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Abstract

In recent years the amounts of data available in diverse areas has increased
rapidly. Given the magnitude and complexity of the data, pattern recognition
as a subarea of machine learning has transpired to be very important in
Computer Science. Therefore a large amount of graph based methods for
pattern recognition have emerged. In this thesis there will be an introduction
to graph based pattern recognition and a description of a novel approach
for graph classification. Given this novel approach for graph classification
- the matching of matching graphs - an analysis will be performed on said
matching graphs. Further we will analyze the quality and the quantity of the
matching graphs by means of an algorithm for subgraph isomorphism by
J.R. Ullmann.
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1
Introduction

Computer Science covers a whole range of fields. From algorithms, to networking and
communication, to human-computer interactions and much more. This thesis belongs to
the field of machine learning and artificial intelligence. Put simply, the field of machine
learning tries to answer the following question: “How can we build computer systems
that automatically improve with experience, and what are the fundamental laws that
govern all learning processes?” [14]. By way of illustration a few real-world examples:

• Handwriting recognition refers to the ability of a computer to receive and interpret
handwritten input as text [17]. This input can come in form of paper documents,
photographs, touch-screens and other devices. Handwriting recognition methods
can broadly be classified into two types: online methods and offline methods
[15]. Online methods involve a digital pen/stylus of some sort and use dynamic
information like stroke order, writing speed and pen pressure to differentiate
between different characters and ultimately recognize the text. Offline methods on
the other hand take input where the text has already been written down. There is
only static information available, like the shapes of handwritten characters, and
possibly some background noise from the source itself e.g. paper.

One subapplication of handwriting recognition is signature recognition. Since a
signature is a handwritten representation of the name of a person and the person
must become active for signing, handwritten signatures and personal signs can
be seen as behavioral biometric characteristics of the person [15]. Handwritten
signatures are generally used for verification rather than for identification. That’s to
say, they are generally used for confirming a claimed identity through one-to-one
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CHAPTER 1. INTRODUCTION 2

comparison of biometric features [15]. Seminal contributers in this field include F.
Leclerc and R. Plamondon [6] who have been working in this field for over two
decades.

• Biometric pattern recognition systems are pattern recognition systems which use
biological traits to recognize individuals. A recent contribution from S. Hariprasath
and M. Santhi [21] proposes an automated biometric authentication system which
accepts the individual’s biometric data (in this case from iris and palmprint),
extracts the features and compares those features againt the template stored in the
database. Based on the outcome of this comparison the identity is either verified
or the individual’s identity is determined.

• Machine learning can also be applied in chemistry. A general statement of the
pattern recognition problem in chemistry is: ”given a collection of objects charac-
terized by a list of measurements made on each object, is it possible to find and/or
predict a useful property of the objects that may not be measureable, but is thought
to be related to the measurements?” [2]. The objects observed can range from pure
chemical compounds to complex mixtures and chemical reactions. Measuring the
structural similarity between proteins is another common application of pattern
recognition in chemistry [22].

As indicated by the examples above the area of pattern recognition is a big part of
the field of Machine Learning. Pattern recognition transpired to be very important in
Computer Science. When breaking down a complex problem we often find patterns
among the smaller problems created. Pattern recognition involves finding these sim-
ilarities or patterns among small, decomposed problems that can help us solve more
complex problems. We rely on pattern recognition to verify our identities/signatures [15],
to predict protein function and strctures [1], detect Alzheimer’s Disease [9] and much
more.

The goal of pattern recognition in general is to define algorithms, which automate or
at least support the process of recognizing patters stemming from the real world, like for
example in handwriting recognition [19].
The IAPR (International Association for Pattern Recognition) [16] hosts several confer-
ences every year. The wide range of topics discussed include Image Mining, Mobile and
Wearable Biometrics, Computer Vision and of course Pattern Extraction and Recognition.
As the recent conference ”IAPR Joint International Workshops on Statistical Techniques
in Pattern Recognition (SPR) and Structural and Syntactic Pattern Recognition (SSPR)”
(S+SSPR 2020) suggests, we can differentiate between statistical and structural pattern
recognition (see Figure 1.1). That’s to say, we distinguish the way in which we present
the patterns to our computer.
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Figure 1.1: The same sentence represented as feature vector and as graph.

The statistical approach uses feature vectors and numbers. The pattern is represented
as a vector x = (x1, x2, ..., xn) ∈ Rn of n numerical features. The mathematical opera-
tions available in vector space enable a very efficient performance and result in a rich
repository of algorithmic tools for statistical pattern recognition. However, there are also
limitations to consider: since vectors always represent a predefined set of features, all
vectors have the same length. This can not be changed even if the complexity or the
size of the corresponding pattern varies. Another disadvantage of feature vectors is, that
there is no direct possibility to describe binary (or higher-order) relationships between
different parts of the pattern [19].

The structural approach focuses on symbolic data structures like strings, trees and graphs.
Graphs are the most common data structure in Computer Science. They consist of a
finite set of nodes connected by edges. Strings and trees are special cases of graphs
[19]. A string can be represented as a graph, in which each node is one character and the
next character is connected with the previous one by an edge. A tree is a graph where
any two nodes are connected by exactly one edge. The limitations of feature vectors
mentioned above can be overcome by graphs. Graphs can describe properties of a pattern
and also (binary) relationships among different parts. Another advantage of graphs is,
that they can be adjusted to any size. The number of nodes and edges is not limited and
can be adapted to the complexity of the pattern. The most prominent drawback of graphs,
however, is that because of the flexibility they offer, the complexity of many algorithms
is increased significantly compared to the feature vectors [19]. One real-world example
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of graphs representing proteins can be seen in Figure 1.2.

