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Abstract

In this work, we introduce a new way to analyze and compare graphs, which

are complex data structures commonly used in fields such as Machine Learning and

Pattern Recognition. Graphs can be challenging to understand and compare due

to their complexity and variability.

To tackle this challenge, we look into matching-graphs, a technique that cap-

tures the similarities between two different graphs. This provides a simplified, yet

meaningful way to understand their structures and shared patterns. We introduce

two such techniques, named Substitution Way (Subway) and Partial Edit Pat Way

(Pepway).

We introduce two novel measures to assess the structural similarities between

original graphs and their matching-graphs, with a specific focus on Subway. We use

two-dimensional plots generated by Multidimensional Scaling to visually represent

the similarities and investigate emerging patterns.

Our work analyses five datasets: COX-2, PTC(MR), NCI1, LETTER and

IMDB. The results reveal that the effectiveness of pruning and selection strategies

in Subway is context dependent. They show high effectiveness in simplifying com-

plex molecular graphs, such as those in the PTC(MR), COX-2 and NCI1 dataset.

However, their performance declines for smaller graphs, such as those in the LET-

TER dataset, and for graphs with high average node-degrees or absent node labels,

such as those found in the IMDB dataset.

We also reveal the limitations of the measures when dealing with matching-

graphs generated by Pepway.

As part of future work, we propose to adapt the boundary to a different model

that aims to capture a broader set of matching-graphs that are in close proximity

to their original graphs, but not accounted for by our current model.



ii



Acknowledgments

I would like to express my deepest gratitude to my professor and supervisor, PD

Dr. Kaspar Riesen, for his guidance, patience and invaluable advice throughout the

course of this thesis. His expertise in the field has been instrumental in shaping

this work and his dedication to his students is truly inspiring.

A special mention goes out to Mathias Fuchs. Despite being occupied with his

own PhD studies, Mathias took on the task of guiding me through this journey

and devoted a remarkable amount of time to supervising and assisting me. His

patience, careful observations and tireless efforts have been of immense help and

have contributed greatly to the completion of my thesis.

None of this would have been possible without the constant support from my

family and friends. Their encouragement and belief in my abilities have given me

the strength to overcome challenges and persevere through the most difficult times.

I dedicate this work to them.

I am grateful for the journey this thesis has taken me on and for the knowledge

and experience I have gained along the way. The challenges I have overcome have

shaped me both as a researcher and as an individual.

iii



iv



Contents

1 Introduction 1

2 Basic Concepts 5

2.1 Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.2 Graph Edit Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.3 Matching-Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.3.1 Subway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3.2 Pepway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.4 Multidimensional Scaling . . . . . . . . . . . . . . . . . . . . . . . . 11

3 Experiment 14

3.1 Methods and Measures . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.1 Subway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.3.2 Pepway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4 Conclusion and Future Work 35

A Tables and MDS Plots 37

A.1 Subway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

A.2 Pepway . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

Bibliography 51

v



vi



Chapter 1

Introduction

Artificial Intelligence (AI) is a branch of computer science that aims to understand

human intelligence and construct intelligent computers based on it [1]. For a com-

puter to be perceived as “acting humanly”, it must successfully communicate in

a human language (natural language processing), store what it knows (knowledge

representation), draw conclusions (decision making), adapt to new circumstances

and recognise patterns (machine learning), perceive objects (computer vision), and

be able to move and manipulate objects (robotics) [2]. Rich and Knight define AI as

“being concerned with how to make computers do things that humans can do better

at the moment” [3]. Our ability to adapt to different environmental conditions and

to change our behaviour accordingly through learning processes is an outstanding

feature of human intelligence. It is precisely this distinct ability to learn, far beyond

that of computers, that makes machine learning, as defined above, a core area of

AI [1].

Machine learning (ML) is a sub-field of AI and is concerned with how to con-

struct machines that improve themselves through experience. In other words, an

ML system learns from data. The rapid growth and greater accessibility of online

data, as well as cheaper computing capacity, together with the development of in-

novative learning algorithms, have contributed significantly to recent developments

in machine learning. In the world of AI, many developers have found that it is

often easier to train systems to learn from examples than to manually program the

desired output to all possible inputs. This has led to ML becoming the preferred

method in AI for many applications [4].

Pattern recognition (PR) is a subfield of AI that uses ML algorithms to try to

recognise patterns in data and categorise them as accurately as possible [5]. For

us humans, recognizing patterns is an intuitive process, as our brains have evolved

over millions of years to ensure our survival. For example, when we perceive a green

apple, we usually categorise it as “good”. A brown apple, on the other hand, we
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tend to categorise as “bad”. It is only natural that we also try to reproduce this

ability in machines [6]. In PR, there are two approaches to represent patterns: the

statistical and the structural approach.

In the statistical approach, the patterns to be classified are represented by a

set of features in a vector. Each pattern represents a so-called feature vector in

the multidimensional vector space. On the one hand, this form of representation

enables efficient calculations between the vectors. On the other hand, the feature

vectors do not allow direct connections between the patterns [7].

This is where the structural approach comes in. A central method of structural

PR deals with the search for similarities in patterns. [8]. The graph-based pattern

representation is often used in structural PR. In these representations, patterns are

mapped as graphs where nodes represent features and edges represent relationships

between features. Attributed relational graphs are graphs in which specific attributes

are assigned to both nodes and edges [9]. In the context of this work, we will use

the term “label” in place of “attribute”. This form of representation provides a

flexible method for modelling and analysing the structural complexity of patterns.

Although graph-based pattern representation is very useful, it also brings challenges.

Unlike feature vectors, which are relatively easy and efficient to analyse and compare

due to their consistent dimension and uniform nature, graphs are more complex to

handle. A major reason for this is that the elements of a graph, nodes and edges, are

usually neither ordered nor of fixed size. A direct comparison between two graphs

therefore requires the consideration of all potential node combinations, which adds

considerable complexity due to the exponentially increasing number of possible

combinations as the number of nodes increases [7].

An efficient approach is inexact or error-tolerant graph matching. One such

method utilizes graph kernels, powerful tools that transform graph data into a

format that machine learning algorithms, such as support vector machines, can

efficiently process. By transforming and comparing graphs in a high-dimensional

space, these kernels provide a means of assessing graph dissimilarity [10]. It’s worth

noting that dissimilarity and similarity are inversely proportional in this context,

a high degree of dissimilarity corresponds to a low degree of similarity (and vice

versa).

The idea of graph edit operations, such as node addition or deletion, leads to

the concept of graph edit costs, which quantify the effort needed to transform one

graph into another [11]. This notion was central to the development of the first

error-tolerant graph matching algorithm proposed by Tsai and Fu in 1979, which

was based on tree search and graph edit costs [12]. In this context, the graph edit

distance (GED) is introduced as a crucial tool for assessing graph dissimilarity.
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It measures the minimal total cost of an edit path, which is a sequence of edit

operations that transform a source graph into a target graph. Thus, a larger GED

value implies greater dissimilarity between the two graphs [7].”

These computed dissimilarities play a critical role in graph classification tasks.

For instance, the k-nearest neighbour (k-NN) classification algorithm can use these

dissimilarities to classify graphs within a dataset [13]. However, it’s worth noting

that exact computation of the GED falls under the category of quadratic assign-

ment problems, a class of NP-complete problems. The computational complexity

of the GED, especially when based on a tree search algorithm, grows exponentially

with respect to the number of nodes in the graphs, making it impractical for large

graphs [7].

Riesen and Bunke have introduced an approximate graph edit distance algorithm

using bipartite graph matching, which we will henceforth refer to as the bipartite

graph edit distance (BP-GED). Notably, the BP-GED can accomplish graph match-

ing in cubic time, significantly enhancing efficiency [14]. It is widely used in fields

such as image analysis, handwritten document analysis, biometrics, and bio- and

chemoinformatics [15]. The BP-GED plays a central role in computing the GEDs

between all pairs of graphs within a given class, enabling the creation of matching-

graphs as proposed by Fuchs and Riesen [16]. This work also adopts the BP-GED

as the method of choice to compute the GED for all graph pairs within a class.

The basic idea of matching-graphs is to highlight the similarities between two

graphs. They are derived from the information contained within the edit path.

There are two primary methods to create an matching-graph. One aims to create

small, compact matching-graphs that encapsulate the core of two original graphs

while the latter uses segments of the edit path to create new graph structures [16].

In this thesis, we undertake an in-depth analysis of these matching-graphs, us-

ing the statistical method of multidimensional scaling (MDS) for our investigation.

Multidimensional scaling, a distance-based dimension reduction technique, allows

us to visually examine the similarities between the original graphs and the generated

matching-graphs on a two-dimensional plot, providing an intuitive understanding

of their relationships. In addition, our exploration goes beyond qualitative evalu-

ation, as we introduce a novel method to quantitatively measure the effectiveness

of the matching-graphs. This combination of qualitative and quantitative anal-

ysis promises a comprehensive understanding of the potential and limitations of

matching-graphs in capturing graph similarities.

This thesis is organized as follows. Chapter 2 lays the foundation by defining key

terms and graph-based concepts, provides an overview of the GED, BP-GED and

matching-graphs, and offers a brief discussion on MDS. In Chapter 3 we perform
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practical applications of these theories, introduce a novel method and present the

results of experiments on various datasets. Finally, in Chapter 4 we summarize our

main findings and suggest possible directions for future research.
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Chapter 2

Basic Concepts

This chapter provides an overview of the basic concepts and terminology underlying

this thesis. We begin with the formal definitions of graphs, subgraphs, and graph

matching, following the foundation laid by Riesen [7] in Section 2.1. The notion of

GED and its more efficient variant, BP-GED, are introduced in Sections 2.2. We

explore the idea of matching-graphs in Section 2.3. Finally, Section 2.4 contains a

brief discussion on MDS, which is crucial for our proposed method.

