
is better to be of a lighter shade of blue.

(a) Confusion Matrix of the npVSalla
datasplit.

(b) Confusion Matrix of the npVSallb
datasplit.

Figure 4.4: The Confusion Matrices for the multiclass datasplits. Darker shade of
blue is better on the top left to the bottom right in the diagonal. For the other
fields it is better to be of a lighter shade of blue.
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Having gone through that, it is time to analyze the decision boundaries. If we

take a look at the t-SNE illustrations, we get an indication as to why it might be

possible for the confusion matrices in the multiclass classifiers in Figure 4.4 to be

rather confused in comparison to the binary classifiers in Figure 4.3.

First and foremost, it is important to emphasize that the pattern in the graph

is not significant and does not hold any particular meaning. What matters in

these graphs is the clustering. This aspect allows us to evaluate how effectively the

classifier groups the data and how distinct the decision boundaries are, even when

the data points may not be clearly separable on the given measurement scale.

That said, when looking at the graphs in Figure 4.5, most groups are clus-

tering visibly and densely together. Particular is, that the 1p (Figure 4.5a), 2p

(Figure 4.5b) and 3p (Figure 4.5c) classifiers have distinct groups which are sepa-

rated from the rest, but still have a lot of overlapping datapoints with the other

classes. The jogai classifier (Figure 4.5d) however, does not have as many overlap-

ping datapoints, the clustering is more clear, even though it does not have a clear

separation.

Looking at the Figure 4.6, the only clustering which almost directly stands out,

is in the balanced dataset in Figure 4.6a on the right upper corner. This one consists

of the jogai and 3p classes. There are more of those datapoints also scattered in

the rest of the graph, but not as many as in the said cluster. Further standing is

the 1p class, which is more pronounced on the left side in blue circles, as well as

the nh class in the upper middle with the brown triangles and the 2p class with the

orange squares on the lower middle.

The unbalanced datasplit Figure 4.6b, however looks different. Signaled by the

same marks and color combination for the classes, the overwhelming amount of

brown triangles (nh) and violet stars (np) can clearly be spotted. The blue circles

(1p) are mostly mixed in where the np class is and the red crosses (jogai) where

the nh class is. The orange squares (2p) and green diamonds (3p) are mostly in

the upper middle, but also scattered well into the np class. This representation

gives an intuition how close many of the datapoints are to each other. They are

not clustering well, because they are quite similar to each others in most cases.
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(a) t-SNE for the npVS1p datasplit. (b) t-SNE for the npVS2p datasplit.

(c) t-SNE for the npVS3p datasplit. (d) t-SNE for the npVSj datasplit.

Figure 4.5: t-SNE for the binary datasplits. The Clustering is more important than
the shape.

(a) t-SNE for the npVSalla datasplit. (b) t-SNE for the npVSallb datasplit.

Figure 4.6: t-SNE for the multiclass datasplits. The Clustering is more important
than the shape.
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Figure 4.7: A 24 frames slice of the video crop 1 mir V1−0016 D9D. It portraits
perspective D, mirrored, the second crop. This video depicts a np situation.

Additionally to see how similar the models on the different datasplits analyses

a video sequence, we use saliency maps. In Figure 4.8 and Figure 4.9, we let

the models run through a video, where the athlete tries to score a 3p but does not

succeed and as such is a np situation. A slice of the video is portrayed in Figure 4.7.

The saliency map shows with a color gradient, which looks like a heat map,

where the focus of the model is averaged over the video. In npVS1p classifier in

Figure 4.8a we can see, that leg techniques are not as focused on as in the classifier

of npVS3p in Figure 4.8c. For the npVS2p in Figure 4.8b the attention seems to be

more pronounced but still not as strong as on the npVS3p. In the npVSj classifier

in Figure 4.8d, the upper part of the picture is almost entirely dark, however the

tatamicorners are more pronounced as than for instance in the npVS1p, which is

exactly where a jogai does happen.

