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Abstract

The aim of this thesis is to divide hydrological stations into groups of similar dis-

charge and temperature behaviour. The resulting groups can be used to compensate

for missing values and to improve computational time in a deep learning project,

that forecasts river temperatures. The groups are determined through an analysis

of the discharge and temperature data of 75 hydrological stations in Switzerland.

Each station is characterized by a feature vector derived from this data. The fea-

tures are divided into subsets of different size and on each of them a k-means and a

hierarchical clustering is performed. To determine the best cluster composition with

the optimal number of clusters, the clusterings are evaluated with the silhouette and

davies-bouldin score. With these scores the hierarchical clustering on the additional

features from both data-sets and the k-means clustering on all features from both

data-sets are recommended to be used in the deep learning project. Both of these

clusterings result in seven clusters, but with a different composition. Therefore the

results are not unequivocal but show a stable tendency in the composition of the

groups and should both be tested.
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Chapter 1

Introduction

This chapter motivates the need for hydrological modelling and presents a brief

overview of different modelling methods. It locates the work of B. Fankhauser [1]

in the field and explains the connection it has to the presented thesis. The specific

research questions are stated in section 1.2. Section 1.3 elaborates on how the

questions are approached and gives an outline of the thesis.

1.1 Broad Perspective on Hydrological Modelling

Rivers are of great importance for the natural environment and for human societies

all around the world. As human population we use rivers for freshwater supply,

to generate hydro power, to cool nuclear power stations and to irrigate plants in

agriculture and many more. From an ecological point of view, rivers are a complex

and diverse ecosystem, serving as a habitat for many species and are essential for

biodiversity. Some of these species are sensible to a change of water temperature.

This water temperature is impacted by natural factors, such as snow or glacier

melting, rainfall, ground water inflow and the rate of discharge. Through climate

change this coomplex system has changed [2]. Especially the regime shift in the

1980’s is significant and caused by anthropogenic and natural influences [3] .

Because the river temperature has a great impact on the ecosystem, the task of pre-

dicting water temperature is crucial. The research field that deals with these pre-

dictions is called hydrological modelling. There are many different approaches and

models for different use cases. In the field of data driven models, B. Fankhauser [1]

presents a novel approach, using graph based deep learning.
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1.2 Specific Research Questions

During the project of B. Fankhauser [1] the question arose if the measurement sta-

tions could be clustered into groups of similar behaviour, with respect to water

discharge and temperature. This clustering could be used to compensate for miss-

ing data of certain stations. This means that the model could be used in regions

where less data is accessible than in Switzerland.

The Swiss river network is well suited for such a clustering task, because a large

amount of data captures the behaviour of the river system very accurately, over

a long period of time. Additionally due to the geographic diversity, with alpine

regions and flat-lands, the Swiss river system consists of many different river types,

from large streams to small mountain creeks. Another advantage of the clustering

is that the neural network could be trained on the groups of stations. This would

reduce computational cost significantly in comparison to training the network on

every station separately.

The above described task states a classical machine learning clustering problem.

These Problems fall into the field of unsupervised learning, because the outcome of

the clustering is not predefined, in other words there is no ground truth. Specifically

we have to search for an unknown pattern in the discharge and temperature data.

In our case, in addition to not knowing how the clusters look like the number of

clusters is not predefined as well. This leads to the following research questions:

• How is a station characterized ?

• What is the optimal number of clusters ?

• How are the clusters composed?

1.3 Structural Roadmap to Clustering

Hydrological Stations

To answer the questions above, the following steps are taken. First the data is

explored in terms of periodicity and general behaviour. This leads to a representa-

tion of a typical yearly discharge and temperature course for every station. These

courses are then visually inspected and features are calculated based on this data,

to find a n-dimensional representation for all stations. We use this representation

to apply two widely used clustering algorithms to the problem. To determine what

the optimal number of clusters and the more fitting algorithm is, two clustering
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metrics are calculated. After this the results are presented and two clusterings are

recommended to be used in the deep learning project.
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Chapter 2

Feature Engineering through a

Visual Inspection

This chapter deals with the first research question: How is a station characterized?

In section 2.1 the data is analyzed and prepared for feature calculation, which is

explained in sections 2.2 and 2.3. In these sections the features are derived by

visually inspecting the data. This results in a characterization of each station with

38 features.

The data used for this task consists of measurements taken at 75 hydrological

stations in Switzerland, each characterized by a four digit unique ID number the

associated stations can be found in tables A.1 ans A.2. In figure 2.1 the locations of

all stations are shown on a map. The stations are distributed all around Switzerland

and cover most areas with flowing water. For every station an average discharge

rate and an average temperature is measured each day. These measurements were

taken over the course of 20 to 40 years from 1980 up to 2021. This data serves as

the foundation for the search for clusters.

The following practical part of the feature engineering was done using python as a

programming language with the libraries matplotlib.pyplot [4] for plotting the

data and pandas [5] for data analysis.

2.1 Data Preparation for Yearly Characteristics

Discharge data

In figure 2.2 the discharge course of a typical station is illustrated. Every day

the measured average discharge is denoted in m3/s. A periodic pattern is visible

with low water discharge in the winter months and increased discharge during the

summer half year. This pattern occurs for many stations in the given data-set. To
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Figure 2.1: Locations of the measurement stations in Switzerland [6].