2.1 Graphs

Graphs are robust tools for visualising and analysing diverse relational data, with

applications ranging from representing molecular structures, to understanding hand-

writing patterns, to revealing connections in social networks [17].

Basic Graph Theory

A graph g, defined as a three-tuple g = (V,E, µ), consists of a finite set of nodes

V , edges E ⊆ V × V , and a node labeling function µ. We will primarily deal

with graphs having either labelled or unlabelled nodes and unlabelled edges (see

Figure 2.1). Edges are defined by pairs of nodes (u, v) ∈ V ×V , where nodes u and

v are adjacent nodes. We will focus on simple graphs, which are undirected with at

most one edge between any two nodes. The degree of node u deg(u) is the number

of incident edges to u. Empty nodes or edges are denoted by ε.

By removing nodes, their incident edges and possibly some additional edges

from a graph g1, a subgraph g2 ⊆ g1 is obtained. Figure 2.1 illustrates this concept,

where graph (c) is a subgraph of graph (b).
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(a) (b) (c)

Figure 2.1: Illustration of three simple graphs: (a) has unlabelled nodes, (b) has
labelled nodes, graph (c) is a subgraph of graph (b).

2.2 Graph Edit Distance

The GED is a measure that evaluates the amount of distortion required to transform

the source graph g1 into the target graph g2 using basic edit operations such as

insertion, deletion and substitution on nodes and edges. We denote the substitution

of two nodes u ∈ V1 and v ∈ V2 by (u → v), the deletion of node u ∈ V1 by (u → ε)

and the insertion of node v ∈ V2 by (ε → v). Similar notation is used for edge edit

operations.

A set {e1, . . . , ek} of k edit operations ei that transform a graph g1 completely

into another graph g2 is called an edit path λ(g1, g2) between g1 and g2. The set of

all such edit paths from g1 to g2 is denoted by Υ(g1, g2).

The cost function c(ei) measures the intensity of an edit operation ei, indicating

the amount of graph modification caused. A low-cost edit path implies minor

modifications between similar graphs, while a high-cost edit path is required for

more dissimilar graphs [7].

Figure 2.2 illustrates an edit path from graph g1 to g2. The edit path is defined

as:

λ = {(u1 → v2), (u2 → v3), (u3 → v4), (u4 → v5), (u5 → ε), (ε → v1)} (2.1)

and implies the following edge edit operations:

{((u1, u2) → (v2, v3)), ((u2, u3) → (v3, v4)), ((u2, u4) → (v3, v5)),

((u1, u4) → ε), (ε → (v4, v5)), (ε → (v1, v2)), (ε → (v1, v3))}.
(2.2)

The GED is defined as follows. Let g1 be the source and g2 be the target graph.

The GED between g1 and g2 is defined as:

dλmin
(g1, g2) = min

λ∈Υ(g1,g2)

∑
ei∈λ

c(ei) (2.3)
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u1 u2 u3

u4

u5

v2 u2 u3

u4

u5

v2 v3 u3

u4

u5

v2 v3 v4

v5

v2 v3 v4

v5

v2 v3 v4

u4

u5

v2 v3 v4

v5

u5

v1
g1 g2

Figure 2.2: Transformation from graph g1 into g2 using the edit path λ = {(u1 →
v2), (u2 → v3), (u3 → v4), (u4 → v5), (u5 → ε), (ε → v1)}.

where dλmin
(g1, g2) is not necessarily unique.

Calculating the optimal path is inherently complex due to the exponentially large

number of possible edit paths. This complexity places GED within the realm of NP-

complete problems, under the family of quadratic assignment problems (QAPs) [18].

Bipartite Graph Edit Distance

Bipartite graph edit distance simplifies the GED problem by transforming it into a

Linear Sum Assign Problem (LSAP), which shifts the complexity from exponential

to cubic. In addition to this transformation, deriving upper and lower bounds as

an approximation for the GED can guide the search for optimal solutions and help

to eliminate non-optimal paths early in the process.

The shift also allows for the use of established LSAP-solving algorithms, such

as Munkren’s. As a result, BP-GED provides a more practical approach to graph

matching [7]. This work employs the BP-GED algorithm.

2.3 Matching-Graphs

The concept of matching graphs is introduced as an innovative data structure to

embody information about the matches between graph pairs. Proposed by Fuchs

and Riesen [16], it extracts and encapsulates data about matching components from

two graphs, creating a new structure that encapsulates matching nodes and edges.

Two methods for forming matching-graphs, Substitution Way (Subway) [19] and

Partial Edit Path Way (Pepway) [20], are presented. Both methods depend on the

GED computation, which results in an edit path for each pair of graphs from the

same class. This edit path forms the basis for matching-graph construction.

A matching-graph created by a source graph g1 and a target graph g2 is denoted

as mg1×g2 . For each edit path λ(g1, g2), two matching-graphs mg1×g2 and mg2×g1 are

built for the source and the target graph g1 and g2, respectively.

For the sake of simplicity, a unit cost of 1.0 for deletions and insertions of both

nodes and edges were employed and for the BP-GED algorithm, that approximates
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the GED, a weighting parameter α ∈ [0, 1] that is used to trade-off the relative

importance of node and edge edit costs was optimized (on all datasets) [16].

2.3.1 Subway

The Subway approach creates compact matching graphs that represent core or di-

versified parts of the original graphs. These matching-graphs are always subgraphs

of the original graphs, implying that mg1×g2 and mg2×g1 are subgraphs of g1 and g2,

respectively. They also keep the node labels from the original graphs.

All nodes of g1 and g2 that are actually substituted in the edit path λ(g1, g2) are

added to mg1×g2 and mg2×g1 , respectively. Conversely all nodes that are deleted in

g1 or inserted in g2 are not considered in the matching-graphs. Isolated nodes, i.e.

nodes without any adjacent nodes are removed in the process [19].

Two different strategies for edge handling were proposed [16]:

• No Pruning: If two nodes u1, u2 ∈ V1 of a source graph g1 are substituted with

nodes v1, v2 ∈ V2 in a target graph g2 and there exists an edge (u1, u2) ∈ E1,

(u1, u2) is included in the matching-graph mg1×g2 regardless whether or not

edge (v1, v2) is available in E2. The edge is unpruned.

• Pruning: We assume the same scenario as before. Edge (u1, u2) is only in-

cluded in the matching-graph mg1×g2 if and only if there exists an edge (v1, v2)

in E2 . So in cases where there is no corresponding edge in the other graph,

the edge is pruned.

Figure 2.3 illustrates the Subway procedure on two graphs: (a) is the source

graph g1 and (d) is the target graph g2. The edit path for this example is referred

to in Equation 2.1. The two graphs that are generated without pruning are graphs

(b) and (e). With edge pruning applied, matching-graphs (c) and (f) are generated.

In the pruned matching-graph (c), we can see that the edge (u1, u4) ∈ E1 has no

counterpart in the target graph ((v2, v5) /∈ E2) and is therefore not included in the

matching-graph. Matching-graph (f) follows the same principle.

Consider a set of training graphs Gωl
containing n graphs that belong to the

same class ωl. The generation of all possible matching-graphs for all pairs of graphs

(gi, gj) for i, j = 1, . . . n results in n × (n − 1) matching-graphs. This can lead to

a significantly large set of matching-graphs Mωl
, especially when n is large. To

maintain a manageable size, two selection methods were proposed with the aid of

the set median graph [21]. The set median graph gmdn ∈ S is defined as:

gmdn = argmin
gi∈S

∑
gj∈S

d(gi, gj) (2.4)
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u1 u2 u3

u4

u5

(a) Source graph g1

u1 u2 u3

u4

(b) mg1×g2 (unpruned)

u1 u2 u3

u4

(c) mg1×g2 (pruned)

v2 v3 v4

v5

v1

(d) Target graph g2

v2 v3 v4

v5

(e) mg2×g1 (unpruned)

v2 v3 v4

v5

(f) mg2×g1 (pruned)

Figure 2.3: Matching-graphs with unpruned and pruned edges derived from source
graph g1 and target graph g2.

where S is an arbitrary set of graphs. The set median graph is the graph of S

whose sum of distances to all other graphs in S is minimal. The selection process

is iterative and the two methods are described as follows [21]:

• Center selection: This involves selecting matching-graphs that are considered

similar as they are positioned near the center of the total set of matching-

graphs. 80 of these graphs are chosen for each class, characterized by hav-

ing the minimum total graph edit distances when compared with all other

matching-graphs in the same class. They symbolize the core or central fea-

tures of the original graphs.

• Spanning selection: This involves choosing diverse matching-graphs, which

are located farthest from the center of the set. Like the center selection, 80

graphs per class are selected, but these have the maximum total graph edit

distances when compared to all other matching-graphs. They represent the

diversified or varied aspects of the original graphs.

2.3.2 Pepway

This method revolves around the idea of randomly choosing a certain proportion of

all available edit operations in the edit path, resulting in a partial edit path with
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a subset of operations. These operations are then implemented on pairs of graphs

according to specific rules, generating two new graphical representations.

Suppose we have a set of training graphs Gω, and for every pair of graphs, (gi, gj)

within this set, we derive an edit path λ(gi, gj) = {e1, . . . , es}. Matching-graphs are

created for each edit path λ(gi, gj).

In the context of this work, matching-graphs are created according to the fol-

lowing procedure. We randomly select a percentage p ∈ {0.25, 0.5, 0.75, 1.0} of all

s available edit operations in λ(gi, gj). This provides us with a partial edit path

τ(gi, gj) = {e1, . . . , et} ∈ λ(gi, gj) with t = ⌊p · s⌋ edit operations. Each operation

ei ∈ τ(gi, gj) is applied on both graphs gi and gj according to following rules:

• If ei indicates a deletion, ei is applied only to mgi×gj .

• If ei indicates an insertion, the node that would be inserted inmgi×gj is instead

deleted in mgj×gi .