Interestingly enough the saliency map of the npVSalla classifier in Figure 4.9a

and the npVS3p look quite similar, but with slightly more scattered focus points.

the unbalanced variant of the npVSall split however, does not behave in the same

way. It looks completely focused on one spot, where the acting athlete is situated.
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(a) Saliency map for npVS1p datasplit. (b) Saliency map for npVS2p datasplit.

(c) Saliency map for npVS3p datasplit. (d) Saliency map for npVSj datasplit.
Figure 4.8: Saliency map for the binary datasplits, run on the same video as in
Figure 4.7. Darker red stands for paying more attention, while darker blue stands
for being less important.

(a) Saliency map for npVSalla datasplit. (b) Saliency map for npVSallb datasplit.

Figure 4.9: Saliency map for the multiclass datasplits, run on the same video as in
Figure 4.7. Darker red stands for paying more attention, while darker blue stands
for being less important.
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x out of 4 npVS1p npVS2p npVS3p npVSj npVSalla npVSallb

Base Accuracy 0.7812 0.8925 0.8638 0.916 0.4541 0.6040

At least 1 correct 0.8945 0.9505 0.9406 0.9680 0.6860 0.8276
At least 2 correct 0.8219 0.9189 0.9010 0.9480 0.5455 0.7029
At least 3 correct 0.7575 0.8761 0.8267 0.9120 0.3769 0.5525
All 4 correct 0.6493 0.8243 0.7871 0.8360 0.2083 0.3332

Table 4.4: Accuracy Metrics for Different Data Splits on the Xception model when
using x out of a set of four as the amount of being correct in comparison to the
base accuracy

To get back to a more reality near approach and with only the accuracy used as

a metric, there has also been conducted a x out of 4 voting on the trained models.

The results are portrait in Table 4.4. To make the results of the x out of Four

voting more easily comparable, the accuracy from Table 4.2 for the Xception model

has been integrated in the first row. Clearly visible in this table is that the ”one

out of four” and the ”two out of four” accuracy is higher than the Base Accuracy.

Let us compare just the npVS1p datasplit at first. The Base Accuracy tells us,

that the every time the model looks at a fighting sequence where either a 1 pointer

is scored or no points are scored, it can classify this correctly in 78% of the cases.

As a reminder, for a real life application a referee can only give out a point to an

athlete, if a minimum of two out of four judges indicate a point for the same athlete

for the same action. Let us say we have four instances of the model which look

at an action from four different perspectives and everyone decides on the action,

if the point is scored. There is still a 22% probability, that either one instance

classifies the action wrongly. Letting those four instances now make an educated

classification from the four perspectives and then look at the results of all of them

at the same time. For all four instances to classify this wrongly, is less probable,

only 0.23%. In other words, the voting makes the decision more robust and less

prone to wrong judgments as long as the ground truth holds. In general that means,

the more x out of four the better. In the table, the first column indicates with the

x, how many instances of the four available one voting do vote on the same video,

from a different perspective, the same way.
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Chapter 5

Conclusions and Future Work

This concluding chapter addresses the central questions of this thesis in section 5.1,

beginning with a summary of the work conducted and the key results achieved. The

main findings are highlighted, accompanied by a critical analysis of their implica-

tions and limitations. Following this, section 5.2 offers recommendations for future

research, suggesting potential avenues to expand and build upon the outcomes of

this research.

5.1 Key findings and Insights

Following the path through this thesis, the main objective is to gather a dataset,

which maps complex real world scenarios, specifically from Karate Kumite, and see

how it fares with modern HAR models. To do this, datapoints have been gathered,

representing the most common situations and split into six different datasplits, four

binary ones and two multiclass ones, whereas one of them was balanced and one

was not. These datasplits have been run through and trained on two different

models, a Convolutional Neural Network model called Xception and a Bidirectional

Long-Short-Term-Memory model we call BRNN.

The Xception model consistently outperformed the BRNN model across all data

splits and therefore has been chosen as the main model of evaluation for this thesis.