Figure 2.2: The course of average water discharge over a 10 years period for station
no. 2019.
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(a) Example year (b) Averaged by day of the year

Figure 2.3: The course of water discharge for station no. 2009.

extract characteristic information of the given stations it makes sense to look at

the discharge regime. To get the typical behaviour of the rivers discharge the data

was averaged by the day of the year. The resulting discharge curve is shown in

figure 2.3 on the right. On the left the original data of the year 2000 is plotted.

In comparison to an arbitrary year the average years discharge course is smoother,

this means extreme events do not effect the curve as much as in the original data.

The resulting curve still has some fluctuations which could lead to problems when

calculating sensitive features. For example if the day of the maximum is defined

by an extreme event rather than the typical day of the year when the discharge is

generally high.

To rule out such effects that can be triggered by outliers, the data runs through one

more step of data preparation. In this step a window averaging function with the

length of 15 days is applied to the averaged data [7]. The function used to calculate

this window averaging function is displayed in the following code fragment.

def get_running_mean_df(station_number, window, flow_temp_data, Wert):

daily_averaged_data = get_daily_averaged_df(station_number, flow_temp_data)

# add the last days of the year to account for periodicity.

expanded_data =

daily_averaged_data.iloc[-window+1:].append(daily_averaged_data)↪→

expanded_data =

expanded_data.rolling(window).mean().dropna().reset_index(drop=True)↪→

return expanded_data

Notice that the periodicity of the year is taken into account in the fourth line such

that there still are 365 values per year. This is important as we will see in section 3.1

where the periodicity of the year has an effect on the normalization of the features.
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(a) Window length of 5 days (b) Window length of 15 days

Figure 2.4: The course of the window averaged discharge of station no. 2019.

The result of the window averaging function is shown in figure 2.4. In figure 2.4a it

is visible that with a window length if five days the curve still has small fluctuations.

In contrast when the window length is set to 15 days the curve is smooth and better

suited for the calculation of fluctuation sensitive features, as can be seen in figure

2.4b. Therefore we will use a window length of 15 days. This prepared discharge

data for all stations is displayed in figure 2.5b.

Note that some stations do not follow this periodic pattern. This can be caused

by effects such as water release from dams or a short-time increase in rainfall. Rivers

with a lower average dicharge are far more sensitive to such events. We will take

this behaviour into account in section 2.3 with a feature called similarity to mean.

With this feature we will distinguish between periodic and aperiodic stations. In

figure 2.9 an aperiodic discharge curve is shown.

Temperature data

Regarding the temperature data the same steps for data preparation are applied

as for the discharge data. For a review of the steps applied to the temperature

data see Appendix A figures A.1, A.2 and A.3. It is to note that the temperature

data is much less diverse than the discharge data as can be seen in figure 2.5.

Almost all curves follow the typical temperature course with low temperature in

the winter months and high temperature in the summer, with a continuous increase

and decrease in between. This can be seen in figure 2.5a, where all the stations

temperature data is shown. Additionally we see that no aperiodic temperature

courses occur.
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(a) Temperature (b) Discharge

Figure 2.5: The prepared data of all 75 stations.

2.2 Definition of Basic Features

The so called basic features are basic statistical values calculated on the window

averaged data described in section 2.1. In the following two sections those basic

features are motivated by examples and explained.

2.2.1 Discharge Data

Considering the discharge data, first we show how the basic features can contribute

to a distinction between different stations. In figure 2.6 four of the basic features

are illustrated on discharge curves of two stations. In figure 2.6 it is visible the

maximum, minimum, mean and median make the two stations distinguishable.

In addition to the four displayed features two more features are counted to the basic

features group. Namely the standard deviation and the range of the data. This

results in six basic features on the discharge data. Table 2.1 shows an overview over

the basic features.

2.2.2 Temperature Data

Because the course of the temperature looks similar to a typical discharge curve,

as can be seen in figure 2.5, it makes sense to use the same basic features as are

used for the discharge data-set. Therefore the six basic features are added on the

temperature dataset as well.
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(a) Station no. 2606 (b) Station no. 2030

Figure 2.6: Prepared discharge data with four basic features plotted as indicated
by the labels.

Basic features

Maximum The maximum value of the prepared data
Minimum The minimum value of the prepared data
Mean The average value of the prepared data
Median The median value of the prepared data
Standard Deviation standard deviation of prepared data
Range Range between max and min of the prepared data

Table 2.1: Basic features for prepared data, calculated on the discharge and tem-
perature data-set.

9



(a) Station 2606 (b) Station 2473

Figure 2.7: Prepared discharge data with four basic features plotted as indicated
by the labels.

2.3 Definition of Additional Features

2.3.1 Discharge Data

Some stations have different characteristics but their values for the basic features

are similar. In figure 2.7 we see that the two curves have three similar basic features

although the discharge behaves different. For example the curve on the left has more

than one peak and crosses the mean multiple times, where as the station plotted on

the left has one very sharp peak and crosses the mean twice. To capture these and

other characteristic behaviour, additional features are calculated. They are listed

in table 2.2. For the ones that are not trivial a more detailed description is given

in the following subsections.

Number of peaks

The feature number of peaks counts the number of local maxima of a discharge

curve. To ignore small fluctuations a minimal distance between two peaks is set to be

equal to 7 days. This means if two peaks are recorded within one week, only one of

them is counted. This feature allows to make a clear distinction between curves, like

the ones in figure 2.7. To implement this feature the method signal.find_peaks()

from the scipy library [8] was used with the parameter distance = 7.