• If ei refers to a substitution, ei is applied on both gi and gj, swapping the

labels of the matching nodes in mgi×gj and mgj×gi .

We would like to use the example of a transformation from a source graph g1 to

a target g1 that we used in the section before (see Figure 2.2). For clarity, we will

display the edit graph here of that transformation again:

λ = {(u1 → v2), (u2 → v3), (u3 → v4), (u4 → v5), (u5 → ε), (ε → v1)}.

Suppose p = 0.5 and s = 6, this leads to t = ⌊0.5 · 6⌋ = 3, which means that three

edit operations from the edit path will be performed. With this information, we

choose the partial edit path τ randomly as follows:

λ = {(u1 → v2), (u2 → v3), (u3 → v4),

τ︷ ︸︸ ︷
(u4 → v5), (u5 → ε), (ε → v1)}.

This leads to following partial edit path τ :

τ = {(u4 → v5), (u5 → ε), (ε → v1)} (2.5)

We apply the edit operations on g1 and g2 according to the rules mentioned to

receive the matching-graphs mg1×g2 and mg2×g1 as shown in Figure 2.4.

In this work, we randomly select 10 graphs from each class. Subsequently, we

create all possible matching-graph combinations. This process results in a total of

90 unique matching-graphs.
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u1 u2 u3

u4

u5

(a) Source graph g1

u1 u2

v5

u1 u2 u3

(b) mg1×g2

v2 v3 v4

v5

v1

(c) Target graph g2

v2 v3 v4

u4

(d) mg2×g1

Figure 2.4: Matching-graphs derived from source graph g1 and target graph g2 using
Pepway.

2.4 Multidimensional Scaling

There exist several techniques for dimensionality reduction, each with its own

strengths and unique approach. Multidimensional Scaling (MDS), Principal Com-

ponent Analysis (PCA), t-Distributed Stochastic Neighbor Embedding (t-SNE), and

Linear Discriminant Analysis (LDA) are notable examples. All of the methods

mentioned are multivariate techniques used to analyze multiple variables simulta-

neously. In PCA, original variables are transformed into a new set of uncorre-

lated variables (principal components), ordered by the amount of variance they

explain [22]. LDA aims to find a linear combination of features that characterizes

or separates two or more classes of objects [23]. The t-SNE technique is a method,

which uses probability distributions to represent similarities between points [24].

Multidimensional scaling attempts to represent the data in a lower dimensional

space, often two or three dimensions, such that the distances (or dissimilarities)

between points are preserved as much as possible [25].

For our specific application, we have chosen to use MDS, more precisely, the

metric MDS variant. The reason for this is because we will be dealing with a

dissimilarity matrix encompassing all pairs of graphs and matching-graphs within

a class, and metric MDS is a distance-based method, making it an appropriate
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g1 g2 g3 g4

g1 0 1.2 3.6 2.4
g2 1.2 0 2.4 1.2
g3 3.6 2.4 0 1.2
g4 2.4 1.2 1.2 0

MDS Dimension 2

M
DS

 D
im

en
sio

n 
1

g1

g2

g3

g4

MDS

Figure 2.5: Symmetric dissimilarity matrix (left) and the corresponding MDS plot
(right) for four graphs. The entries in the matrix are the pairwise GED values. A
high dissimilarity in the matrix corresponds to a high distance in the plot.

choice for our data.

Assume you have a dissimilarity matrix D = [dij] for i, j = 1, . . . , n, where dij

represents the dissimilarity between the ith and jth objects in your dataset. MDS

seeks a set of points in a lower-dimensional space that preserves these dissimilarities

as much as possible.

We operate under the assumption of a symmetric dissimilarity matrix, despite

the approximated nature of the GED using the BP-GED algorithm. This symmetry

ensures equal distances d(gi, gj) = d(gj, gi) for all graph pairs (gi, gj).

Figure 2.5 illustrates this process for a simplified example of four graphs. The

dissimilarity matrix (left) maps the graph edit distances between the graphs, and

the MDS plot (right) visually represents these distances in two dimensions. Note

that the points in the MDS plot have been positioned such that their Euclidean

distances approximate the original graph edit distances from the dissimilarity matrix

as closely as possible.

The objective cost function that MDS tries to minimize (stress) is defined as

follows:

stress(X) =

∑
i<j(dij − ||xi − xj||)2∑

i<j d
2
ij

(2.6)

Here, X = {x1, x2, ..., xn} are the points in the low-dimensional space, dij is the

dissimilarity between objects i and j, and ||xi − xj|| is the Euclidean distance

between points xi and xj in the low-dimensional space [25].

The SMACOF (Scaling by MAjorizing a COmplicated Function) algorithm up-

dates the positions of points xi iteratively to minimize the stress. In each iter-

ation, the algorithm makes use of a B-matrix, whose elements b
(t)
ij are calculated
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as b
(t)
ij = − dij

||x(t)
i −x

(t)
j ||

. The B-matrix contains scaled dissimilarities between the

points [25].

The update in each iteration is given as:

x
(t+1)
i =

∑
j ̸=i w

(t)
ij b

(t)
ij x

(t)
j∑

j ̸=iw
(t)
ij b

(t)
ij

(2.7)

Here, t is the iteration number, and w
(t)
ij =

dij

||x(t)
i −x

(t)
j ||

are the weights that help in

the minimization of the stress. The algorithm continues until the change in stress

is smaller than a given threshold, or a maximum number of iterations is reached.
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Chapter 3

Experiment

In this chapter, we engage in a comprehensive analysis of matching-graphs derived

from a single class. We use MDS to identify patterns within these graphs and

introduce several methods and measures for quantitative and qualitative analysis

of matching-graphs. We then present the datasets used in our experiments. The

chapter concludes with a detailed analysis of our experimental results, highlighting

examples that clearly show unique patterns in the matching-graphs.

For the purpose of our analysis, we use the best matching graphs for each class,

as determined by their highest classification accuracy [16].

3.1 Methods and Measures

In this section, we present the methods and key measures that form the basis of our

comprehensive analysis. This includes simple MDS plots with all graphs present,

the innovative concept of Circle-Bound, as well as quantitative measures such as

the average node degree and the average node/edge size of original and matching-

graphs.

Circle-Bound

Circle-Bound is a key element of our analytical framework. The concept works

with a set of matching-graphs Mωl
, where ωl denotes a specific class. As seen in

Figure 3.1, the circle is defined by selecting its center to be the midpoint between

the two original graphs g1 and g2. The radius of this circle is then the distance

from this midpoint to either of the original graphs. The circle acts as a boundary.

Central to this idea is our hypothesis that matching-graphs, that encapsulate the

core parts of two original graphs, should ideally be located within the circle. If a

matching-graph is located near the center of the circle, it suggests that it represents

14
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Figure 3.1: Illustration of the Circle-Bound concept on an MDS plot. The black
dots g1 and g2 refer to source and target graphs, respectively. The red x refers to
the matching-graph mg1×g2 that was created from g1 and g2.

both original graphs equally well.

If a matching-graph lies outside the circle, it means that the matching-graph

has properties that go beyond a balanced representation of the original graphs’

properties. In our analysis, we aim to quantify the similarities between graphs. We

do this by calculating the percentage of matching-graphs within a given category

that fall within a defined circle. The equation we use to determine this is as follows:

In-Circle =
|M in

ωl
|

|Mωl
|
× 100 (3.1)

In this equation, πin(Mωl
) denotes the In-Circle percentage for the set of matching-

graphs Mωl
, |M in

ωl
| represents the number of matching-graphs in the set that lie

inside the circle, and |Mωl
| is the total number of matching-graphs in the set.

Another quantitative measure, Out-Diff, is calculated to assess the extent to

which matching-graphs exceed the circle boundary. It is defined as the average

relative outbound difference for the matching-graphs that lie outside the circle, as

given by the equation:

Out-Diff =
1

|M out
ωl

|
∑

m∈Mout
ωl

dm − rm
dm

× 100 (3.2)
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The terms dm and rm correspond to the total distance from the midpoint to the

matching-graph and the radius of the circle for each matching-graphm, respectively.

Measures

We define several measures to assess the properties of the graphs within a class, both

for the original graphs and for the matching-graphs. These measures include the

average node size (∅ Nodes) and edge size (∅ Edges), as well as the average node

degree (∅ deg). Applying the algorithm to the dataset may change these quantities,

and we quantify this change by calculating the relative percentage change (∆(%)).

For clarity, the original graphs will be denoted as og and the matching-graphs as

mg.

3.2 Datasets

We use five datasets representing chemical compounds in different contexts. The

AIDS dataset, derived from the IAM Graph Repository [26] and originally col-

lected by the National Cancer Institute (NCI), includes compounds that effectively

protect human cells against HIV (Confirmed Active) and those that do not (Con-

firmed Inactive). The Mutagenicity (MUTA) dataset [26] classifies compounds into

mutagenic and non-mutagenic categories. Other datasets in this category, includ-

ing NCI1, PTC(MR) and COX-2, are taken from Morris et al. [17]. The NCI1

dataset consists of compounds from anticancer screens, divided into those that in-

hibit the growth of lung cancer (active) and those that do not (inactive). The

PTC(MR) dataset contains potentially carcinogenic compounds, while the COX-2

dataset contains COX-2 inhibitors, both active and inactive. The nodes in these

datasets represent atoms, labelled by their chemical symbols.
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(a) COX-2 (b) LETTER (c) IMDB

Figure 3.2: Example graph representations: (a) molecule from COX-2, (b) letter
”E” from LETTER and (c) actor/actress - movie connections from IMDB.
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The IMDB dataset [17] is a film collaboration network, where nodes symbolise

actors/actresses and edges indicate their involvement in film. Each graph represents

a film. The nodes are unlabelled.

The LETTER dataset [26] contains graphs representing artificially distorted line

drawings of 15 straight-line letters (A, E, F, H, I, K, L, M, N, T, V, W, X, Y, Z).