Performance on the binary datasplits did particularly well in comparison to the

multiclass. This has been measured by analyzing the Loss, F1-score and Accuracy,

as well as the Confusion matrices and additional insights have been gathered by

means of some visual analysis through Saliency maps and t-SNE visualizations.

Inspired by realworld Karate Kumite competitions the four perspective setup

was used to do a x out of four voting mechanism to have more robustness and

trust in the classification. This approach demonstrates, that leveraging multiple

perspectives could significantly improve accuracy and reduce errors, especially for
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binary classifiers.

To answer the research questions introduced in section 5.1, let us revisit them

here:

1. What are the key characteristics of a model capable of judging a fight, and

what types of data are essential for its development?

2. To what extent can Human Action Recognition serve as a substitute for human

karate judges in prominent scenarios?

3. What are the challenges and possibilities in using models to judge an entire

fight?

4. What are the technical requirements and limitations of using fight-judging

models in real-time applications?

5. How do human judges and AI-based judges compare in terms of accuracy,

fairness, and consistency in fight evaluation?

To answer the research question about how a model might be characterized,

which judges a fight, in item 1, we need to get more in depth about the gathered

insight through the results section.

First, consider the BRNN model. In general, it can be concluded that this model

was either not well-suited for this specific dataset, or the feature extraction process

failed to capture the underlying patterns required for effective learning. Several

factors could contribute to these challenges. For instance, the dataset itself may

lack sufficient discriminative features, resulting in poor class separability. Another

possibility is that the preprocessing or feature engineering steps did not effectively

preserve critical information or inadvertently introduced artifacts that misled the

model.

In contrast, the Xception model seems to generalize particularly well when using

it on the binary datasplits. When going over the line graphs, we can see how fast the

model generalizes in regard to the accuracy and F1-score, which can indicate that

the model is particularly well-suited to this type of problem. Further looking at the

loss can give us a hint that the dataset has not been fully exploited yet. Combining

this finding with the confusion matrices, we can still see enough examples of the

test set being wrongly classified. This behavior can also be further underlined by

the t-SNE. Although we can see the clustering being quite successful, there is still

a lot of space for improvement. Comparing the different binary datasplits together,

it is safe to say that the one which generalizes the best is the jogai. Curiously, it is

also the one with the most epochs used for training and the second least amount of
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datapoints. This may stem from the simplicity of what needs to be looked at when

evaluating a jogai. If a body part crosses a line, it is indicative of having a jogai.

In contrast, scoring a point takes much more consideration and is not as easy to

differentiate. Interestingly enough though, the saliency map shows that the pattern

the model focuses its attention on is not really the line, but both athletes, with a bit

more attention on the athlete being near the line. This behavior can be confirmed

by different videos. The same thing can be observed with different splits; the focus

starts by being more on the athlete at first but transfers to the action itself over

the course of the video.

When looking at the multiclass classifiers, the assumption that having such low

results stems from having not enough datapoints to support the generalization.

Having the dataset balanced might augment the distribution of the generalization,

but at the cost of having fewer datapoints per class. This behavior is supported by

looking at the t-SNE diagrams of these two datasplits and the loss as well as the

F1-score in the line graphs. Not expected, however, is the difficulty for the balanced

dataset to differentiate between the np class and the 1p class. It might come from

using punching techniques as connectors between actual scoring techniques or as

feints to confuse the opponent. As such, they are more commonly represented in

the np class than not-succeeded leg techniques, which have a 2p or 3p potential.

Going further and analyzing Table 4.4, we can see that the methodology of not

only using the base accuracy but using a ”x out of 4” voting improves the results

considerably. The multiclass classifiers gain the most by using this method but are

also not really representative in using the ”one out of four,” as having one out of

six classes represented correctly in one out of four perspectives does not make the

result reliable. Having it right in two out of four makes it more believable already.

For the binary classifiers, it makes them more robust, and they still profit, but not

in the same amount.

Therefore, to promote this methodology more, special attention should be given

in binary classifiers to the recall and precision metrics, as giving out points which

have not really been scored can be much worse than the other way around. As it

stands right now, both cases are equally represented.