Figure 1.2: Protein graph transformation [22].

In this thesis the focus lies on structural pattern recognition. More precisely graph
matching. Graph matching describes the process of finding similarities between two
graphs. This (dis-) similarity between graphs can be measured with the so called graph
edit distance. If we compare several graphs with each other, we can gather information
about the similarities of the whole set of graphs and store this information in a new graph,
called the matching graph [10]. This is an idea similar in spirit to the maximal common
subgraph [5].

In a recent paper by M. Fuchs and K. Riesen [10] it has been proposed that consid-
ering a classification problem these new structures, the matching graphs, can be used
to solve it. Given multiple classes of graphs A, B, ..., Z and a new graph, which has
not yet been classified. The task is to decide in which class the new graph belongs to.
One way to solve this problem, is by creating matching graphs (which represent the core
structures) for each class, and comparing the new graph to those matching graphs. Based
on the outcome of this comparison we then assign the new graph to its class. My research
question relates to these newly generated matching graphs:

Do matching graphs created from a given class A appear more often in class A or in any
of the other classes B-Z?

The idea is to find out, if matching graphs from class A actually appear as subgraphs in
the graphs of class A. If so, how often in comparison with the other classes B,..., Z.
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The remainder of this thesis is structured as follows. Chapter 2 provides basic
definitions, terms and algorithms used throughout this paper. Next, in Chapter 3, matching
graphs are introduced and the research question will be formally formulated. Chapter 4
holds the experimental evaluation and in Chapter 5 we conclude the thesis and discuss
some future work ideas.



2
Graph Representation and Graph

Matching

In this chapter we give the reader the necessary theoretical background to understand this
thesis. We will present an overview over the representation of graphs and discuss different
categories and methods of graph matching. Further we take a look at one particular
algorithm - the Algorithm for Subgraph Isomorphism by Ullmann. This algorithm is
based on the concept of graph isomorphism and has been used for the experimental
evaluation in this thesis and will therefore be discussed in detail.

2.1 Graphs
This section holds the definition of a graph and advantages as well as disadvantages of
this particular data structure.

Definition (Graph) [19]. Let LV and LE be finite or infinite label sets for nodes and
edges, respectively. A graph is a four-tuple g = (V, E, µ, ν), where

• V is the finite set of nodes,

• E ⊆ V × V is the set of edges,

• µ : V→ LV is the node labeling function, and
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CHAPTER 2. GRAPH REPRESENTATION AND GRAPH MATCHING 7

• ν : E→ LE is the edge labeling function.

The size of a graph g is denoted by |g| and is defined as the number of nodes, i.e. |g| = |V |.

(a) (b)

Figure 2.1: Examples of graphs.
(a) Graph size 4, where LV and LE are empty.
(b) Graph size 4, where µ = (1→ a, 2→ b, 3→ c, 4→ d) and LE is empty.

Advantages of graphs include:

• Modelling real-world problems e.g. road networks, where intersections can be
considered as nodes and the road segments between them as edges [7].

• One can easily work with large data, since the size of graphs is not limited [7].

• They are an effective visual tool (present information quickly as well as easily) [7].

• One can map (binary) relations between individual data points [19].

Disadvantages of graphs that need to be considered are:

• The complexity of algorithms is increased significantly [19].

• High computational costs resulting from the complexity [5].

2.2 Graph Matching
In this section we discuss graph matching and take a closer look at the different categories
and methods of graph matching.

As already mentioned, graph matching describes the process of finding similarities
between two graphs. A more precise definition reads as follows:
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Definition (Graph Matching) [5]. ”Graph matching is the process of finding a corre-
spondence between the nodes and the edges of two graphs that satisfies some (more or
less stringent) constraints ensuring that similar substructures in one graph are mapped to
similar substructures in the other”.

There exist two categories of matching methods: Exact matching methods and inexact
matching methods. As the name suggests, the exact matching methods require a strict
correspondence/agreement among the two matched objects. In different words: “The
aim in exact graph matching is to determine whether two graphs, or at least part of them,
are identical in terms of structure and labels.” [5]. Whereas inexact matching methods
can be used on graphs, which are structurally different to some extent.

2.2.1 Overview of Exact Graph Matching
The most prominent characteristics of exact matching methods is that the mapping be-
tween the nodes must be edge-preserving. That’s to say if two nodes in the first graph are
connected by an edge, they must be mapped onto two nodes in the second graph which
are also linked by an edge.
Exact graph matching has exponential time complexity in the worst case since no poly-
nomial algorithms are known for the general case. However the actual computation time
can still be acceptable in many cases because of two reasons: first, the graphs which
the algorithms are performed on usually differ from the worst case graphs. And second,
node and edge attributes can often be used to reduce search time drastically.
There are different forms of exact graph matching: graph isomorphism, subgraph iso-
morphism, monomorphism, homomorphism and maximum common subgraph. The
matching problems above are all NP-complete except for graph isomorphism (for which
it has not yet been demonstrated if it belongs to NP or not) [5].

Most of the exact graph matching methods are based on some form of tree search with
backtracking. The basic idea is, that a partial match (initially empty) is iteratively
expanded by adding new pairs of matched nodes to it. The new pair is chosen by
using some condition which ensures that all the constraints are respected. Additionally
heuristics can be used to prune futile search paths as early as possible [5].
One important algorithm from this family is a contribution from Ullmann in 1976 [5].
The algorithm can be used to solve the problems of graph isomorphism, subgraph
isomorphism and monomorphism. The method proposed to prune unsuccessful matches
in this algorithm is the so called refinement procedure. It works on a matrix of possible
future matches and removes these node pairs, which are not consistent with the current
partial matching. This algorithm will be discussed in more detail in Section 2.3.1.
Other techniques used in exact graph matching methods include group theory [13],
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recursive decomposition [3] and decision trees [12].