Nodes represent line endpoints and edges illustrate the line drawings, with nodes

labelled with their corresponding x and y coordinates.

Figure 3.2 illustrates three example graphs, (a) is a molecule from the dataset

COX-2, (b) is the representation of the letter ”E” from the dataset LETTER and

(c) is a graph from the dataset IMDB.

Table 3.1 presents an overview of the datasets. Each row represents a separate

dataset, detailing the name, total size, the number of distinct classes, type of graph

representation, node labels, as well as the average number of nodes and edges per

graph.

Dataset Size # Classes Type Node labels ∅ Nodes ∅ Edges

AIDS 2000 2 Molecule Atom 15.7 16.2

MUTA 4337 2 Molecule Atom 30.3 30.8

NCI1 4110 2 Molecule Atom 29.9 32.3

IMDB-B 1000 2 Actor/Actress - Movie - 19.8 96.5

COX-2 466 2 Molecule Atom 41.2 43.4

PTC-MR 344 2 Molecule Atom 14.6 14.7

LETTER-H 2250 15 Letter drawings (x,y) coordinate 4.7 4.5

Table 3.1: Summary of dataset characteristics.

3.3 Results

In this chapter, we present the results of our research. To streamline the presen-

tation and interpretation of the results, we grouped the datasets based on results

for the Subway method into (NCI1 and MUTA) and (PTC(MR) and AIDS). For

this method, we will present detailed results for COX-2, PTC(MR), NCI1, IMDB

and LETTER. For Pepway, we grouped (MUTA, PTC(MR), NCI1 and COX-2)

together and will present detailed results for COX-2. For additional datasets, we

have provided tables and plots in the appendix A.

3.3.1 Subway

In the following section, we will analyse the matching-graphs generated through

the Subway method, which was described in Section 2.3.1. This method generates

subgraphs that aim to either represent the core parts of the original graphs (center
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Class -1 1

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 40.7 40.1 42.8 45.0 39.2 37.1 41.4 44.6

mg 15.1 38.3 36.8 42.3 15.1 34.1 33.3 41.5

∆ (%) -63.0 -4.6 -14.0 -5.9 -61.4 -8.1 -19.6 -6.9

∅ Edges

og 43.1 42.2 45.2 47.5 41.2 39.1 43.4 46.8
mg 8.6 40.3 37.9 44.5 9.0 36.0 33.8 43.4

∆ (%) -79.9 -4.6 -16.0 -6.3 -78.1 -7.8 -22.2 -7.3

∅ deg

og 2.1 2.1 2.1 2.1 2.1 2.1 2.1 2.1

mg 1.2 2.1 2.1 2.1 1.2 2.1 2.0 2.1
∆ (%) -45.8 0.0 -2.4 -0.5 -43.3 0.5 -3.3 -0.5

In-Circle (%) 40.0 58.8 22.5 28.8 6.2 61.2 7.5 38.8
Out-Diff (%) 48.2 4.0 74.9 31.4 38.6 15.8 75.9 28.2

Table 3.2: Comparison of original and matching graph characteristics for different
selection and pruning approaches for dataset COX-2.

selection) or the diverse parts of the original graphs (spanning selection). It also

uses a pruning mechanism to enhance the accuracy of the representation. For this,

we will use the matching-graphs created from following dataset: COX-2, PTC(MR),

NCI1, IMDB and LETTER.

COX-2

In Table 3.2, we can see the characteristics of the original and matching-graphs for

the COX-2 dataset using either center or spanning (span) selected graphs that are

pruned (pr) or unpruned (unpr).

Average Measures: We can see that the matching-graphs have fewer average

nodes, edges, and degrees than the original graphs, indicating a significant simplifi-

cation of the graph structure during the matching process. The largest percentage

reduction is observed in the average number of nodes (-63.0%) and edges (-79.9%)

under the pruning condition. In the case of the average degree, the most drastic

reduction reductions (-45.8%) are not as drastic as nodes and edges. This might be

due to the fact that the degree of a node could be more resilient to the effects of

pruning, especially when nodes and edges are equally removed in a balanced ratio.

Pruning: For both classes and each selection method, the In-Circle percent-

ages are consistently lower for pruned matching graphs compared to their unpruned

counterparts. For class 1, prune center selected (40.0%) is lower than unpruned cen-

ter selected (58.8%) and pruned spanning selected (22.5%) is also lower than un-

pruned spanning selected (28.8%). For class 1, it is more obvious with pruned cen-

ter selected (6.2%) being lower than unpruned center selected (61.2%) and pruned
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Figure 3.3: MDS plots for class -1 of the dataset COX-2. Black dot markers refer
to original graphs and red x markers refer to matching-graphs.

spanning selected (7.5%) being lower than unpruned spanning selected (38.8%).

This observation suggests that the unpruned matching graphs tend to be more cen-

trally located than those that have been pruned. Conversely, we observe that the

Out-Diff percentages are consistently higher for pruned matching graphs than for

the unpruned ones, that is for class -1 center pruned (48.2%) greater than spanning

pruned (22.5%) and center unpruned (58.8%) being greater than spanning unpruned

(28.8%). This same behaviour is present in class 1. This demonstrates that when

matching graphs do fall outside the inbound circle, pruned matching graphs have a

larger portion lying outside this circle than unpruned ones.

Selection: When investigating the relative differences between center and span-

ning selection in the context of pruned and unpruned conditions, several trends

emerge. Both in the pruned and unpruned state, center consistently demonstrates

a higher In-Circle percentage than spanning across both classes, that is for class -1:
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40.0% vs 22.5% and 55.8% vs 28.8% and for class 1: 61.2% vs 38.8%. However, an

exception occurs within class 1, where the In-Circle percentage of pruned graphs

under center (6.2%) is slightly lower than that under spanning (7.2%). The reason

for this outlier in the otherwise consistent pattern is not immediately apparent from

the current data. Furthermore, when comparing the Out-Diff percentage between

center and spanning, we consistently observe that spanning produces a higher Out-

Diff percentage for both pruned and unpruned graphs, irrespective of the class, that

is for class -1: 48.2% vs 74.9% and 4.0% vs 31.4% and for class 1: 38.6% vs 75.9%

and 15.8% vs 28.2%. This pattern validates our assumptions, that graphs chosen via

the spanning method to represent diverse features, tend to disperse more broadly

and often exceed the bounds of the inbound circle more than their center-selected

counterparts.

Figure 3.3 illustrates the MDS plots for class -1 for different selection and pruning

methods. There are two observations that need to be discussed. In center selection,

we see that the pruned and unpruned matching-graphs are clustered, showing high

similarity among each other. The dissimilarity of the matching-graphs to the orig-

inal graphs is more evenly distributed in the pruned versions than in the unpruned

ones. This might lead to the interpretation that the pruned matching-graphs better

represent the core parts of all original graphs than the unpruned matching-graphs.

In spanning selection, unpruned matching-graphs appear to be more evenly dis-

tribute than pruned ones. This might lead to the interpretation that unpruned

matching-graphs can better represent the diversified parts of the original graphs.

The Subway algorithm seems to be suitable for these types of graphs, with

pruned center selected matching-graphs well representing the core parts of the orig-

inal graphs and unpruned spanning selected matching-graphs well representing the

diversified parts of the original graphs.

PTC-MR

Table 3.3 presents the characteristics of original and matching graphs for the PTC(MR)

dataset.

Average Measures: We can see that the matching-graphs have fewer average

nodes, edges, and degrees than the original graphs, indicating a significant simplifi-

cation of the graph structure during the matching process. The largest percentage

reduction is observed in the average number of nodes and edges under the pruning

condition (-83.9%, resp. -92.4%) . In the case of the average degree, the reductions

are not as drastic as nodes and edges. Center selected matching-graphs tend to

have a larger reduction of the node degree (in the range from -28.8% to -83.8%)

than spanning selected ones (in the range from -13.8% to -51.2%).
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Class -1 1

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 15.9 14.3 17.0 24.5 12.8 10.8 15.2 24.2

mg 4.0 5.0 15.4 22.4 2.0 4.1 10.2 20.4

∆ (%) -74.9 -64.9 -9.3 -8.5 -83.9 -61.9 -32.7 -15.4

∅ Edges

og 16.6 14.9 17.7 25.9 13.3 11.1 15.8 26.2
mg 2.0 2.8 15.4 23.5 1.0 2.1 7.8 22.0

∆ (%) -88.0 -81.2 -12.9 -9.3 -92.4 -81.0 -50.7 -16.3

∅ Node Deg.

og 2.1 2.1 2.1 2.1 2.1 2.0 2.1 2.2

mg 1.0 1.1 2.0 2.1 1.0 1.0 1.5 2.2
∆ (%) -51.9 -46.4 -4.3 -0.5 -52.2 -50.2 -26.4 -0.9

In-Circle (%) 31.2 48.8 13.8 50.0 28.8 83.8 50.0 51.2
Out-Diff (%) 44.5 20.3 39.6 15.6 30.6 19.7 50.8 16.5

Table 3.3: Comparison of original and matching graph characteristics for different
selection and pruning approaches for data set PTC(MR).

Pruning: Pruned matching-graphs consistently have a lower In-Circle percent-

age than unpruned matching-graphs, that is for class -1: 31.2% vs 48.8% and 13.8%

vs 50.0% and class 1: 28.8% vs 83.8% and 50.0% vs 51.2% and a higher Out-Diff

percentage, that is for class -1: 44.5% vs 20.3% and 39.6% vs 15.6% and for class

1: 30.6% vs 19.7% and 50.8% vs 16.5%. This may indicate that pruned matching-

graphs tend to lie outside the circle more often.