With all this said, let us round back to the research questions. It is safe to say

that HAR models are advanced enough to be used as classifiers for different actions,

particularly in karate, addressing item 2. As it stands, there might be models bet-

ter suited to the task than the ones used. Specifically for real-time use, it might

be needed to use more lightweight models, like skeleton-based models such as the

BRNNs, referring to item 4. Still, to be completely sure, the dataset would need

to be extended to include more situations, in particular more datapoints for the
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underrepresented classes. Even more so when the intention to have a more holis-

tic approach exists, as certain fouls cannot be gathered consciously (like excessive

contact). From the standpoint of karate competitions, a lot more would need to be

introduced, for instance a way to judge a whole fight when post-analyzing the fight

or a way to detect when something of importance might happen in case of real-time

usage, addressing item 3.

In regard to the question if human and artificial judges are comparable (see

item 5), the outcome of the experiment lets us make an educated guess, but no

conclusive answer. As it stands, the multiclass classifier is by no means good enough

to even remotely be considered close to the capabilities of a human judge. The

binary classifiers, however, might come close to the actual human level, albeit not

exactly.

5.2 Future Research Directions and Improvements

To enhance performance and context capture, future research could focus on in-

corporating advanced architectures such as transformers, specifically models like

MViT, which are well-suited for processing video data. These models could pro-

vide improved attention mechanisms and contextual understanding. Additionally,

exploring models that avoid separable convolutions may help retain finer-grained

details within the data. Attention networks could also play a crucial role in captur-

ing relationships between features across sequences.

An essential improvement lies in expanding the dataset. Gathering more diverse

data, such as videos with spectators, longer fight sequences, and edge cases like fouls,

will better align the dataset with real-world scenarios. Including videos of varying

quality from different devices, mapped onto a time-graph for consistency across a

set of four perspectives, can improve data representation. Furthermore, alternative

labeling strategies and employing models specialized for detailed analysis could

enrich the insights gained from the data.

A transformative direction for future work involves shifting from analyzing indi-

vidual sequences to examining entire fight contexts. Developing a network trained

to segment fights into sequences dynamically, while accounting for variables like

interference from referees or spectators, could lead to a holistic understanding of

the events. Additionally, creating an AI system capable of serving as a ”referee” for

various sports contexts could provide a generalized framework for action recognition

and decision-making.

The responses to research questions have demonstrated the datasets utility,

paving the way for practical applications in sports analytics and automated referee-
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ing systems. These advancements highlight the potential for scaling the approach

to other domains. By addressing the outlined future directions, this research can

evolve to accommodate complex real-world scenarios, offering significant contribu-

tions to action recognition and decision-support systems.

Building upon the conclusions drawn in the previous section, future work should

focus on expanding the dataset with additional classes and scenarios to improve

model generalization. Developing more lightweight models optimized for real-time

performance remains a key priority, as mentioned in the conclusion. Furthermore,

incorporating advanced evaluation metrics such as interpretability and robustness

would strengthen the system’s applicability in diverse environments. These efforts

will not only extend the current work, but also ensure broader adoption across

similar sports and action recognition contexts.

47



Appendix A

Additional Material

A.1 Kata

Kata is a form or a choreography of techniques demonstrated by one athlete against

invisible opponents. When done in a competition, two athletes are pitted against

each other and each athlete demonstrates one Kata. These Katas are being eval-

uated with scores at the end of the demonstration and through that, compared.

The athlete with the better score gets promoted to the next round. The Proceed-

ing is like in many sports. There are various criteria by which the demonstrated

Kata will be evaluated on. Many styles exist from which athletes can choose Katas

from and usually every athlete performs Katas almost solely from its original style.

Only the few more popular of the existing and practiced styles are allowed on WKF

competitions.

A.2 Karate Terms

In Table A.1 is a short list of used Karate terms in the thesis.