2.2.2 Overview of Inexact Graph Matching
Two main reasons have led to the development inexact graph matching: first, the con-
straints imposed by exact graph matching are in some cases too stringent because the
observed graphs are subject to deformations. These deformations can have several causes:
intrinsic variability of the patterns themselves and noise in the acquisition process are
among the possible reasons why the actual graphs are different from their ideal models
[5]. Second, exact graph matching algorithms require in the worst case exponential time.
This can be very costly and may lead to the usage of algorithms, which do not guarantee
to find the best solution, but can give a good approximate solution more cheaply and in
reasonable time.
Frequently, inexact matching algorithms do not forbid the matching between two nodes
that do not satisfy the edge-preservation requirements like the exact matching algorithms,
but they assign a penalty to it. This usually happens in form of an assigned cost, depend-
ing on the mismatch (also considering other differences e.g. different attributes). As
a result inexact graph matching algorithms have to find a mapping that minimizes the
matching costs.

Similar to exact graph matching methods, there exist inexact graph matching methods
that are based on tree search with backtracking. The basic idea here is, that the algorithm
uses the cost of the partial match already obtained and some kind of heruristic estimate of
the matching cost of the remaining nodes. This information can be used to either prune
futile branches or to determine in which order the tree will be traversed.
The first tree based inexact algorithm has been proposed by Tsai and Fu in 1979 [24][5].
The authors introduce a formal definition of error-correcting graph matching based on
the introduction of a graph edit cost (each type of error will be assigned a different cost).
The proposed heuristic is based on the computation of the future node matching cost.
By neglecting the constraint that the mapping has to be injective, this search method
ensures to find the optimal solution. In their first algorithm (1979) the graphs being
matched are still required to be structurally isomorphic because the authors only allowed
the operations of node and edge substitution. But in the extension proposed in 1983 the
same authors also considered insertion and deletion of nodes and edges, allowing for an
error-correcting subgraph isomorphism [5].
Another family of inexact matching methods stems from continuous optimization. The
idea is to turn the graph matching problem (so far a discrete optimization problem) into
a continuous, nonlinear optimization problem. Then known optimization algorithms
become available to solve this task. After applying the optimization algorithms the
solution has to be converted back into the original discrete problem. These algorithms do
not ensure the optimality of the solution but they often reduce computational costs [5].
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One of the pioneering contributions comes from Fischler and Elschlager in 1973, where
the authors propose the usage of relaxation labeling [8][5].

2.3 Graph Isomorphism
This section covers the definition of a subgraph and (sub-)graph isomorphism and elabo-
rations on the Algorithm for Subgraph Isomorphism by Ullmann.

Definition (Subgraph) [19]. Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2, ν2) be graphs.
Graph g1 is a subgraph of g2, denoted by g1 ⊆ g2, if

• V1 ⊆ V2,

• E1 ⊆ E2,

• µ1(u) = µ2(u) for all u ∈ V1, and

• ν1(e) = ν2(e) for all e ∈ E1.

Definition (Graph Isomorphism) [19]. Given two graphs g1 = (V1, E1, µ1, ν1) and g2 =
(V2, E2, µ2, ν2). A graph isomorphism is a bijective function f: V1→ V2 satisfying

• µ1(u) = µ2(f(u)) for all nodes u ∈ V1,

• for each edge e1 = (u, v) ∈ E1, there exists an edge e2 = (f(u), f(v)) ∈ E2 such that
ν1(e1) = ν2(e2),

• for each edge e2 = (u, v) ∈ E2, there exists an edge e1 = (f−1(u), f−1(v)) ∈ E1 such
that ν1(e1) = ν2(e2).

Two graphs g1 and g2 are called isomorphic if there exists an isomorphism between them,
and we write g1 u g2.

Definition (Subgraph Isomorphism) [19]. Let g1 = (V1, E1, µ1, ν1) and g2 = (V2, E2, µ2,
ν2) be graphs. An injective function f: V1→ V2 from g1 to g2 is a subgraph isomorphism
if there exist a subgraph g ⊆ g2 such that f is a graph isomorphism between g1 and g. In
this case we write g1 ⊆ g2.

It is important to note, that the definitions of (sub-) graph isomorphism as described
above only work for alphabets LVi and LEi

with discrete labels, like for example numbers
or strings. The experimental evaluation as described in Chapter 4 has been performed on
graphs with non discrete labels: coordinates. Therefore we use the following heuristic to



CHAPTER 2. GRAPH REPRESENTATION AND GRAPH MATCHING 11

adapt to the concepts of (sub-) graph isomorphism:

µ1(u) = µ2(f(u)) iff ‖ µ1(u)−µ2(f(u)) ‖ ≤ c, where c is constant.

This means, assuming each node has an X and a Y coordinate, we label two nodes as
equal in their coordinate attributes if the Euclidean distance between them is less than a
constant c.

2.3.1 Ullmann Algorithm
Part of the research question involves counting how many matching graphs appear as
subgraph in the original graphs from their respective classes. This is achieved by imple-
menting the Subgraph Isomorphism algorithm by Ullmann 1976 [23].

The general idea of this algorithm is to achieve some sort of enumeration and per-
forming isomorphism checks when appropriate. The method proposed by Ullmann is to
determine isomorphism by brute-force enumeration for which a depth-first tree search
algorithm is used. Given two graphs g1 and g2 it is possible to list all the possible
mappings from nodes in graph g1 to nodes in graph g2. This list is generated by saving
all the mappings in a tree data structure and then traversing it depth-first (see Figure 2.2).