Slope

The two features: minimal slope and maximal slope are derived from the same

calculations. Based on the prepared data the slope of the curve is calculated from

two data points that are five days apart. From all these approximated slopes the

smallest and the biggest slopes are taken as a feature. The difference of 5 days is

10



Additional features

Time above average Number of days above the average of a
stations data

Day of maximum Day of the year the maximum is reached
Day of minimum Day of the year the minimum is reached
Number of peaks Number of peaks
Minimal slope Slope measured for two days five days apart
Maximal slope Slope measured for two days five days apart

Day upward crossing mean Day of the year the mean is first crossed
after the minimum

Day downward crossing mean Day of the year the mean is first crossed
after the maximum

Day upward crossing high quartile Day of the year the upper quartile boundary
is first crossed in after the minimum

Day downward crossing high quartile Day of the year the upper quartile boundary
is first crossed after the maximum

Day upward crossing low quartile Day of the year the lower quartile boundary
is first crossed after the minimum

Day downward crossing low quartile Day of the year the lower quartile boundary
is first crossed after the maximum

Similarity to mean Added up differences from every years data
and the mean year

Table 2.2: Additional features for prepared data, calculated on the discharge and
temperature data-set.
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chosen to get a slope that is consistent over multiple days and therefore results in

a trend, rather than a maximum steepness that rarely occurs.

Day of Crossing a Given Value

To characterize the discharge regime more accurately another set of features called

the ”day of the year” features are added. Their values are the day of the year a

given value is crossed in upward or downward direction. They are used o distinguish

between curves, like the ones displayed in figure 2.7. The new added features consist

of two features for crossing the mean, the high and low quartile. Resulting in six

more features. They are enlisted in table 2.2.

The quartiles are calculated in the following way:

low quartile = min+
max−min

4

and

high quartile = max− max−min

4

To avoid ambiguity, due to multiple crossings of the given value a condition is

formulated. To take the periodicity of the year into account and therefore eliminate

an arbitrary cut in the year, the crossings were chosen with respect to the minimum

or the maximum of the year. For the downward crossing feature this means that

the first crossing of the value after the maximum is taken. For the upward crossing

features the first crossing after the minimum is taken. Through this choice the

features are clearly defined.

Similarity to mean

One more additional feature is defined called the similarity to mean feature. This

feature is introduced to take the variability of the data in comparison to the mean

year into account. This means how similar the curve behaves in comparison to an

average year. This feature is introduced especially to differentiate between periodic

and aperiodic courses. In figure 2.9 such an aperiodic course is shown. The feature

is calculated in the following way:

similarity to mean =

year∑ day∑
mean dischargeday − dischargeyearday

12



(a) Station 2473

(b) Station 2606

Figure 2.8: The discharge curves are shown with the calculated ”day of the year”
features. The solid red line indicates the day of crossing the mean, the dotted blue
line the crossing of the low quartileand the dot-dashed green line the crossing of the
high quartile.
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Figure 2.9: The course of average water discharge per second over a 10 years period
of station no. 2374.

2.3.2 Temperature Data

The features are applied to the temperature data. This can be done because the

temperature curves look similar to the discharge curves. This results in 19 features

derived from the temperature data-set as well as 19 features derived from the dis-

charge data-set. These 19 features are further divided into basic and additional

features as is shown in tables 2.1 and 2.2. This results in an overall characterization

of every station with 38 features.
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Chapter 3

Clustering of Hydrological

Stations

The goal of this chapter is to give a detailed explanation, on how the clustering

is performed. In section 3.1 the specifics of how the features are normalized and

preprocessed is described. Then in section 3.2 we elaborate on the used clustering

algorithms and a description of the used evaluation metrics is presented in section

3.3. To visualize the clusters the features have to be mapped to two dimensions,

therefore the multi dimensional scaling representation is introduced in section 4.1.

3.1 Preprocessing of the Features

Goal of the preprocessing is to prepare the features in a way such that they are most

useful for the used machine learning algorithms. Due to the nature of the different

features the preprocessing is done in two different ways. This so called featurewise

normalization should lead to a better clustering performance in comparison to the

use of one normalization method for all features [9]. In this case the ”day of the

year” features are normalized another way than the other statistical features.

3.1.1 Features Based on the Day of the Year

The ”day of the year” features take on integer values between 1 and 365, namely

the day of the year a given criteria is fulfilled. This representation of the data

does not fully cover the reality, because it ignores the periodical repetition of the

year and the predefined cut between December and January is irrelevant for our

characterization. For example if Station A has its minimum at the 10th of January

and station B has its minimum at the 20th of December they are considered very

different by the calculated feature, but their behaviour is similar. To avoid this
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Figure 3.1: Illustration of the normalization conversion from linear to periodic year.

effect another representation of the data is introduced.

An good way in science to describe periodic patterns is to use the trigonometric

functions sine and cosine. With them we will generate two new features that replace

each already existing ”day of the year” feature. The principle used to calculate the

circular features is illustrated in figure 3.1.The illustration shows that instead of

looking at a year as a straight line one can view a year as a circle in which each

day is characterized by two parameters, specifically the sine and cosine. The exact

calculations are shown in the following equations.

sin feat = sin(
day fature · 2π

365
)

cos feat = cos(
day fature · 2π

365
)

Through this calculations every ”day of the year” feature is mapped to a sine and

cosine value. This results in a circular representation of the year as is shown in

figure 3.1. The distance between the points on the circle (denoted with the purple

arrow) is a accurate measurement of their the similarity, independent of the years

beginning. Because the sine and cosine only take on values in the range of 0 to 1

this also concludes the normalization step.