Karate Term Description
Karateka Name for practitioners of karate.
Dojo Training hall where Karatekas train in.
Tatami The field where athlete compete on. Also the floor in a Dojo.
Aka The Karateka in a bout which wears red protectors.
Ao The Karateka in a bout which wears blue protectors.
Tori The attacking party in a boutsequence
Uke The defending party in a boutsequence.

Table A.1: Table with all the Karate terms used in the the thesis and a short
explaination of the term.
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A.3 Karate Referee setup

In Table A.2 there is a Referee setup as used in a WKF competition in case of a

full setup. The Main Referee, the four Judges, the Match supervisor and the two

Video Review Supervisors are the directly involved referees in a fight, while the

rest serve as supporting officials ensuring the smooth proceeding operation of the

competition.

Refereeing Panel Description

1x Main Referee Main referee, walking around the tatami, starting, stopping the
bout and interacting with the athletes.

4x Judges One Judge sitting on each corner in case of Kumite, indicating
points during a bout.

1x Match Super-
visor (Kansa)

Responsible for the correct proceeding during a bout. Indicates
when the main referee does oversee two or more judges indicating
a point or the time not being stopped when the main referee stops
the fight.

Score Supervisor Supervises the score and keeps a separate count from the
score/timekeeper.

2x Video Review
Supervisors

Responsible for the video review when asked for.

1x Tatami Man-
ager

Takes care of the whole tatami, including which referee is used for
which role in every fight.

3x Tatami Man-
ager Assistants

Assistants to the Tatami manager. Have the same responsibilites
as the Tatami Manager.

1x
Score/Timekeeper

Takes care of depicting the right score on the official screen and
stopping and starting the bout when the main referees indicates it.

2x Kansa Assis-
tants

Assistants to the Kansa and hold the same responsibilities.

2x Coach Super-
visors

Takes video review requests and indicates them to the Video review
Supervisors. Also responsible for the coaches in general during a
bout.

Table A.2: Complete Refereeing Panel in case of a complete setup in a WKF com-
petition.
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A.4 Karate Points

Figure A.1: Depiction of the different possibilities to score a point. One point by
delivering a punch to the head or torso, two points by delivering a kick to the torso,
three points by delivering a kick to the head or take the opponent to the ground
and executing a punching technique.[23]
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A.5 Karate Fouls

A complete list of fouls can be found in Table A.3. When talking about fouls,

warnings are an important component, which cannot be left out. As such, in the

table a few names are mentioned which stand for certain warnings. As a quick

overview, there are three warnings which can happen when any of the fouls do

happen in normal circumstances. We call them CHUI. If a competitor already

has three CHUIs, and still commits a regular foul, a HANSOKU CHUI gets

assigned, which is a warning for an incoming disqualification from the bout, if

the competitor is not careful. In case the competitor still commits a warning, he

gets disqualified from the bout by the main referee with a HANSOKU. If the

competitor does something hardly acceptable like ignoring referee instructions, he

can also get directly disqualified from the tournament by receiving a warning called

SHIKAKU.

A.6 Examples

Scenario 1: Assume Ao and Aka score at the same time with the exact same tech-

nique and both hit the head of the opponent. Two Judges indicate Aka, while one

judge indicates Ao, the point will officially be awarded to Aka by the main referee.

Scenario 2: The same situation as before happens again, but this time Ao is

slightly faster and is seen by more than two judges. Ao gets more indications than

Aka and will be awarded the point.

Scenario 3: The same situation as Scenario 2, but this time Ao does not fulfill

all the criteria, because the timing was all wrong. But aka still does everything as

it should. Aka will receive the point if seen by enough judges.

Scenario 4: Ao executes first a technique with the hand to the head of Aka and

follows up with a leg technique. If a judge first indicates the punching point, he

can not change the indication and cannot indicate the leg technique too. If one

judge indicates the punching point and a second one indicates the leg technique as

a point, then the higher of the two points gets awarded.

Scenario 5: If a third judge also sees the punching technique as a point in Sce-

nario 4, the punching technique is the final counting technique, as it gets overruled

by the majority.