Selection: The In-Circle percentage for pruned and unpruned matching-graphs

regarding selection is not consistent. In Class -1, pruned center selected matching-

graphs (31.2%) are higher than spanning selected (13.8%). In Class 1, pruned center

selected matching-graphs (28.8%) are lower than spanning selected matching-graphs

(50.0%). For Class 1, we observe a contrary pattern: the pruned matching-graphs

from the center selection have a lower In-Circle percentage (28.8%) than the ones

from the spanning selection (50.0%). The Out-Diff is inconsistent as well. In Class

-1, Out-Diff is consistently higher for center selected graphs (44.5% vs 39.6% and

20.3% vs 15.6%). In Class 1, this is not the case, prune center (30.6%) is lower than

prune spanning (50.8%).

Figure A.7 illustrates the MDS plots for class -1 for different selection and prun-

ing methods. There are two observations that need to be discussed. First, in center

selection, unpruned matching-graphs are tightly clustered. This means that they

are very similar to each other in reference to structure. The pruned matching-graphs

seem to be all the same subgraph, which is shown as one single red x in the plot.

This leads to the interpretation that while the unpruned matching-graphs capture

variety of core parts of the original graphs, the pruned matching-graphs seem to
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Figure 3.4: MDS plots for class -1 of the dataset PTC(MR). Black dot markers
refer to original graphs and red x markers refer to matching-graphs.

capture only one distinct subgraph that is believed to best represent the core parts.

In spanning selection, pruned matching-graphs are more evenly distributed than

unpruned ones. This leads to the interpretation that pruned matching-graphs can

have a wider range regarding the diversified structure and therefore more subgraph

possibilities than unpruned graphs.

NCI1

Table 3.4 presents the characteristics of original and matching graphs for the NCI1

dataset.

Average Measures: For the average number of nodes and edges, it can be ob-

served that in the matching-graphs, they are consistently lower than in the original

graphs, indicating a successful reduction of complexity in the resulting matching-

graphs. This reduction is particularly noticeable for pruned graphs, which show a
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Class 0 1

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 27.1 28.3 24.9 41.0 31.1 35.6 37.2 64.3

mg 9.6 13.5 12.4 36.7 10.7 16.5 17.1 57.9

∆ (%) -64.8 -52.2 -50.1 -10.5 -65.5 -53.6 -54.0 -10.0

∅ Edges

og 29.5 30.3 26.8 44.7 33.8 38.3 40.2 69.7
mg 6.3 9.0 7.6 39.4 6.8 11.6 13.6 61.9

∆ (%) -78.7 -70.4 -71.9 -11.7 -79.8 -69.7 -66.1 -11.2

∅ Node Deg.

og 2.2 2.1 2.2 2.2 2.2 2.2 2.2 2.2

mg 1.3 1.3 1.2 2.2 1.3 1.4 1.6 2.1
∆ (%) -39.9 -37.9 -43.5 -1.4 -41.3 -34.9 -25.9 -1.4

In-Circle (%) 12.5 58.8 18.8 46.2 3.8 72.5 6.2 50.0
Out-Diff (%) 60.5 21.2 55.7 8.3 63.4 14.6 67.3 11.4

Table 3.4: Comparison of original and matching graph characteristics for different
selection and pruning approaches for data set NCI1.

considerable decrease in the average number of nodes (in the range from -50.1% to

-64.5%) and edges (in the range from -66.1% to -79.8%) when compared with the

original graphs. The node degree is generally lower in the matching-graphs than in

the original graphs. Pruning causes the highest reduction in node degree (in the

range from -25.9% to -43.5%).

Pruning: The In-Circle percentage of pruned matching-graphs compared with

unpruned matching-graphs is consistently lower across both classes and for all types

of selections, that is for class 0: 12.5% vs 58.8% and 18.8% vs 46.2% and for class 1:

3.8% vs 72.5% and 6.2% vs 50.0%. Conversely, the Out-Diff percentage of pruned

matching-graphs is consistently higher than the Out-Diff percentage of unpruned

matching-graphs, that is for class 0: 60.5% vs 21.2% and 55.7% vs 8.3% and for

class 1: 63.4% vs 14.6% and 67.3% vs 11.4%. This is a strong indication that pruned

matching-graphs tend to be located outside the circle.

Selection: There are not large differences in In-Circle percentage between

pruned center selected matching-graphs and pruned spanning selected matching-

graphs. Unpruned center selected matching-graphs tend to have a higher In-Circle

value than unpruned spanning selected matching-graphs, that is for class 0: 58.8%

vs 46.2% and for class 1: 72.5% vs 50.0%. For Out-Diff percentages, the only

significant difference is in class 0 between unpruned center selection (21.2%) and

unpruned spanning selection (11.4%).

Figure 3.5 illustrates the MDS plots for class 0 for different selection and pruning

methods. There are two observations that need to be discussed. First, in the

center selection, pruned and unpruned matching-graphs build a cluster. The clusters
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Figure 3.5: MDS plots for class 1 of the dataset NCI1. Black dot markers refer to
original graphs and red x markers refer to matching-graphs.

are positioned in upper right corner at the edge and not in the middle of the

plot. This indicates a high dissimilarity from the matching-graphs to some of the

original graphs at the bottom of the plot. This leads to the interpretation that

these subgraphs are not able to represent the substructures of all original graphs

equally well. The pruning process does not help in this process.

The second observation is in the spanning selection. Here, we see that the

pruned spanning selected matching-graphs are evenly distributed over the plot while

the pruned counterparts are clustered. This might be an indication for a preferred

substructure within the original graphs that represents a diverse part, which appears
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to recur frequently.

IMDB

Class 0 1

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 17.8 18.4 37.8 39.8 18.2 18.9 34.4 33.8

mg 13.7 14.2 29.8 33.4 13.8 13.3 23.6 26.7

∆ (%) -23.0 -22.8 -21.0 -16.0 -23.9 -29.8 -31.5 -21.2

∅ Edges

og 62.2 84.7 284.2 270.9 50.9 84.8 332.9 279.4
mg 37.3 58.4 138.1 227.0 25.1 40.9 220.3 226.0

∆ (%) -40.0 -31.0 -51.4 -16.2 -50.7 -51.8 -33.8 -19.1

∅ deg

og 7.0 9.2 15.0 13.6 5.6 9.0 19.3 16.5

mg 5.4 8.2 9.3 13.6 3.6 6.2 18.7 17.0
∆ (%) -22.0 -10.8 -38.5 -0.2 -35.3 -31.3 -3.3 2.6

In-Circle (%) 72.5 78.8 13.8 52.5 72.5 36.2 22.5 38.8
Out-Diff (%) 28.3 24.6 27.4 20.5 40.5 18.0 12.1 13.5

Table 3.5: Comparison of original and matching graph characteristics for different
selection and pruning approaches for dataset IMDB.

Table 3.5 presents the characteristics of original and matching graphs for the

IMDB dataset.

Average Measures: We notice a consistent reduction in the average number

of nodes, edges, and degrees when transitioning from original to matching graphs

under all conditions. The largest relative reductions are observed in the average

number of edges (in the range from -16.2% to -51.8%). The reduction percentage in

edges is always greater than in nodes, indicating that the matching process might

be pruning more edges than nodes. The average number of edges and the node

degree are high in relation to the other datasets, ranging from 50.9 to 332.9 for

edges and 5.6 to 19.3 for node degree.

Pruning: In all conditions, pruned graphs have lower In-Circle percentages than

their unpruned counterparts, except for center selection class 1, where the In-Circle

percentage for pruned matching-graphs (72.5%) is higher than the percentage for

unpruned ones (36.2%). The Out-Diff percentages are generally higher for pruned

graphs, except for spanning selection in class 1, where unpruned matching-graphs

have a slightly higher Out-Diff percentage (13.5%) than the pruned ones (12.1%).

Selection: Looking at the Out-Diff percentages, center selection produces a

larger value than spanning for both pruned and unpruned conditions in both classes

with the exception in unpruned matching-graphs in class 1, where center selection

(36.2%) is smaller than spanning selection (38.8%). This suggests that pruned

25



MDS Dimension 2

M
DS

 D
im

en
sio

n 
1

MDS
Original
Matching

(a) center, unpruned

MDS Dimension 2

M
DS

 D
im

en
sio

n 
1

MDS
Original
Matching

(b) center, pruned

MDS Dimension 2

M
DS

 D
im

en
sio

n 
1

MDS
Original
Matching

(c) spanning, unpruned

MDS Dimension 2

M
DS

 D
im

en
sio

n 
1

MDS
Original
Matching

(d) spanning, pruned

Figure 3.6: MDS plots for class 1 of the dataset IMDB. Black dot markers refer to
original graphs and red x markers refer to matching-graphs.

center selected graphs tend to cluster closer to the center of the circle. The Out-

Diff percentage values of center selection are consistently higher than the values for

spanning selection for both pruned and unpruned matching-graphs. This suggest

that center selected matching-graphs that lie outside of the circle tend to be farther

away from the center of the circle than the spanning selected matching-graphs.

Figure 3.6 illustrates the MDS plots for class 1 for different selection and pruning

methods. There are two observations that need to be discussed. First, in center

selection, the distribution of original and matching-graphs look similar. Pruning

does not seem to have an effect on the matching-graphs.

The second observation is in relation to the spanning selection. In this case, the

dispersion of matching-graphs is not as uniform as observed in the COX-2 dataset.

We see a distinct cluster of original graphs in the left lower corner, indicating a high

degree of similarity among them with a few exceptions. Surrounding this cluster
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of original graphs, a corresponding cluster of matching-graphs has formed. This

indicates high similarity between original and matching-graphs.

Both observations could be due to the generally high average node degree of

the original graphs in the dataset, ranging from 5.9 to 19.3. This leads to the

interpretation that when nodes in a graph are highly interconnected, when pruning

or selecting nodes or edges to create matching graphs, the resultant substructures

may still retain a high degree of similarity with the original graph due to the sheer

number of connections. This could lead to a lack of diversity in the matching-

graphs, resulting in more similar graphs and tighter clustering. This pattern could

also suggest that graphs with a high degree of nodes are immune to the effects of

pruning and the method is not well adjusted to detect the diversified parts of the

original graphs.