3.1.2 Statistical Features

All the other features have to be normalized as well because they are measured on

different scales and are distributed differently. As a requirement we get that the

resulting normalized features should land in the approximate range from -1 to 1,

because this is the range that the ”day of the year” features are mapped to and

they should be evenly weighted. To achieve this the class RobustScalar from the

sklearn.preprocessing is used to scale the data. This normalization method

is chosen because it ignores outliers, which occured in some features. Therefore
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Feature subsets

Basic features temperature
Additional features temperature
All features temperature
Basic features discharge
Additional features discharge
All features discharge
Basic features both
Additional features both
All features both

Table 3.1: List of all feature subsets that are used for the clustering basic additional
and all refer to the used features. Discharge, temperature and both indicate which
data-sets have been used for the calcualtions of the features.

through empirical evaluation it turned out that the best quartile range for the

RobustScalar() constructor would be quantile_range = (5,95).

3.2 Application of Clustering Algorithms

To cluster the stations we make use of two different machine learning clustering

algorithms that operate on the given features. The clustering is done on different

feature subsets. As described in section 2 the features are separated in basic and

additional features for the discharge and temperature data. This results in four

disjoint feature subsets. The clustering algorithms are applied to the feature subsets

enlisted in table 3.1 separately.

On these subsets of features the clustering is performed with a k-means and a

hierarchical clustering algorithm. Because the number of clusters is unknown, a

clustering on each subset results in multiple clusterings with different numbers of

clusters.

3.2.1 K-Means

The first of the two clustering methods is the k-means algorithm. It is a widely

used clustering technique based on the concept of finding cluster centroids in an

iterative manner. Because of this centroid based functionality the clusters boarders

are spherical and not flexible at all. This method is well applicable to general pur-

pose problems, where the distribution of feature values is unknown, as is the case

for ur features.

Key characteristics of the algorithm are that the number of cluster has to be fixed
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before the procedure is started and that the algorithm always converges to a local

minima. This leads to an optimal solution in a given interval, but it does not have

to be the best solution overall. This is due to the random initialisation of the cluster

centroids [10].

To take this characteristics into account the implementation used for our problem,

from the Class sklearn.clustering.KMeans [11] can be executed with certain pa-

rameters. To reduce the impact of the randomly chosen centroids the the parameter

init ='k-means++' is set. This leads to the use of a slightly different version of

the k-means algorithm which makes it less dependent on the initialization [12]. In

addition to that the number of times the algorithm is run is set to n_init = 10.

This means the algorithm is run ten times and the best result in terms of inertia is

chosen [11]. In this way the influence the initialization has is reduced to a minimum.

Another important parameter that has to be fixed is the number of clusters. As

one does not know in advance what number is optimal for the given problem, the

algorithm is run 40 times with n_clusters = n with n = 1, ..., 40.

3.2.2 Hierarchical

The second method is an agglomerative hierarchical clustering algorithm. It uses

a bottom up approach, where each station starts in its own cluster and similar

clusters are iteratively merged together. By the end resulting in one big cluster.

This method can be stopped at any point and therefore the number of clusters

can be chosen after performing the clustering. Because of this iterative merging

approach the clusters can have an arbitrary shape. This is an important difference

to the k-means algorithm. Additionally, when using the correct linkage parame-

ter the mathematical goal of the algorithm is exactly the same as the one for the

k-means. This makes the algorithms ideal to compare and to cross reference the

clusterings [13].

We use the class sklearn.cluster.AgglomerativeClustering for implementa-

tion, which provides multiple agglomerative clustering options. the most impor-

tant parameter is the linkage criteria that determines the metric that is chosen for

merging two clusters together. For our application it is crucial to use the option

linkage = 'ward' [14]. This linkage version minimizes the sum of squared dif-

ferences in all clusters. This is the same goal the k-means algorithm pursues and

therefore the results may be compared in a meaningful way [11].
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3.3 Evaluation Metrics for Clustering

In section 3.2 we have defined how the clustering is performed and explained which

feature subsets are used. This results in nine subsets, each clustered with the k-

means and hierarcical approach. To evaluate these 18 clusterings the silhouette and

davies-bouldin scores are calculated. These two evaluation metrics are presented

in the following subsections. They both quantify how well the clusters are defined,

based on the given feature subset.

3.3.1 Silhouette Score

The silhouette score is the mean silhouette coefficient of the clusters. The coefficient

falls into a range between minus one and one, with one representing perfect cluster-

ing and minus one, very bad clustering. The coefficient depends on the intra-cluster

mean distance, and the mean minimal distance to the next cluster. Therefore it

takes into account how coherent the cluster is internally as well as how well sepa-

rated it is from other clusters. Through the averaging of the inter-cluster distance

the silhouette score takes an average scenario into account, this means that if for

example only two clusters are not well separated the score would only be slightly

worse and not very bad if the other clusters are separated well [15]. This is a key

difference to the davies-bouldin score.

3.3.2 Davies-Bouldin Score

The davies-bouldin score measures the quality of clustering as well. It differs from

the silhouette score in the characterization of the inter-cluster separation. The dif-

ference is that it not only considers the closest cluster but a combination of a close

cluster with a bad intra-cluster mean distance. Therefore if clusters are mixed the

davies-bouldin score detects this behaviour. The davies-bouldin score is limited to

positive values without an upper limit. With a value close to zero indicating a good

clustering [16].