Figure 2.2: Depth-first traversal of a tree. The order in which the nodes will be traversed
is: 1-2-3-4-5-6-7-8-9-10-11-12 [4].

Since the number of possible mappings is enormous even between two relatively small
graphs, the author suggests using some of the characteristics of graphs to reduce the
number of mappings considered. One such characteristics is the degree of a node.

Definition (Degree) [19]. Given a graph g = (V, E, µ, ν) the degree of a node u ∈ V,
referred to as deg(u), is the number of adjacent nodes to u.
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It is evident from the definition of (sub-) graph isomorphism, that mappings from nodes
in g1 with degree higher than the degree from nodes in g2 need not be considered. Other
characteristics which can be used to reduce the number of mappings are the attributes
of the nodes and edges from g1 resp. g2. For example when comparing two molecules,
where the nodes represent the atoms and the edges represent the connections between
the atoms, it makes little sense to map an H-atom from g1 to a C-atom in g2.

Now that we have seen how the enumeration works, let’s take a closer look at how
Ullmann proposed to perform the actual isomorphism checks. The way chosen by the
author is to utilise matrices. Therefore a way of translating graphs into matrices is
necessary. One common way to do that is to create an adjacency matrix.

Definition (Adjacency matrix) [19]. Let g = (V, E, µ, ν) be a graph with |g| = n. The
adjacency matrix A = (aij)n×n of graph g is defined by

aij =

{
1 if (vi, vj) ∈ E,
0 otherwise

where vi and vj are nodes from g, i.e. vi, vj ∈ V.

Figure 2.3: Adjacency matrix A generated by the graph on the left.

Given graph g1, with size l and adjacency matrix A and graph g2, with size k and
adjacency matrix B. The isomorphism check between g1 and subgraphs of g2 consists of
the following parts:

• Define a binary matrix M = (mij) with l rows × k columns

• M can then be used to permute the rows and columns of the adjacency matrix B of
g2 s.d. C = (cij) = M(MB)T

• If it is true that
(∀i ∀j) (aij = 1)⇒ (cij = 1) for 1 ≤ i, j ≤ l,
then M specifies an isomophism between g1 and a subgraph of g2.
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Ullmann proposes to construct the binary matrix M = (mij) as follows:

mij =

{
1 if the deg(g1(j)) ≤ deg(g2(i)),
0 otherwise

In this suggestion the author only considered the degree to create the matrix M. However
it is reasonable to also take into account other characteristics available e.g. attributes of
nodes like mentioned above. An example for the matrix M created between graphs g1 =
(V1, E1, µ1, ν1) where V1 = {1, 2, 3}, E1 = {(1, 2), (2, 3)}, µ1 = (1→ H, 2→ O, 3→
H) and ν1 is empty and g2 = (V2, E2, µ2, ν2) where V2 = {1, 2, 3, 4}, E2 = {(1, 2), (2, 3),
(2, 4)}, µ2 = (1→ H, 2→ O, 3→ H, 4→ C) and ν2 is empty:

g1 g2

Figure 2.4: Example graphs g1 and g2.

(a) (b)

Figure 2.5: (a) M considering degrees only, (b) M considering degrees and attributes.

The way matrix M is constructed we can assume, that if M describes an isomorphism,
we need exactly one 1 in each row and at most one 1 in each column. It is exactly for
this reason, that the algorithm systematically changes all entries in a row to 0 except for
one, if appropriate it checks for an isomorphism and if no isomorphism has been found it
moves on to the next iteration. This will result in a tree structure which will be traversed
with the depth-first search method (see Figure 2.6).
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Figure 2.6: Tree structure with all the possible mappings from g1 to g2. The grey
mappings will not actually be considered but are in the graphic for completeness.

In conclusion the enumeration algorithm proposed by Ullmann is designed to find all of
the isomorphisms between a given graph g1 and subgraphs of g2. See Figure 2.7 for the
proposed brute-force enumeration.

Figure 2.7: Steps of the subgraph isomorphism algorithm by Ullmann 1976 [23].

This algorithm can be made more efficient by implementing the refinement procedure.
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Ullmann defines this to be a procedure, which reduces the number of successor nodes in
the tree that must be searched by the methods mentioned before. It is entered after each
node in the search tree. This naturally yields a reduction in the total computation time
for the algorithm run [23]. The actual refinement procedure can be seen in the Appendix.
For the purposes of this thesis it suffices to understand the following psudo code:

do
for all (i,j) where M is 1

for all neighbors x of vi in the set of nodes of g1
if there is no neighbor y of vj s.d. M(x,y) = 1

M(i,j) = 0

The idea is, to not only consider the characteristics of the current node which we are
trying to match, but also information that we have about its neighbors.

Let’s consider an example with (made up) molecules:

• g1 = (V1, E1, µ1, ν1) where
V1 = {1, 2, 3}, E1 = {(1, 2), (2, 3)}, µ1 = (1→ H, 2→ O, 3→ H) and ν1 is empty.

• g2 = (V2, E2, µ2, ν2) where
V2 = {1, 2, 3, 4, 5, 6}, E2 = {(1, 2), (2, 3), (2, 4), (4, 5), (5, 6)}, µ2 = (1→ H, 2→
O, 3→ H, 4→ C, 5→ O, 6→ H) and ν2 is empty.

Graph g1 Graph g2

Figure 2.8: Example graphs for refinement procedure.