Another reason might be the absence of node labels. This further simplifies the

transformation process from one graph to another, as there are fewer distinguishing

features to consider. The absence of node labels also reduces the level of diversity

across the graph dataset and might limit the variability among matching-graphs as

can be seen on the spanning selected plots. Unlabelled graph might therefore also

be immune to pruning and selection methods.

LETTER

Letter I E

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes

og 2.4 2.4 2.1 2.2 6.5 6.8 6.7 6.9
mg 2.0 2.0 2.1 2.2 6.0 6.0 5.6 6.6

∆ (%) -18.0 -16.7 -1.0 -0.5 -8.1 -11.1 -16.5 -4.1

∅ Edges

og 1.4 1.4 1.1 1.2 6.6 6.4 6.5 6.6

mg 1.0 1.0 1.1 1.2 4.0 4.9 4.4 6.4
∆ (%) -30.6 -28.6 -2.7 -0.8 -39.8 -23.4 -32.7 -3.0

∅ deg

og 1.2 1.2 1.0 1.1 2.0 1.9 2.0 1.9

mg 1.0 1.0 1.0 1.1 1.3 1.6 1.6 2.0
∆ (%) -15.3 -14.5 -1.0 -0.9 -34.5 -14.2 -19.4 1.0

In-Circle (%) 62.5 62.5 67.5 56.2 65.0 62.5 60.0 40.0
Out-Diff (%) 31.3 29.8 0.3 0.0 38.9 41.0 48.7 7.1

Table 3.6: Comparison of original and matching graph characteristics for different
selection and pruning approaches for the letters I and E from the dataset LETTER.

Table 3.6 presents the characteristics of original and matching graphs for the

LETTER dataset for letter ”I” and ”E”.
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Figure 3.7: MDS plots for letter ”I” of the dataset LETTER. Black dot markers
refer to original graphs and red x markers refer to matching-graphs.

Average Measures: In the cases of both letters ”I” and ”E”, the average

nodes, edges, and degrees of the matching-graphs are consistently lower than the

original graphs, indicating that information is lost during the matching process.

Pruning tends to intensify this reduction, where node reduction ranges from -1.0%

to -18.0% and edge reduction from -2.7 to -39.8. The average number of nodes and

edges are low in relation to other datasets, ranging from 2.2 to 6.9 for nodes and

1.1 to 6.6 for edges.

Pruning: For In-Circle, it appears that pruning has little impact in center

selection. However, spanning selection tends to lead to a higher In-Circle percent-

age for pruned matching-graphs. For letter ”E”, pruned matching-graphs have a

significantly higher Out-Diff percentage (48.7%) than the unpruned ones (7.1%).

Selection: The only noticeable pattern seen in the table is that for center selec-

tion in letter ”I”, the matching-graphs have consistently higher Out-Diff percentages
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than their counterparts in spanning selection, that is 31.3% vs 0.3% and 29.8% vs

0.0%. This is contradictory to our expectation that center selected matching-graphs

are less dispersed than spanning selected ones.

Figure 3.7 illustrates the MDS plots for Letter ”I” for different selection and

pruning methods. There are three observations that need to be discussed. First,

in center selection, the distribution of original and matching-graphs look similar,

which indicates that pruning has little effect in creating the core parts of the original

graphs. In spanning selection, the distribution of original and matching-graphs

looks also similar. Both show original graphs in the middle of the distribution

and matching-graphs dispersed. A key observation here is the distinct nature of

the distribution on the matching-graphs. This indicates that there are only few

possible subgraph configurations that represent the diversified parts of the original

graphs.
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Figure 3.8: MDS plots for letter ”E” of the dataset LETTER. Black dot markers
refer to original graphs and red x markers refer to matching-graphs.
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Figure 3.8 illustrates the MDS plots for Letter ”E” for different selection and

pruning methods. For center selected matching-graphs, we can see that the pruned

ones form a tighter cluster than the unpruned ones. This might indicate that due

to the higher average number of nodes and edges in the letter ”E” than in ”I”, the

algorithm is able to perform better.

In spanning selection, we see that in the unpruned scenario, the original graphs

are more centrally located than in the pruned scenario. This could indicate that

the unpruned matching-graphs represent a wider range of diversity than the pruned

ones. The pruned matching-graphs seem to be more evenly distributed than the

unpruned one. This may indicate that there are more possibilities for subgraphs

than in the unpruned scenario due to the nature of the pruning process.

Subway Conclusions

The effectiveness of the Subway method, particularly the pruning and selection

techniques, varies significantly depending on the specific dataset. For example, the

method excels at simplifying complex molecular graphs such as those observed in

the COX-2, PTC(MR) and NCI1 datasets. In contrast, the pruning technique isn’t

as effective for smaller graphs, such as those in the LETTER dataset, or graphs

with a high degree of nodes and absence of node labels, such as those in the IMDB

dataset.

The selection methods showed a similar variability in performance. While they

worked well on the COX-2, PTC(MR), NCI1 and LETTER datasets, they did not

perform as well on the IMDB dataset. The high node-degree and the absence of

node labels could be reasons for the bad performance. The combination of both

may result in a large set of highly similar matching-graphs, leading to the noticeable

clustering observed in the MDS plots.

The absence of node labels also reduces the level of diversity across the graph

dataset and might limit the variability among matching-graphs as can be seen on

the spanning selected plots. Unlabelled graph might therefore also be immune to

pruning and selection methods.

3.3.2 Pepway

In this part of our work, we will examine the matching-graphs produced by the Pep-

way method, which was described in detail in Section 2.3.2. Unlike Subway, Pepway

uses sequences from the edit path to generate unique data structures as matching-

graphs, rather than forming subgraphs of the original graphs. The unique advantage

of this approach is the generation of novel structures that capture different features
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of the original graphs. However, due to the similar appearances of the MDS plots

and the non-optimization of the Circle-Bound measures for this method, our anal-

ysis of Pepway matching-graphs will focus exclusively on the COX-2 dataset. The

data in the tables were obtained by considering groups of matching-graphs that

were generated using the same probability parameter p, but optimized using differ-

ent α values. The mean values for various metrics were then calculated from these

groups.

COX-2

Class -1 1

p 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

∅ Nodes

og 41.1±2.5 41.4±1.9 40.8±0.7 40.0±1.2 39.9±1.3 40.4±1.8 40.9±0.8 39.6±1.2

mg 40.5±2.7 40.2±1.7 38.7±0.6 37.5±0.6 39.6±1.2 39.1±1.5 38.5±0.7 37.0±0.8

∆ (%) -1.4±0.7 -2.9±0.7 -5.2±1.7 -6.1±2.6 -0.7±0.6 -3.0±1.0 -5.9±1.3 -6.7±1.1

∅ Edges

og 43.4±2.7 43.6±2.0 42.9±0.7 42.1±1.3 41.9±1.3 42.4±1.8 43.0±0.9 41.7±1.2

mg 42.5±2.9 42.1±1.9 40.3±0.6 39.2±0.8 41.4±1.2 41.0±1.6 40.1±0.8 38.5±0.8

∆ (%) -2.0±0.9 -3.4±0.9 -6.1±1.7 -7.0±2.6 -1.2±0.4 -3.3±1.0 -6.8±1.6 -7.7±1.0

∅ deg

og 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0

mg 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0 2.1±0.0

∆ (%) -0.6±0.2 -0.6±0.6 -1.0±0.0 -0.9±0.4 -0.5±0.3 -0.5±0.3 -1.0±0.7 -1.0±0.4

In-Circle (%) 53.8±34.2 64.4±18.3 51.7±12.7 45.8±11.9 60.4±24.3 67.3±25.3 40.5±9.6 45.3±17.9

Out-Diff (%) 27.4±14.0 30.6±7.3 30.2±10.1 34.6±9.7 16.2±8.5 23.4±9.8 34.1±9.1 35.1±1.9

Table 3.7: Comparison of original and matching graph characteristics for the Pep-
way method for dataset COX-2. Probability is denoted as p.

Table A.7 presents the characteristics of original and matching graphs for the

COX-2 dataset created by Pepway.

Average Measures: If p represents the probability of how much of an edit path

is applied to the original graph, then as p increases, we should expect to see more

modifications in the original graphs. Both the average number of nodes and edges

tend to decrease from the original graphs to the matching graphs across both classes.

Furthermore, this decrease is accentuated as the probability p increases from 0.25

to 1.0, that is for the change in node size for class -1 read from left to right (from

0.25 to 1.0): -1.4±0.7 vs -2.9±0.7 vs -5.2±1.7 vs -6.1±2.6 (in percentages) and for

edges: -2.0±0.9 vs -3.4±0.9 vs -6.1±1.7 vs -7.0±2.6 (in percentages). The same

trend is seen in class 1. This pattern indicates that the matching process tends to

produce graphs that are generally smaller than the original graphs, and the size

reduction becomes more pronounced with increasing p.

Probability: We can observe that the In-Circle percentages do not strictly

decrease with an increase in p. For instance, for class -1, In-Circle percentage
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Figure 3.9: MDS plots for class -1 of the dataset COX-2 for different probability
p. Black dot markers refer to original graphs and red x markers refer to matching-
graphs.

initially increases from 53.8% at p = 0.25 to 64.4% at p = 0.5, then it decreases to

51.7% at p = 0.75 and further down to 45.8% at p = 1.0. For class 1, the trend is

also not linear, with In-Circle percentage initially increasing from 60.4% at p = 0.25

to 67.3% at p = 0.5 before dropping sharply to 40.5% at p = 0.75 and then slightly

increasing to 45.3% at p = 1.0.

However, the high standard deviations in In-Circle percentage suggest signifi-

cant variability in these measurements, which makes it more difficult to draw clear

conclusions from the data.