3.4 Multidimensional Scaling

With the scores discussed in 3.3 we get a quantitative insight in the quality of

clustering but no visualization of the results. Through the feature engineering the

stations are represented in n-dimensional feature space. To illustrate the relations
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between the stations the dimensions have to be reduced. One way of doing that is

multidimensional scaling (MDS). In this case the sklearn.manifold.MDS class is

used to achieve this dimension reduction. It is important to note that to preserve

the distances between the stations, metric MDS is used. For the implementation

this concludes in using the default constructor with mds = MDS(metric = True).

The result of this representation for the different feature subsets is shown in figure

4.1. This representation is only used to illustrate the data and not used for any

quantitative evaluation but rather to compare the visual image to the calculated

values.
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Chapter 4

Clustering Results

The results1 of the clustering and the associated clustering scores are extensive.

The number of clusters considered is reduced to the range of 4 to 15. A minimum

of four clusters is chosen because two or three clusters would not represent the

variety of different stations in an accurate way. The maximum of fifteen clusters

was chosen because an average number of stations per cluster should at least be

five stations. Otherwise the generalization that we want to achieve would not be of

any use, because the clustering would consist of many special cases.

In section 4.1 the resulting MDS representations for the different feature subsets

are presented. This representations is used to illustrate the clusterings in section

4.2.

4.1 MDS-Representation of the Stations

For a broad overview of all the feature subsets from table 3.1 the MDS represen-

tations are shown in figure 4.1. In figure 4.1a the results for the discharge subsets,

in figure 4.1b the results for the temperature subsets and in 4.1c the results for the

subsets based on both data-sets are plotted.

4.2 Evaluation of Clustering Metrics

To get an overview over all the clustering scores, and to be able to extract valuable

information, the data is presented in the following way: For every combination of

clustering method, data-set and subset the best of the silhouette and the davies-

bouldin score is selected and the according number of cluster is retrieved. These

results are presented in table 4.1 for the davies-bouldin score and in table 4.2 for

1The code and the results are available at: https://github.com/JanZurb/

Clustering-of-Hydrological-Stations
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(a) Discharge data

(b) Temperature data

(c) Discharge and temperature data

Figure 4.1: The MDS representation of all feature subsets. From left to right basic,
additional and all features.
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Clustering method Data-set Subset DB score Num. clusters

hierarchical both basic 0.724 12
hierarchical both additional 0.453 7
hierarchical both all 1.047 10
k-means both basic 0.653 12
k-means both additional 0.501 6
k-means both all 1.009 7

hierarchical discharge basic 0.351 15
hierarchical discharge additional 0.473 6
hierarchical discharge all 0.868 10
k-means discharge basic 0.364 14
k-means discharge additional 0.535 5
k-means discharge all 0.938 14
hierarchical temp basic 0.697 15
hierarchical temp additional 0.517 4
hierarchical temp all 0.985 15
k-means temp basic 0.666 10
k-means temp additional 0.548 4
k-means temp all 0.548 4

Table 4.1: The best davies-bouldin scores with respective number of clusters, for
each combination of data-set, feature subset and clustering method are shown. A
lower davies-bouldin score indicates a better clustering. The grey values are best
scores on a given subset.

the silhouette score.

Highlighted in grey are: The best score overall, the best score of a clustering that

makes use of the temperature and the discharge data-set and the best score from

the clusterings on all features from both datasets. These clusterings are discussed

in sections 4.2.1,4.2.2 and 4.2.3.

4.2.1 Best Scores on Arbitrary Feature Subset

The best silhouette score overall is achieved by performing the k-means clustering

on the basic features of the discharge data. This clustering results in four clusters.

In figure 4.2a the MDS representation of these features is shown with the clusters

indicated by colour. It shows the data in four groups of different size. One very big

group and three smaller groups. The smallest group consists of three members.

The best davies-bouldin score overall was achieved on the basic discharge features

as well but clustered with a hierarchical approach and resulting in 15 clusters. In

figure 4.2b the 15 groups are displayed. Fourteen of the groups consist of three or

less stations and one group consists of more than half the stations.
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Clustering method Data-set Subset Sil. score Num. clusters

hierarchical both basic 0.397 4
hierarchical both additional 0.602 7
hierarchical both all 0.297 4
k-means both basic 0.414 4
k-means both additional 0.601 6
k-means both all 0.288 4

hierarchical discharge basic 0.728 4
hierarchical discharge additional 0.643 6
hierarchical discharge all 0.374 4
k-means discharge basic 0.742 4
k-means discharge additional 0.642 5
k-means discharge all 0.414 4
hierarchical temp basic 0.36 15
hierarchical temp additional 0.37 5
hierarchical temp all 0.225 12
k-means temp basic 0.421 4
k-means temp additional 0.384 5
k-means temp all 0.384 5

Table 4.2: The best silhouette scores with the respective number of clusters, for
each combination of data-set, feature subset and clustering method are shown. A
silhouette score close to one indicates a good clustering. The grey values are best
scores on a given subset.
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(a) K-means clustering resulting in the best
silhouette score.

(b) Hierarchical clustering resulting in the
best davies-bouldin score.

Figure 4.2: Illustration of the MDS representation of the clustering resulting from
the basic features discharge data-set.

If we examine the MDS representation visually we see that approximately two thirds

of the station belong to the same cluster independent of the clustering algorithm

and the other stations are divided in three groups for the k-means algorithm or in

14 groups for the hierarchical method.