Considering node 2 in graph g1, we can immediately see by checking its attribute O,
that there are two candidates in graph g2 for a match: nodes 2 and 5. Now we can
also access the information about the neighbors of node 2 in graph g1: two neighbors,
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both with attribute H. With this information, we can eliminate node 5 from graph g2 as
possible match, because even though it also has two neighbors, only one of them has the
H attribute. In this manner the number of possible mappings overall can be reduced and
the number of necessary isomorphism checks as well.



3
Matching Graphs

In this chapter we discuss matching graphs as described in Matching of Matching-Graphs
- A Novel Approach for Graph Classification by M. Fuchs and K. Riesen [10].

3.1 Intuition
Matching graphs from a given class can be thought of as representations of the core
structure of this particular class. More precisely the authors state that the information
stored in the matching graphs offer the potential to achieve a better understanding of the
regularities and stable parts of a given class, as well as improve the matching quality of
unknown patterns [10].

To be able to build matching graphs from a given class, we need a way of comparing and
recording the similarity between two given graphs. In this case the authors chose to use
the concept of graph edit distance.

3.2 Graph Edit Distance
In this section we take a closer look at the graph edit distance which is being used to
construct matching graphs.

In order to define the graph edit distance we need the concept of an edit path. There is

17



CHAPTER 3. MATCHING GRAPHS 18

a standard set of edit operations with which graphs can be modified: insertions, deletions
and substitutions. These operations exist for both nodes and edges. With these operations
it is possible to transform any source graph into any other target graph. We denote the
insertion of a node v ∈ V2 by (ε→ v), the deletion of a node u ∈ V1 by (v→ ε) and the
substitution of node u ∈ V1 and v ∈ V2 by (u→ v). For edge edit operations, similar
notations can be used. To keep track of these operation we define the edit path λ.

Definition (Edit path) [10]. A set {e1, ..., ek} of k edit operations ei that transform a
source graph g1 completely into a target graph g2 is called an edit path λ(g1, g2) between
g1 and g2.

(a) (b)

Figure 3.1: Edit path between (a) source graph g1 and (b) target graph g2. λ(g1, g2) = {1
→ 1, 2→ 4, 3→ 3, ε→ 5 }.

We denote the set of all edit paths transforming g1 into g2 as Υ(g1, g2), while c(ei)
denotes the cost function measuring the strength c(ei) of edit operation ei. Now each edit
path has a corresponding total cost. Then we define the graph edit distance to be the path
with the smallest cost out of all possible paths.

Definition (Graph Edit Distance) [10]. Let g1 = (V1, E1, µ1, ν1) be the source and g2 =
(V2, E2, µ2, ν2) the target graph. The graph edit distance between g1 and g2 is defined by
dλmin(g1, g2) = minλ∈Υ(g1,g2)

∑
ei∈λ c(ei).

The authors propose using the suboptimal graph edit distance algorithm, referred
to as BP, to computate the graph edit distance between two graphs [10]. The algorithm
BP generates a cost matrix C, which contains all the costs of all possible edit operations
(substitution, insertion and deletion) that can occur between the nodes of g1 and the
nodes of g2. Then an optimal assignment is found for the nodes of both graphs from
which an approximate graph edit distance can be derived [18].
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3.3 Matching Graph
This section describes how matching graphs are built from a given class.

The basic idea of a matching graph mgi×gj is, that it represents a way to formalize
information on the matching of two graphs gi and gj . The authors intend the matching
graph mgi×gj to represent both nodes and edges of gi and gj which have been matched
by some particular graph matching algorithm [10].
For all pairs of graphs stemming from the same class the authors computed the graph
edit distance between them by means of the suboptimal algorithm BP. This results in
a (suboptimal) edit path λ(gi, gj) for each pair of graphs gi and gj . For each edit path
λ(gi, gj), two matching graphs are built: mgi×gj , where gi is the source graph and gj the
target graph, and mgj×gi the other way around. Therefore all nodes of gi and gj which are
substituted in the edit path are added to mgi×gj and mgj×gi , respectively. It is important
to note that all nodes which are deleted in gi resp. gj or inserted in gj resp. gi are not
considered in either matching graphs. In the procedure chosen by the authors isolated
nodes, i.e. nodes without neighbours, will also be removed [10].
It is clear, that if a node is not included in the matching-graph, the associated edges will
not be considered either. However, edges which connect two substituted nodes might be
included. Here the authors propose two different strategies for edge handling.

If two nodes u1, u2 ∈ Vi of a source graph gi are substituted with nodes v1, v2 ∈ Vj in a
target graph gj there is an edge (u1, u2) to be considered. Edge (u1, u2) is included in the
matching graph mgi×gj ...

• ... regardless whether or not edge (v1, v2) ∈ Ej . In this case no pruning is applied
to the edges.

• ... if, and only if, there is an edge (v1, v2) ∈ Ej . Here pruning is applied to the
edges.

Note that the the costs for insertion and deletion have a crucial impact on the resulting
edit paths and therefore on the matching graphs themselves. The higher the costs for
insertion and deletion are, the more substitutions will be in the edit path, which will
result in larger matching graphs [10].

Now we have two matching graphs for each pair of graphs in our given class. As-
suming we have a total of n graphs, that gives us n(n-1) matching graphs. The authors
propose to use the set median graph to reduce the number of matching graphs.

Definition (Set median graph) [10]. Let S be an arbitrary set of graphs. Then the set
median graph gmdn ∈ S is defined as
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median(S) = gmdn = arg ming1∈S
∑

g2∈S d(g1, g2).

The set median graph is the graph whose sum of edit distances to all other graphs in S is
minimal. The authors propose to iteratively select (and remove) the set median graph
from the set of all constructed matching graphs until the desired number of matching
graphs has been selected [10]. This way the matching graphs which are situated in or
near the center of the complete set of matching graphs will be selected for further use.