It’s worth noting that high standard deviations can also make it more difficult

to compare means across different p values, as the overlap in the ranges of possible

values can be quite large. This should be taken into account when interpreting the

results and considering the impact of different p values on the similarity between
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original and matching graphs.

Regarding the Out-Diff percentages, we can observe a generally increasing trend

with increasing p for both classes. This would be expected since applying more of

the edit path should result in more differences between the original and matching

graphs.

Overall, while the expected trend of increasing dissimilarity with higher p is ob-

served in the Out-Diff percentage, it’s not strictly followed in the In-Circle percent-

age, suggesting that the relationship between p and the similarity between original

and matching-graphs could be more complex than initially assumed.

Figure 3.9 illustrates the MDS plots for class -1 of dataset COX-2 for different p

values. The plots are arranged according to probability p. There is one consistent

pattern across all plots.

For certain original graphs, a distinct cluster of matching-graphs can be found in

their immediate proximity. This clustering might suggest that the matching-graphs

have undergone a short partial edit path and therefore are still close to one of the

original graphs.

3.3.3 Discussion

The visualizations from the MDS plots seem to highlight the underlying patterns

and the structural relationships between the original and the matching-graphs effec-

tively. Therefore, this analysis method proved useful in interpreting the matching-

graphs of both Subway and Pepway methods.

The In-Circle measure, as currently defined, may be too restrictive and not

fully capture the relationship between original and matching graphs. We observed

several instances where a matching-graph is in close proximity to an original graph

but falls outside the defined circle, as can be seen in Figure 3.10. These cases are

not included in the In-Circle percentage, which can lead to an underestimation of

the extent to which matching-graphs resemble their original counterparts.

In the context of the Pepway method, the analytical measures such as In-Circle

and Out-Diff appear to be less effective. The matching-graphs created by Pepway

are new data structures, not simply subgraphs of the original graphs. This charac-

teristic further complicates the understanding and analysis of these matching-graphs

and their relationship to their respective original graphs. Therefore, it may be nec-

essary to develop alternative analytical strategies that are more suitable to fully

understand their structure.
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Figure 3.10: Two Circle-Bound examples of matching-graphs from class -1 of dataset
COX-2. (a) is generated by Subway and is pruned and center selected and (b) is
generated by Pepway with p = 0.25. The red x marker refers to the matching-
graphs, the black dot markers refer to the original graphs.
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Chapter 4

Conclusion and Future Work

We used several datasets to evaluate the effectiveness of Subway in graph simplifica-

tion and one dataset to explore Pepway. We employed MDS to identify patterns of

similarity between graphs visually. Our investigation considered two key measures,

In-Circle and Out-Diff, to evaluate the efficiency of the methods. In conclusion,

our work has shown that the utility of pruning and selection techniques in Subway

is context dependent, and is particularly effective in simplifying molecular graphs,

as illustrated by the COX-2, PTC(MR) and NCI1 datasets. However, for smaller

graphs, such as those in the LETTER dataset, or graphs with a high degree of

nodes and absence of node labels, such as those in the IMDB dataset, pruning is

less effective.

The selection methods also showed varying efficacy, performing well on COX-2,

PTC(MR), NCI1 and LETTER datasets but falling short on the IMDB dataset.

We found that the lack of node labels in the IMDB graphs may contribute to the

increased similarity between the original and matching graphs. The lack of labels,

coupled with the high node degree degree, appears to limit the potential variability

introduced by the pruning and selection techniques and results in noticeable clusters.

g1 g2

mg1×g2

Figure 4.1: An illustration of an ellipse with original graphs g1 and g2 as focal
points. The matching graph mg1×g2 moves slightly away from g1, but is still inside
the ellipse and considered inside the boundary.
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Our research showed that the used analytical measures In-Circle and Out-Diff

are less effective for the Pepway method due to the reason that the matching-

graphs created by Pepway are new data structure. On the MDS plots however, we

saw clusters of matching-graphs near certain original graphs, implying some degree

of similarity and pattern preservation.

As a part of future work, we propose exploring other geometric forms, such as

ellipses, as potential boundaries to measure structural similarity. In this concept,

the original graphs would be positioned at the focal points of the ellipse as shown in

Figure 4.1. This modification would allow us to capture the matching-graphs that

are close to one original graph but slightly farther from the other.

This approach could provide a more flexible and inclusive boundary, capturing a

larger set of matching-graphs that are closely related to their original counterparts

but might be missed by the current In-Circle measure.
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Appendix A

Tables and MDS Plots

A.1 Subway

AIDS

Class a i

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 38.5 31.8 54.1 57.6 10.3 9.6 10.4 10.8

mg 5.9 20.2 38.4 43.3 3.0 7.4 8.5 10.2

∆ (%) -84.6 -36.5 -29.1 -24.8 -70.8 -23.2 -18.5 -6.1

∅ Edges

og 40.8 33.5 57.2 61.3 10.5 9.3 10.6 11.0
mg 3.0 17.3 39.9 45.6 2.0 6.2 6.2 10.7

∆ (%) -92.6 -48.4 -30.2 -25.6 -80.9 -33.5 -40.9 -2.6

∅ Node Deg.

og 2.1 2.1 2.1 2.1 2.0 1.9 2.0 2.0

mg 1.0 1.7 2.1 2.1 1.3 1.7 1.5 2.1
∆ (%) -52.4 -19.0 -1.9 -1.4 -34.8 -13.5 -27.6 3.4

In-Circle (%) 0.0 43.8 0.0 22.5 8.8 71.2 42.5 48.8

Out-Diff (%) 55.1 22.4 70.2 22.2 58.3 42.2 34.8 10.1

Table A.1: Comparison of original and matching graph characteristics for different
selection and pruning approaches for dataset AIDS.
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Figure A.1: MDS plots for class a of the dataset AIDS. Black dot markers refer to
original graphs and red x markers refer to matching-graphs.
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MUTA

Class mutagen nonmutagen

Selection center span center span

Pruning pr unpr pr unpr pr unpr pr unpr

∅ Nodes
og 31.2 24.8 34.8 49.8 29.2 32.9 35.7 79.9

mg 2.2 3.8 20.1 38.1 2.0 3.9 21.2 64.4

∆ (%) -92.9 -84.9 -42.4 -23.5 -93.2 -88.2 -40.5 -19.4

∅ Edges

og 32.3 25.8 37.4 51.3 29.9 33.6 36.5 76.0
mg 1.2 2.4 18.7 39.4 1.0 2.5 18.0 65.7

∆ (%) -96.3 -90.7 -49.9 -23.3 -96.7 -92.5 -50.8 -13.6

∅ Node Deg.

og 2.1 2.1 2.1 2.1 2.0 2.0 2.0 1.9

mg 1.1 1.3 1.9 2.1 1.0 1.3 1.7 2.0
∆ (%) -47.3 -38.3 -12.6 0.5 -51.2 -36.8 -17.2 7.4

In-Circle (%) 2.5 32.5 15.0 37.5 31.2 45.0 15.0 41.2
Out-Diff (%) 40.3 18.2 57.2 26.7 44.7 21.0 57.0 23.7

Table A.2: Comparison of original and matching graph characteristics for different
selection and pruning approaches for data set MUTA.
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Figure A.2: MDS plots for class muta of the dataset MUTA. Black dot markers
refer to original graphs and red x markers refer to matching-graphs.
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LETTER

Letter Selection Pruning
∅ Nodes ∅ Edges ∅ deg In-

Circle
(%)

Out-
Diff
(%)og mg ∆(%) og mg ∆(%) og mg ∆(%)

A
center

pr 5.9 4.8 -18 5.4 2.9 -46 1.8 1.2 -35 65 44
unpr 5.5 5.0 -9 4.8 4.0 -18 1.8 1.6 -10 80 37

span
pr 5.8 4.9 -16 5.2 3.6 -31 1.8 1.5 -18 46 37

unpr 6.1 5.8 -6 5.2 5.0 -5 1.7 1.7 0 59 20

E

center
pr 6.5 6.0 -8 6.6 4.0 -40 2.0 1.3 -34 65 39

unpr 6.8 6.0 -11 6.4 4.9 -23 1.9 1.6 -14 62 41

span
pr 6.7 5.6 -17 6.5 4.4 -33 2.0 1.6 -19 60 49

unpr 6.9 6.6 -4 6.6 6.4 -3 1.9 2.0 1 40 7

F

center
pr 5.8 5.0 -13 5.7 3.0 -47 2.0 1.2 -39 69 34

unpr 5.7 5.0 -12 5.1 3.9 -23 1.8 1.6 -13 72 35

span
pr 5.8 4.6 -19 5.4 3.5 -35 1.9 1.5 -20 30 42

unpr 6.3 5.9 -7 5.5 5.0 -9 1.8 1.7 -3 44 19

H
center

pr 6.5 5.9 -9 5.5 3.0 -46 1.7 1.0 -41 59 42
unpr 6.7 6.0 -10 5.3 3.9 -27 1.6 1.3 -19 75 42

span
pr 6.7 5.4 -20 5.5 3.5 -37 1.6 1.3 -21 32 43

unpr 6.9 6.6 -4 5.6 5.4 -4 1.6 1.6 0 61 18

I

center
pr 2.4 2.0 -18 1.4 1.0 -31 1.2 1.0 -15 62 31

unpr 2.4 2.0 -17 1.4 1.0 -29 1.2 1.0 -15 62 30

span
pr 2.1 2.1 -1 1.1 1.1 -3 1.0 1.0 -1 68 0

unpr 2.2 2.2 0 1.2 1.2 -1 1.1 1.1 -1 56 0

K

center
pr 5.9 5.0 -16 5.6 3.0 -46 1.9 1.2 -36 68 42

unpr 5.9 5.0 -15 5.3 4.1 -22 1.8 1.6 -8 69 36

span
pr 5.8 4.7 -19 5.1 3.3 -34 1.7 1.4 -18 32 55

unpr 6.2 5.8 -7 5.3 5.0 -7 1.7 1.7 0 58 8

L
center

pr 3.5 3.0 -15 3.5 2.9 -17 2.0 1.9 -2 54 41

unpr 3.5 3.0 -14 3.4 3.0 -11 1.9 2.0 4 59 38

span
pr 3.5 3.2 -11 3.0 2.4 -19 1.7 1.6 -10 42 43

unpr 3.6 3.6 -2 3.1 3.0 -5 1.7 1.7 -3 44 2

M

center
pr 5.3 5.0 -6 6.4 4.0 -38 2.4 1.6 -34 64 36

unpr 5.6 5.0 -10 6.3 5.3 -15 2.3 2.1 -6 65 26

span
pr 5.7 5.0 -11 6.4 4.5 -30 2.3 1.8 -21 49 28

unpr 5.9 5.6 -5 6.5 6.1 -6 2.2 2.2 -2 52 12

Table A.3: LETTER A-M
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Figure A.3: MDS plots for letter ”A” of the dataset LETTER. Black dot markers
refer to original graphs and red x markers refer to matching-graphs.
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Figure A.4: MDS plots for letter ”Z” of the dataset LETTER. Black dot markers
refer to original graphs and red x markers refer to matching-graphs.
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Letter Selection Pruning
∅ Nodes ∅ Edges ∅ deg In-