In the example with the punch excess in section 2.1.2, the situation could also

unfold completely different. If Aka hits the head and the contact is too strong, but in

general would have been perfectly fine, but Ao instead of protecting and retreating

walks straight into the punch without so much as his guard up, he endangered

51



himself. The foul in this case would be issued to Ao and not Aka. To change things

up, let us say Aka still punches Ao, but Ao gets knocked down even tough Ao tried

to defend himself. Ao fortunately is not knocked out and can still fight, he did not

simulate or anything but he even bleeds now. The main referee may decide in such

situations to propose two or even three fouls of the same kind directly for this one

action or maybe even disqualify him directly if Ao had been knocked out for more

than 10 seconds.

A.7 Xception Architecture

Figure A.2: Xcpetion Architecture as shown in the paper of Francois Chollet[9]. In
has a Entry flow, a middle flow which is repeated eight times and and end flow. The
Architecture used for the experiments is the same, but combined with an additional
temporal dimension for videos.[24]
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Foul Description
Excessive con-
tact

Where contact is considered by the Referee to be too strong, but
does not diminish the Competitor’s chances of winning, a warning
(CHUI) may be given.

Contact causing
injury

Any technique that results in injury, unless caused by the recipient,
may result in a warning or penalty. Competitors must perform all
techniques with control and good form.

Observation af-
ter contact

The Referee must observe the injured Competitor until the bout
resumes, allowing adequate time for symptoms to develop or reveal
tactical exaggeration attempts.

Overreaction to
contact

A slight overreaction will receive CHUI; an obvious exaggeration
will result in HANSOKU CHUI; severe exaggeration may lead to
HANSOKU or SHIKKAKU.

Feigning an in-
jury

Any feigning of injury results in a minimum CHUI; obvious exag-
gerations may lead to HANSOKU CHUI or SHIKKAKU, especially
if feigning a valid scoring technique.

Contact to the
throat

Any contact to the throat, unless caused by the recipient’s fault,
must result in a warning or penalty.

Illegal throwing
techniques

Throws must not exceed hip level, and opponents must be held for
safe landing. Over-the-shoulder and ”sacrifice” throws are prohib-
ited.

Catching a kick Grabbing a kicking leg with both hands is permitted only for exe-
cuting a takedown while controlling the fall.

Grabbing the
legs

It is forbidden to grab or lift an opponent below the waist. Injuries
caused by such throws may result in warnings or penalties.

One-hand grab-
bing

Grabbing the opponent’s arm or Karategi with one hand is allowed
for throws or scoring techniques but not for continuous holding.

Holding on to
break a fall

Holding the opponent’s Karategi with one hand to break a fall is
permitted.

Exiting the com-
petition area
(JOGAI)

JOGAI occurs when a Competitor steps outside the competition
area unless forced by the opponent or exiting after scoring.

Self-
endangerment
(MUBOBI)

A warning or penalty is issued when a Competitor is hit or injured
due to their own negligence, such as turning their back or failing to
block.

Passivity Passivity occurs when neither Competitor attempts to score, or one
avoids scoring despite being behind. It is not penalized in the first
or last 15 seconds of a bout.

Avoiding com-
bat

Avoiding combat, especially during the last 15 seconds, results in
HANSOKU CHUI or loss of SENSHU. This includes time-wasting
or constant retreating.

Not following in-
structions

Refusal to follow the Referee’s instructions or losing temper results
in SHIKKAKU, which can be imposed before, during, or after the
bout.

Excessive cel-
ebration or
demonstrations

Excessive celebration, political, or religious demonstrations during
or after a bout are prohibited and may result in a fine.

Table A.3: Categories of fouls and their descriptions. Of relevance for this paper
is only the jogai. In the table the words in bold letters are names of warnings a
competitior can receive. The first to third warnings are called CHUI, the fourth
is called HANSOKU CHUI and the disqualifiacation from the bout is called HAN-
SOKU. Warnings in most of the time accumulate gradually. If it is not the case,
the competitor can receive a SHIKKAKU, which is a disqualification from the tour-
nament.
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