In general, when working with a machine learning model the data set is split up into
three subsets: training set, validation set and test set [20]. The idea behind this is, that
we train the model with the training set. That’s to say we use the data in the training
set to build our model. By adapting parameters of the classifier to this data we fit our
model to the training set. When our model is roughly fitted, we use the validation set to
fine tune the parameters of the model. And the data set used to evaluate the final model
performance is called the test set. The reason behind this is, that we get an unbiased
sense of model effectiveness if the model is evaluated on samples that were not used to
build or fine-tune the model [11].

3.4 Hypothesis
In this section we will take a closer look at the research question.

Assuming we have different classes A, B, ..., Z of graphs. With the method described
in the previous section it is possible to create matching graphs for each of these classes.
The research question reads:

Do matching graphs created from a given class A appear more often in class A or in any
of the other classes B-Z?

The goal is to find out, if matching graphs from a given class A actually appear as
subgraphs in the (original) graphs of class A and if so, how often compared to other
classes. Of course this applies to all classes: we want to compare each class A-Z with all
other classes, not only class A.

The approach used in this case is counting the occurrences of the matching graphs in
the original graphs by implementing and running the Algorithm for Subgraph Isomor-
phism by Ullmann [23]. This algorithm as described in section 2.3.1 takes two graphs
and returns the output, if an isomorphism has been found or not. With this tool, all
the matching graphs have been compared with all the original graphs and the outputs
collected. The outcomes are displayed and described in chapter 4.
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With the results we hope to be able to find evidence that the matching graphs are a
sensible representation of their class. For example, if we were to find, that matching
graphs from class A really do appear more often in the original graphs from class A, then
we would consider those matching graphs a good/sensible representation of their class.
But if we were to find, that the matching graphs from class A do not appear at all in the
original graphs from the same class, but very often in the other classes B-Z, we need to
take a closer look at why this is the case.



4
Experimental Evaluation

This chapter focuses on the used data set and on the evaluation of the research question.

4.1 Data Set
The data sets used for this thesis are artificial capital letters. They have been generated
by artificially distorting handwritten letters, which themselves consist only of straight
lines. These kinds of data sets are often used in the research community for preliminary
or feasibility tests. The different classes in this case consist of the capital letters A, E, F,
H, I, K, L, M, N, T, V, W, X, Y and Z. Examples of some of the letters can be seen in
Figures 4.1, 4.2 and 4.3.

Figure 4.1: Examples of original graphs from class A.

22
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Figure 4.2: Examples of original graphs from class I.

Figure 4.3: Examples of original graphs from class Z.

As we have seen in the previous chapter, while constructing matching graphs there
are a few things to consider. First, the costs of insertion and deletion when creating the
edit paths. Matching graphs for each class have been constructed with costs 0.2, 0.3, 0.4,
0.6, 0.9 and 1.6 respectively. This has been done because the costs can heavily influence
the size of the resulting matching graphs. But for the remainder of this section we will
only distinguish between low cost and high cost matching graphs, in order to respect the
scope of this thesis. The second thing to consider is the edge handling. As we have seen
in the last chapter we have two options: pruning and non pruning. This means that we
consider four different categories of matching graphs:

• low cost, non pruned

• low cost, pruned

• high cost, non pruned

• high cost, pruned
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For matching graphs build with low insertion and deletion costs and non pruned edges,
there is only a slight visual resemblance to the original graphs. In general they do not
provide convincing visual results and therefore do not resemble our intuition of core
structures very much. Examples can be seen in Figure 4.4. Matching graphs from class I
form an exception throughout, since I is structurally quite a simple letter (see Figures 4.4
(c), (d)).

(a) (b) (c)

(d) (e) (f)

Figure 4.4: (a), (b) low cost, non pruned matching graphs from class A.
(c), (d) low cost, non pruned matching graphs from class I.
(e), (f) low cost, non pruned matching graphs from class Z.

Building matching graphs with low costs and pruned edges results in similar graphs as
seen above. They only slightly resemble the original graphs. It is apparent that they
are made up with less edges in general, since these matching graphs have been pruned.
Examples hereof can be seen in Figure 4.5.
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(a) (b) (c)

(d) (e) (f)

Figure 4.5: (a), (b) low cost, pruned matching graphs from class A.
(c), (d) low cost, pruned matching graphs from class I.
(e), (f) low cost, pruned matching graphs from class Z.

Matching graphs built with high costs and no pruning give a better visual result. Even
though they do not exactly represent our intuition for core structures, it is possible to
recognize the letters more easily than with the low cost matching graphs. Matching
graphs from class I still form an exception in the sense, that the matching graphs represent
the core structures pretty good because of the simplicity of the letter I. Examples can be
seen in Figure 4.6.
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(a) (b) (c)

(d) (e) (f)

Figure 4.6: (a), (b) high cost, non pruned matching graphs from class A.
(c), (d) high cost, non pruned matching graphs from class I.
(e), (f) high cost, non pruned matching graphs from class Z.

Finally, matching graphs built with high insertion and deletion costs and pruned
edges give the best visual results. They resemble our intuition of core structures very
much. In comparison with the non pruned matching graphs built with high costs, we can
see that they have less edges thus creating less visual distraction. Examples can be seen
in Figure 4.7.
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(a) (b) (c)

(d) (e) (f)

Figure 4.7: (a), (b) high cost, pruned matching graphs from class A.
(c), (d) high cost, pruned matching graphs from class I.
(e), (f) high cost, pruned matching graphs from class Z.