4.2.2 Best Scores on Combined Temperature and Discharge

Subset

For this evaluation, we consider the feature subsets that contain discharge and

temperature data. In the tables 4.2 and 4.1 these are the entries above the horizontal

line. The best davies-bouldin and silhouette score are achieved by the hierarchical

algorithm performed on the ”additional features both” feature subset. From figure

4.3a where the resulting clusters are shown it can be seen that, the clusters are of

similar size, with the exception of two groups only consisting of one station and

another group consisting of three stations.

From table 4.2 we derive that the silhouette score of the k-means algorithm on the

same feature subset has only a 1% worse score than the considered hierarchical

clustering, but results in six clusters. The result of this clustering is shown in figure

4.3b. It is visible that one station has changed the cluster affiliation. The one

represented on the far upper left in figure 4.3a in the MDS representation. All the

other clusters are exactly the same as with the hierarchical algorithm.
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(a) Hierarchical algorithm resulting in the
best davies-bouldin and silhouette score.

(b) K-means algorithm resulting in the sec-
ond best silhouette score.

Figure 4.3: Illustration of the MDS representation of the clustering resulting from
the additonal features both data-set.

4.2.3 Best Scores on All Features

The scores on all features from both data-sets are among the worst three from all the

subsets that are clustered. The best silhouette score is achieved by the hierarchical

clustering and results in 4 clusters, see figure 4.4b. The associated clusters are

of similar size except one cluster that consists of three stations. The best davies-

bouldin score is achieved by the k-means clustering and results in seven clusters,

see figure 4.4b. In this case the clusters are of similar size with the exception of the

same three stations, now split in a cluster of one and two stations.

Because the two best scores do not result in the same number of clusters a direct

comparison between the two best scores is difficult. Therefore in figure 4.5 the

results of the clustering with the other algorithm is presented. If we compare the

clusterings resulting in the best scores (figure 4.4)with the clusterings done on the

same data-set but with the other method (figure 4.5)we see that for the version with

4 clusters we get different clusters, whereas for the one with 7 clusters the result is

the same with the exception of four stations that change clusters.

4.3 Geographic Location of Clusters

To further investigate the clustering, the clusters are plotted on a map with the Swiss

river network. In figure 4.6a the clustering achieved on the additional features from

both data-sets is shown and in figure 4.6b the clustering achieved on all features
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(a) Hierarchical algorithm resulting in the
best silhouette score.

(b) K-meanss algorithm resulting in the best
davies-bouldin score.

Figure 4.4: Illustration of the MDS representation of the clustering resulting from
the all features both data-set.

(a) K-meanss clustering resulting in four
clusters.

(b) Hierarchical clustering resulting in seven
clusters.

Figure 4.5: Clusterings with other clustering algorithm but same number of clusters
as in figure 4.4 on all features both data-set.
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(a) Clustering with seven clusters on the ad-
ditional both feature subset.

(b) Clustering with seven clusters on the all
both feature subset.

Figure 4.6: Illustration of the clusters on the map.

from both data-sets is shown, both resulting in seven clusters.
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Chapter 5

Conclusions and Future Work

In the following chapter the results presented in chapter 4are interpreted. The

chapter is structured by focusing on the previously formulated questions in chapter

1. How do we characterize each station? What is the best number of clusters? And

how are the clusters composed? In addition to the results further questions that

arose during the thesis are stated in section 5.3.

5.1 Characterization of the Stations

The question how each station is characterized is answered in chapter 2. In general

each station is characterized by 38 features. Composed of 6 basic features and 13

additional features, that are calculated on the discharge and temperature data-set.

This set of features is divided into subsets, as described in table 3.1. To get some in-

sight into the characterization we analyze the resulting MDS representations shown

in figure 4.1. It is noticeable that in figure 4.1a 80% of the stations are close to-

gether and therefore considered similar and 20% of the stations are more spread

out and therefore clearly different. From this we conclude that the basic features

on the discharge data are able to characterize the 20% well but for 80% of the sta-

tions the basic features are unable to distinguish between them. This indicates that

considering the basic flow features only, does not result in a good characterization.

The MDS representation for the ”additional feature both” subset, shown in

figure 4.1c stands out as well. It is the only representation with visible clusters.

Therefore this subset should lead to a well defined clustering which is evaluated in

section 5.2. It is remarkable that these clusters occur because whether the additional

features on the discharge data-set, nor the additional features on the temperature

data-set resulted in such a formation. Only the combination of the two sets is able
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to reveal this pattern. From this we conclude that there is a dependency between

the additional discharge and temperature features.

It is interesting to look at the resulting MDS representation for all features on

both data-sets shown in figure 4.1c. In comparison to the clustering that resulted

from the additional features the clear structure is not present. Therefore through

consideration of the basic features the clear cluster structure is lost. What this

means is difficult to say but in section 5.2 the resulting clustering is discussed fur-

ther.

On a more general note it is important to keep in mind that the more features are

taken into account the more detailed a station is described. On the other hand

through too many features the resulting representation might be dominated by

noisy features, although they are calculated carfully. In addition to that the results

of this interpretation have to be taken with caution. Because it is a mapping from

multidimensional data into two dimensions. Therefore much of the original infor-

mation is lost and no definite conclusions can be made from this visual evaluation.