Circle
(%)

Out-
Diff
(%)og mg ∆

(%)
og mg ∆

(%)
og mg ∆

(%)

N
center

pr 4.5 4.0 -11 5.3 4.1 -23 2.4 2.0 -14 69 26

unpr 4.3 4.0 -7 5.2 5.0 -5 2.4 2.5 3 88 25

span
pr 4.9 4.5 -8 5.4 4.6 -15 2.2 2.1 -8 68 27

unpr 5.1 4.9 -3 5.6 5.2 -6 2.2 2.1 -3 55 3

T

center
pr 4.6 4.0 -12 4.0 2.0 -50 1.7 1.0 -43 78 36

unpr 4.4 4.0 -9 3.9 3.3 -16 1.8 1.6 -7 72 11

span
pr 4.5 3.9 -13 3.8 2.6 -31 1.7 1.3 -20 35 32

unpr 4.6 4.3 -5 3.9 3.5 -11 1.7 1.6 -6 44 11

V

center
pr 3.6 3.0 -18 3.3 2.4 -27 1.8 1.6 -12 81 38

unpr 3.3 3.0 -10 3.2 3.0 -7 1.9 2.0 4 75 24

span
pr 3.7 3.3 -9 3.2 2.5 -21 1.7 1.5 -12 38 33

unpr 3.7 3.5 -6 3.1 2.8 -10 1.7 1.6 -5 34 24

W

center
pr 5.8 5.0 -14 6.1 4.0 -35 2.1 1.6 -24 64 47

unpr 5.7 5.0 -12 6.1 5.0 -18 2.1 2.0 -7 64 41

span
pr 5.7 4.7 -18 5.7 4.1 -28 2.0 1.8 -12 38 39

unpr 5.8 5.2 -9 5.8 5.3 -7 2.0 2.0 1 32 11

X

center
pr 5.2 4.0 -23 4.4 2.0 -54 1.7 1.0 -40 61 44

unpr 5.0 4.0 -20 4.1 2.6 -36 1.7 1.3 -20 59 32

span
pr 5.1 4.3 -15 4.3 3.0 -30 1.7 1.4 -17 48 35

unpr 5.4 4.9 -9 4.4 4.0 -10 1.6 1.6 -1 52 16

Y
center

pr 4.7 4.0 -15 4.7 3.0 -36 2.0 1.5 -24 66 44
unpr 4.5 4.0 -11 4.1 3.3 -19 1.8 1.7 -9 80 31

span
pr 4.7 4.1 -12 4.4 3.3 -24 1.9 1.6 -14 39 23

unpr 4.8 4.6 -4 4.5 4.1 -8 1.9 1.8 -4 60 6

Z

center
pr 4.6 4.0 -14 5.0 3.2 -37 2.2 1.6 -26 81 49

unpr 4.6 4.0 -14 5.2 4.7 -11 2.2 2.3 4 68 36

span
pr 4.8 4.3 -10 4.8 3.8 -20 2.0 1.8 -12 69 16

unpr 4.8 4.6 -4 4.6 4.3 -7 1.9 1.8 -4 48 1

Table A.4: LETTER N-Z
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A.2 Pepway

PTC(MR)

Class -1 1

p 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

∅ Nodes

og 16.3±2.2 14.4±4.3 15.4±1.8 16.3±2.1 12.3±2.1 13.1±1.7 12.2±3.2 12.1±3.6

mg 16.4±2.4 12.5±3.8 12.0±1.4 11.6±1.1 12.5±2.1 11.4±1.5 9.0±2.3 8.4±2.5

∆ (%) 0±4 -13±1 -22±2 -29±3 1±3 -13±3 -26±4 -31±0

∅ Edges

og 16.9±2.3 14.9±5.0 15.9±1.9 16.6±2.5 12.7±2.4 13.7±2.0 12.6±3.8 12.6±4.4

mg 16.2±2.4 12.1±4.1 11.3±1.4 11.0±1.1 12.3±2.2 10.9±1.6 8.3±2.4 7.9±2.8

∆ (%) -4±4 -19±1 -28±2 -34±3 -3±2 -20±5 -34±4 -37±0

∅ deg

og 2.1 2.1±0.1 2.1±0.1 2.0 2.1±0.1 2.1 2.0±0.1 2.1±0.1

mg 2.0±0.1 1.9±0.1 1.9 1.9 2.0±0.1 1.9 1.8±0.1 1.9±0.1

∆ (%) -4±1 -7±1 -8±1 -6±1 -5±1 -8±3 -11±1 -9±0

In-Circle (%) 71±18 68±16 66±16 56±4 71±20 69±21 68±12 60±11

Out-Diff (%) 17±7 25±6 24±9 21±5 19±12 29±4 19±7 25±10

Table A.5: Comparison of original and matching graph characteristics for the Pep-
way method for dataset PTC(MR). Probability is denoted as p.
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Figure A.5: MDS plots for class 1 of the dataset PTC(MR) for different probability
p. Black dot markers refer to original graphs and red x markers refer to matching-
graphs.
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MUTA

Class mutagen nonmutagen

p 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

∅ Nodes

og 29.5±2.0 32.5±4.7 31.2±8.8 28.2±1.4 32.9±6.0 34.0±4.2 32.3±9.9 29.0±5.6

mg 27.2±2.0 25.2±3.2 23.6±3.4 20.0±2.5 28.9±5.2 27.2±4.7 21.3±4.3 17.4±3.0

∆ (%) -8±3 -22±5 -22±9 -29±9 -12±3 -20±7 -32±8 -40±1

∅ Edges

og 30.8±2.5 33.7±4.6 31.4±5.3 30.0±1.5 33.5±6.0 34.8±4.3 32.1±8.3 29.7±5.3

mg 27.8±2.5 24.6±3.1 23.6±3.4 20.1±2.4 28.6±5.1 26.8±5.3 20.4±4.1 16.5±2.8

∆ (%) -10±3 -27±6 -24±5 -33±9 -14±4 -24±8 -36±6 -44±1

∅ deg

og 2.1±0.1 2.1 2.1±0.2 2.1 2.0 2.0 2.0±0.1 2.1

mg 2.0±0.1 2.0 2.0 2.0 2.0 2.0±0.1 1.9 1.9

∆ (%) -2±1 -6±2 -2±8 -6±0 -3±2 -4±2 -5±4 -8±1

In-Circle (%) 64±15 66±21 65±14 55±6 62±16 61±14 56±15 50±8

Out-Diff. (%) 19±14 22±6 26±6 27±4 18±10 22±9 20±6 20±1

Table A.6: Comparison of original and matching graph characteristics for the Pep-
way method for dataset MUTA. Probability is denoted as p.
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Figure A.6: MDS plots for class mutagen of the dataset MUTA for different prob-
ability p. Black dot markers refer to original graphs and red x markers refer to
matching-graphs.
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NCI1

Class 0 1

p 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

∅ Nodes

og 25.4±5.3 24.9±3.3 26.9±3.7 28.9±2.3 37.8±5.5 36.5±3.8 29.8±3.4 34.6±4.8

mg 26.8±6.2 23.6±2.9 23.0±3.3 22.5±3.4 40.0±5.6 33.5±3.1 24.8±3.2 27.3±3.5

∆ (%) 6±3 -5±2 -15±4 -22±10 6±2 -8±3 -17±4 -21±7

∅ Edges

og 27.6±5.6 26.8±3.7 29.1±4.1 31.3±3.0 41.2±6.0 39.8±4.8 32.5±3.6 37.3±5.4

mg 27.6±5.5 23.9±2.9 22.9±3.6 21.9±4.5 41.5±5.7 33.7±3.1 24.4±3.6 26.9±4.6

∆ (%) 0±2 -11±3 -21±7 -30±13 1±2 -15±4 -25±4 -28±9

∅ deg

og 2.2 2.2 2.2 2.2 2.2 2.2±0.1 2.2 2.2

mg 2.1±0.1 2.0 2.0 1.9±0.1 2.1 2.0 2.0 2.0±0.1

∆ (%) -5±2 -6±2 -8±3 -11±5 -5±1 -7±2 -10±2 -9±4

In-Circle (%) 72±16 79±15 70±27 39±16 60±15 81±20 70±19 50±5

Out-Diff. (%) 27±11 22±14 32±19 41±15 30±16 28±14 26±18 33±14

Table A.7: Comparison of original and matching graph characteristics for the Pep-
way method for dataset NCI1. Probability is denoted as p.
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Figure A.7: MDS plots for class 1 of the dataset NCI1 for different probability p.
Black dot markers refer to original graphs and red x markers refer to matching-
graphs.
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