In conclusion we observe that for pruned matching graphs the higher the cost, the
better the results. For unpruned matching graphs this trend is not as strong, since the
highest cost matching graphs turned out slightly less clear. In general it can be said that
pruned matching graphs resemble our intuition of a core structure more, than unpruned
ones. Therefore we will focus only on pruned matching graphs in the next section.
A link to the repository with the complete data sets (and results) is available in the
Appendix.

4.2 Results
In this section we discuss the outcomes of this thesis and answer the research question.
Similar results for different data sets will be summarized in order to respect the scope of
this thesis.

As we have seen in Chapter 2, the results of this thesis are based on the implementa-
tion of the Subgraph Isomorphism algorithm by Ullmann. The algorithm is designed to
find all isomorphisms between two given graphs. As mentioned in the definition of sub-
graph isomorphism, in this thesis we work with graphs where the labels are coordinates.
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Therefore we use the Eucledian distance between two nodes as part of determining if an
isomorphism exists. By means of a visual inspection we decided to use 0.9 as constant
in our heuristic (see Section 2.3). All of the following results are based on the distance
threshold 0.9.

All data sets used in this thesis have 15 different classes (A-Z). So when considering
the figures in order to answer the research question ”Do matching graphs created from
a given class A appear more often in class A or in any of the other classes B-Z?”, it is
important to keep in mind, that the original category of ”different classes” is 14 times
bigger in size than the category ”same class”. To be able to compare the two classes
more easily, the category of ”different classes” has been normalized (divided by 14).
Therefore it is possible that the number of occurrences in the ”different classes” category
is not necessarily an integer and can be in decimals. It is also important to note that for
all data sets the results for the training, test and validation set were similar. Therefore all
the examples are taken from the respective test sets. As noted in the last section, we will
focus on pruned matching graphs only.

4.2.1 Results for Low Cost Matching Graphs
The first group of results includes all data sets with pruned matching graphs built with
low insertion and deletion costs. The results show that for all the matching graphs no
matter the class (A-Z), the matching graphs themselves appear more often in their own
class than in different classes. It is apparent though that the matching graphs do not
appear significantly more often in their own classes than in any of the other classes
individually. This can be seen in the following examples.

In Figure 4.8 we see the results for the matching graphs from class A. Figure 4.8 (a)
shows the number of occurrences for each matching graph in the whole set of original
graphs. The x-axis represents the individual matching graphs from class A. The y-axis
shows the number of times a matching graph appeared, either in original graphs from their
own class (blue) or in original graphs from different classes (orange). It is important to
note, that the matching graph occurrences have been sorted separately for these diagrams.
That’s to say, the first blue bar and the first orange bar do not necessarily represent the
same matching graph. We can see that matching graphs from class A generally appear
more often in the same class than in different classes. It is apparent that the number of
times the matching graphs occur in their own class is 1.7 to 2.2 times higher than the
number of times they occur in different classes.
Figure 4.8 (b) shows the distribution of the matching graphs from class A in all the
original graph classes (A-Z). In this figure all the classes (A-Z) are listed in the x-axis
and the y-axis shows the number of matching graphs from class A that have appeared
in the respective classes. We can see that the matching graphs from class A appear in
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all classes (A-Z). We observe that they appear slightly more often in their own class,
compared to all other classes. However the number of times matching graphs form class
A appear in other classes, especially classes E, F, H, K and W, is rather high as well.

(a) (b)

Figure 4.8: Occurrences of matching graphs from class A. Pruning, low costs, distance
0.9, test set.

In Figure 4.8 (a) (and in all the equivalent following figures) we can observe that there
are groups of individual matching graphs that occur the same number of times in their
own class and approximately the same number of times in the different classes category.
As we have seen in chapter 3 the creation of matching graphs is based on the graph edit
distance and therefore on the edit paths. All the matching graphs from one grouping
are based on the same source graph in the edit path. The reason for this lies in the way
of how we construct the matching graphs in the first place. Since the mapping in the
edit path goes from source graph to target graph and we adopt the edges from the source
graph, it is not surprising that the resulting matching graph strongly resembles it’s source
graph. Therefore the resemblance between all matching graphs with the same source
graph is to be expected. As an example Figure 4.9 shows two matching graphs from
class A built from the same source graph.
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(a) (b) (c)

Figure 4.9: (a) Original graph from class A.
(b), (c) Two different matching graphs from class A built from the same source graph.

Next we consider the matching graphs from class I. As can be seen in Figure 4.10
(a) the matching graphs from class I also appear more often in their own class than in
other classes. In this case we can see that the number of times the matching graphs occur
in their own class is between 1.7 and 1.9 times higher than the number of times they
appear in different classes. Figure 4.10 (b) shows that the matching graphs from class
I appear the most in their own class, followed closely by occurrences in classes H, T
and V. This is not surprising considering the shape of the letter I. It is to be expected
that matching graphs from class I also appear in original graphs from other classes with
similar structure. It is important to note that the results might be improved by changing
the distance threshold used in the algorithm by Ullmann.

(a) (b)

Figure 4.10: Occurrences of matching graphs from class I. Pruning, low costs, distance
0.9, test set.

Our last example for the low cost, pruned matching graphs are matching graphs from
class Z. Figure 4.11 (a) shows that the matching graphs from class Z appear more often
in their own class compared to different classes. We can see that the number of times
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the matching graphs appear in their own class is between 2.3 and 2.5 times higher than
the number of times they occur in different classes. In Figure 4.11 (b) we see that the
matching graphs appear most often in their own class. However the number of times they
appear in classes E, N and X is high as well.

(a) (b)

Figure 4.11: Occurrences of matching graphs from class Z. Pruning, low costs, distance
0.9, test set.