5.2 Recommended Clusterings

After the visual discussion of the subset we will discuss the numerical results from

the clustering evaluation. Goal of the experiment is to find a clustering on a subset

of features that characterizes the stations well and results in good scores. For this

reason we further investigate the achieved best scores on the subsets and discuss

whether the resulting clustering is reasonable to use further. In section 3.3 the

best scores achieved on different subsets with different clustering algorithms are

presented. We will have a look at three resulting clusterings in more detail.

Best Clustering Scores overall

As seen in section 4.2.1 the best silhouette and davies-bouldin score is achieved by

performing a k-means clustering on the basic features discharge subset. As can be

seen in figure 4.2 the two best scores result 4 and 15 clusters. This deviation shows

that the clusters are not well defined. Additionally to that, because only 6 features

are considered the stations are characterized insufficiently, as already discussed in

section 5.1. In both cases the clustering results in one very big cluster, this indicates

as well that for many stations although they are different they are put in the same

cluster. Therefore this clustering is not recommended for further use.
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Best Clustering Scores from Both Data-sets

To take more features from both data-sets into consideration the best scores on

a combined temperature and discharge feature subset is considered. As can be

seen in section 4.2.2, the best davies-bouldin and silhouette score are achieved by

performing a hierarchical clustering on the additional feature set from both data-

sets. The result was in both cases the same clustering with seven clusters. This

can be verified in figure 4.3a. That the best scores result in the same clustering is

an indicator for well defined clusters. To investigate this stability further the result

of the k-means clustering, resulting in the second best silhouette score is shown in

figure 4.3b. There we see that the number of clusters has changed to six but the

cluster composition is the same apart from one station. For the details see section

4.2.2. This leads to the conclusion that the clustering is stable with respect to the

clustering method. For these reasons the hierarchical clustering on this subset is

recommended for further use. The cluster assignment are displayed in table B.2.

Best Clustering Scores on all Features from Both Data-sets

As stated in section 5.1 the more features that are considered the more detailed

the characterization of the stations is. Therefore the best scores on all features

are evaluated as well. Generally speaking if we look at the four resulting scores

of these clusterings their silhouette and davies-bouldin scores are among the five

worst scores overall. This indicates, that the clusters found are not separated well.

In table 4.1 we see that the best davies-bouldin score is achieved when using the k-

means algorithm and results in seven clusters. On the other hand the best silhouette

score is achieved when using the hierarchical clustering and results in four clusters as

can be seen in table 4.2. To determine which of the clusterings is more meaningful

we look at the resulting clusterings that were achieved with the other clustering

methods, see figure 4.5. By comparing these results with the results from the

best scores in figure 4.4 we see that for the clustering resulting in 4 groups the

clusters composition changes significantly. In comparison the clustering with the

seven groups is stable with about 10% of the stations changing clusters. Therefore

the clustering with the seven stations can be recommended for further use as well,

although not having a good score the additional consideration of the basic features

can contribute to a better clustering. Because the stations are characterized in more

detail as is described in section 5.1. The resulting cluster assignment are displayed

in table B.1.
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Comparison of the Recommended Clusterings

Both recommended clusterings result in seven clusters. It is of interest to compare

these clusterings to see if they result in the same clusters or if there are differences.

In figure 4.6 the clusters are plotted in colour on a map of Switzerland. The green,

brown and yellow group are very similar in both cases. The brown and green group

follow a geographic separation along the north-east axis. The other four groups are

composed differently and there is no direct mapping between them. Therefore it

makes sense to consider both clusterings because the detailed composition differs

and therefore might impact the performance of the model significantly. It can be

concluded that for three of the seven groups the cluster assignments are stable and

therefore these groups are characterized well.

5.3 Further Research

It remains to be stated that the task we confronted ourselves with is one with no

guaranteed outcome, the work with real-life data, combined with an approach that

is highly dependent on the used features, is difficult to evaluate because there is

no ground truth. Only the testing of the clusters by applying them to the neural

network will show if the clustering is of any use. Some further questions occurred

during the thesis. For one, which features are responsible for a good clustering?

The question was in some ways already dealt with by dividing the set of features

into different subsets, but a more systematic approach would be useful to leave out

unnecessary features and get an insight into which features contribute to a well

defined clustering. An option to achieve that would be a principal component anal-

ysis.

Considering the features themselves, most of them are engineered for periodic data

courses. But as already mentioned in section 2.3, some discharge curves have an

aperiodic behaviour and do not follow this pattern. To characterize these curves

better specific features should be engineered.

A more general question is, if the feature engineering approach is well suited

for the analysis of time series data? Because the curves look very similar especially

for the temperature data it is difficult to find features that result in clear groups

and not only in a even distribution. An alternative option could be to construct a

distance matrix with the help of dynamic time warping. This would lead to a less

handcrafted solution for the problem.
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Appendix A

Feature Engineering

Figure A.1: The course of average temperature over a 10 years period for station
no. 2019.
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(a) Example year (b) Averaged by the day of the year

Figure A.2: The course of water temperature for station no. 2019

(a) window length of 5 days (b) window length of 15 days

Figure A.3: The course of the window averaged temperature course of station 2019.
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ID no. Name

2009 Rhône-Porte du Scex
2016 Aare-Brugg
2018 Reuss-Mellingen
2019 Aare-Brienzwiler
2029 Aare-Brügg, Aegerten
2030 Aare-Thun
2033 Vorderrhein-Ilanz
2034 Broye-Payerne, Caserne d’aviation
2044 Thur-Andelfingen
2056 Reuss-Seedorf
2070 Emme-Emmenmatt
2084 Muota-Ingenbohl
2085 Aare-Hagneck
2091 Rhein-Rheinfelden, Messstation
2104 Linth-Weesen, Biäsche
2106 Birs-Münchenstein, Hofmatt
2109 Lütschine-Gsteig
2112 Sitter-Appenzell
2113 Aare-Felsenau, K.W. Klingnau
2126 Murg-Wängi
2130 Rhein (Oberwasser)-Laufenburg
2135 Aare-Bern, Schönau
2143 Rhein-Rekingen
2150 Landquart-Felsenbach
2152 Reuss-Luzern, Geissmattbrücke
2159 Gürbe-Belp, Mülimatt
2161 Massa-Blatten bei Naters
2167 Tresa-Ponte Tresa, Rocchetta
2170 Arve-Genève, Bout du Monde
2174 Rhône-Chancy, Aux Ripes
2179 Sense-Thörishaus, Sensematt
2210 Doubs-Ocourt
2232 Allenbach-Adelboden
2243 Limmat-Baden, Limmatpromenade
2256 Rosegbach-Pontresina
2269 Lonza-Blatten
2276 Grosstalbach-Isenthal
2282 Sperbelgraben-Wasen, Kurzeneialp

Table A.1: Station ID numbers with the station names.
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ID no. Name

2288 Rhein-Neuhausen, Fluringerbrücke
2307 Suze-Sonceboz
2308 Goldach-Goldach, Bleiche
2327 Dischmabach-Davos, Kriegsmatte
2343 Langeten-Huttwil, Häberenbad
2347 Riale di Roggiasca-Roveredo, Bacino di compenso
2351 Vispa-Visp
2356 Riale di Calneggia-Cavergno, Pontit
2366 Poschiavino-La Rösa
2369 Mentue-Yvonand, La Mauguettaz
2372 Linth-Mollis, Linthbrücke
2374 Necker-Mogelsberg, Aachsäge
2386 Murg-Frauenfeld
2392 Rhein (Oberwasser)-Rheinau
2410 Liechtensteiner Binnenkanal-Ruggell
2414 Rietholzbach-Mosnang, Rietholz
2415 Glatt-Rheinsfelden
2432 Venoge-Ecublens, Les Bois
2433 Aubonne-Allaman, Le Coulet
2434 Dünnern-Olten, Hammermühle
2457 Aare-Ringgenberg, Goldswil
2462 Inn-S-chanf
2467 Saane-Gümmenen
2473 Rhein-Diepoldsau, Rietbrücke
2481 Engelberger Aa-Buochs, Flugplatz
2485 Allaine-Boncourt, Frontière
2493 Promenthouse-Gland, Route Suisse
2500 Worble-Ittigen
2604 Biber-Biberbrugg
2606 Rhône-Genève, Halle de l’̀ıle
2608 Sellenbodenbach-Neuenkirch
2609 Alp-Einsiedeln
2612 Riale di Pincascia-Lavertezzo
2617 Rom-Müstair
2623 Rhone-Oberwald
2634 Kleine Emme-Emmen
2635 Grossbach-Einsiedeln, Gross

Table A.2: Station ID numbers with the station names.
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Appendix B

Clustering Results
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ID no. Cluster assignment ID no. Cluster assignment

2009 5 2276 5
2016 1 2282 4
2018 1 2288 1
2019 5 2307 0
2029 1 2308 4
2030 1 2327 5
2033 5 2343 0
2034 0 2347 2
2044 4 2351 5
2056 5 2366 2
2070 2 2369 0
2084 5 2372 5
2085 1 2374 4
2091 3 2386 0
2104 1 2410 5
2106 0 2414 0
2109 5 2415 0
2112 2 2432 0
2126 0 2433 0
2130 6 2434 0
2135 1 2457 5
2139 4 2462 5
2143 1 2467 4
2150 5 2473 1
2152 1 2481 5
2159 4 2485 0
2161 5 2493 0
2167 4 2500 0
2170 5 2604 4
2174 1 2606 1
2179 4 2608 4
2181 4 2609 2
2210 0 2612 2
2232 2 2613 3
2243 1 2617 5
2256 5 2634 2
2265 5 2635 2
2269 5

Table B.1: Resulting cluster assignments for the k-means clustering on all the
features from both data-sets, resulting in seven clusters.
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ID no. Cluster assignment ID no. Cluster assignment

2009 0 2276 0
2016 3 2282 1
2018 0 2288 0
2019 0 2307 2
2029 0 2308 2
2030 0 2327 0
2033 0 2343 2
2034 2 2347 0
2044 1 2351 0
2056 0 2366 0
2070 3 2369 2
2084 0 2372 0
2085 0 2374 1
2091 0 2386 2
2104 0 2410 0
2106 6 2414 2
2109 0 2415 2
2112 3 2432 2
2126 2 2433 2
2130 3 2434 1
2135 0 2457 0
2139 1 2462 0
2143 0 2467 1
2150 4 2473 0
2152 0 2481 0
2159 1 2485 2
2161 0 2493 2
2167 2 2500 2
2170 0 2604 1
2174 0 2606 0
2179 3 2608 1
2181 1 2609 0
2210 2 2612 0
2232 0 2613 4
2243 4 2617 0
2256 5 2634 0
2265 0 2635 0
2269 0

Table B.2: Resulting cluster assignments for the hierarchical clustering on the ad-
ditional features from both data-sets, resulting in seven clusters.
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