4.2.2 Results for High Cost Matching Graphs
The second group of results contains all data sets with pruned matching graphs built
with high insertion and deletion costs. Here we can observe that matching graphs appear
considerably more often in their own class than in different classes compared to the
results we have seen in the previous chapter. Examples follow below:

First, we consider the matching graphs from class A. They appear notably more often
in their own class than in different classes. In Figure 4.12 (a) we can see that the number
of times matching graphs from class A occur in their own class is between 29 and 41
times higher than the number of times they occur in different classes. Figure 4.12 (b)
shows that almost all occurrences of the matching graphs are in class A, with a few being
found in classes E, F, H, K, M and W. Here we can see that there exist classes, in which
the matching graphs from class A do not appear at all, e.g. classes I, L and N.
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(a) (b)

Figure 4.12: Occurrences of matching graphs from class A. Pruning, high costs, distance
0.9, test set.

Matching graphs from class I form somewhat an exception. In Figure 4.13 (a) we see
that they do appear more often in their own class compared to different classes. However,
similar to what we have seen in the previous section for class I, the number of times
the matching graphs appear in their own class is only 1.6 to 1.8 times higher than the
number of times the matching graphs appear in different classes. Similarly we observe in
Figure 4.13 (b) that the matching graphs from class I appear most often in their own class,
closely followed by occurrences in classes F, T and V. As we have seen with the low cost
matching graphs from class I, this can be explained by the fact that I is structurally such
a simple letter. Therefore it is to be expected that it occurs in other classes as well. It is
important to note that here too the results might be improved by adapting the distance
threshold used in the algorithm by Ullmann.

(a) (b)

Figure 4.13: Occurrences of matching graphs from class I. Pruning, high costs, distance
0.9, test set.

The last example are the matching graphs from class Z. Figure 4.14 (a) shows, that
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the matching graphs appear more often in their own class than in different classes. The
number of times the matching graphs appear in their own class is between 52 to 72.5
times higher compared to the number of times they occur in different classes. As can be
seen in Figure 4.14 (b) most of the occurrences are indeed in the original graphs from
class Z. However there are some appearances of matching graphs from class Z in classes
E, K, N and X.

(a) (b)

Figure 4.14: Occurrences of matching graphs from class Z. Pruning, high costs, distance
0.9, test set.

4.2.3 Conclusions
All the matching graphs appear more often in their own class compared to different
classes. However this is much more notable when considering matching graphs built
with higher costs. The number of occurrences from the high cost matching graphs in
their own class is up to 70 times higher that the number of occurrences in different
classes. Compared to the low cost matching graphs, where the number of times the
matching graphs appear in their own class is only between 1.7 and 2.5 times higher than
the appearances in different classes.
In conclusion, consistent with what we have seen in chapter 3, pruned matching graphs
generated with higher insertion and deletion costs generally perform better than pruned
matching graphs, which have been built with lower costs. There are a few exceptions:
matching graphs from classes I, V and sometimes L perform similarly, no matter the
cost or the edge handling. But changing the distance threshold in the Ullmann algorithm
might influence these results.



5
Conclusions and Future Work

Machine learning is the study of algorithms which improve automatically with experi-
ence. We have seen examples ranging from handwriting recognition to biometric pattern
recognition and applications in chemistry. The focus in this thesis lies on pattern recogni-
tion. We have seen two different approaches: the statistical approach, which uses feature
vectors and the structural approach, which focuses on symbolic data structures like for
example graphs. In this thesis we focus on graph matching, which is part of the structural
pattern recognition. Graph matching describes the process of finding similarities between
two graphs. Based on a recent paper by M. Fuchs and K. Riesen [10] we have performed
an analysis on a newly proposed data structure, the matching graphs. These matching
graphs can store the information on similarity between two given graphs. They are being
based on the concept of graph edit distance and can be used to solve graph classification
problems. The analysis has been performed using the Subgraph Isomorphism algorithm
by Ullmann [23]. While considering the research question

”Do matching graphs created from a given class A appear more often in class A or in any
of the other classes B-Z?”
we were able to demonstrate, that all considered matching graphs appear more often
in their own class, than in different classes. However, matching graphs generated with
higher insertion and deletion costs generally perform better than matching graphs with
lower costs. A few exceptions are matching graphs from classes I, V and sometimes L,
where the costs did not notably influence the results.

Future work consists of the following:

34
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• Rerun the Algorithm for Subgraph Isomorphism by Ullmann with a different
distance threshold on the same data sets.

• Perform the analysis by running the Algorithm for Subgraph Isomorphism by
Ullmann on different data sets.

• Identify which individual matching graphs perform best with a preliminary selec-
tion.
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A
A.1 Refinement Procedure
Refinement Procedure described in An Algorithm for Subgraph Isomorphism by J. R.
Ullmann [23].

Figure A.1: Refinemen Procedure
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A.2 Repository
Link to the repository: https://github.com/v-WU/BachelorThesis.git


	1 Introduction
	2 Graph Representation and Graph Matching
	2.1 Graphs
	2.2 Graph Matching
	2.2.1 Overview of Exact Graph Matching
	2.2.2 Overview of Inexact Graph Matching

	2.3 Graph Isomorphism
	2.3.1 Ullmann Algorithm


	3 Matching Graphs
	3.1 Intuition
	3.2 Graph Edit Distance
	3.3 Matching Graph
	3.4 Hypothesis

	4 Experimental Evaluation
	4.1 Data Set
	4.2 Results
	4.2.1 Results for Low Cost Matching Graphs
	4.2.2 Results for High Cost Matching Graphs
	4.2.3 Conclusions


	5 Conclusions and Future Work
	A Appendix
	A 
	A.1 Refinement Procedure
	A.2 Repository



