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Abstract

Due to their ability to process large datasets efficiently, machine learning algorithms

are of interest in many areas of medicine. Multidimensional data, such as electronic

patient records, contain large amounts of information. However, datasets are not

inherently suited to machine learning tasks. This thesis seeks to establish the

viability of a specific dataset, which has not been utilized for machine learning

purposes thus far. As a proof of concept, one-vs.-rest classification of ten select

medical diagnoses is performed with XGBoost. Of the ten diagnoses, the best

performing yielded a F1-score of 0.782. The average F1-score was 0.385. Although

the overall performance was relatively low, further analysis of the feature importance

confirms the feasibility of machine learning with this particular dataset.
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Chapter 1

Introduction

In this chapter, the research topic is introduced. Section 1.1 serves to familiarize

the reader with the research context of the thesis. Subsequently, in Section 1.2,

the research objective of the thesis is established. Finally, Section 1.3 outlines the

structure of the remaining thesis chapters.

1.1 Topic Introduction

Machine learning is a branch of Artificial Intelligence concerned with using data

to automatically derive rules, with which an output, usually a prediction or de-

cision, can be generated. By learning the underlying patterns and structures of

the data, machine learning algorithms can be applied to similar data or used to

generate novel output. Machine learning algorithms have been used in many scien-

tific disciplines outside computer science, such as economics, genomics, ecology, and

medicine. Research into using machine learning has been ongoing in the medical

field for decades [1]. Medical data, such as patient records, are now increasingly

available in digital form. This is consequently accompanied by a growing number of

published research papers on applying machine learning algorithms for processing

these data [2]. Within medicine, machine learning algorithms can be used for vari-

ous purposes such as research, prognosis, diagnosis, treatment, clinician workflow,

and expanding the availability of clinical expertise [3][4].

Diagnostic applications have been investigated in many branches of medicine [5]

for a large range of diseases. Hence, automated diagnosis is not restricted to a

single type of data. Some applications use genetic information [6], others use image

data [7]. Many applications use multidimensional data that combine patient infor-

mation from different clinical tests, medications, etc. Much of the past research is

focused on diagnosing a single disease or several diseases within a specific branch

of medicine. Machine learning algorithms have been used to diagnose a variety
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of diseases, among which are chronic kidney disease [8], diabetes mellitus [9], and

anemia [10]. Since hospital databases contain data that feature diagnoses from all

branches of medicine, research where the focus is not placed on a single branch of

medicine has also been conducted [11].

1.2 Research Goal

The work presented in this thesis is primarily exploratory. A partial dataset from a

previous research project entitled Swiss BioRef [12] is utilized for the first time for

machine learning purposes. The dataset encompasses measurements from 39 stan-

dard laboratory tests, aggregating data from 186,265 patients. Patient information

is included with every measurement, consisting of the patient’s age, gender, and

relevant diagnoses. Diagnoses and laboratory tests are classified in a unified way

following common taxonomies. With the amount of data and the valuable informa-

tion contained within, finding novel uses for the dataset is worth pursuing.

Machine learning methods are suitable for processing large amounts of data such

as the dataset mentioned above. Therefore, this thesis aims to assess the viability

of the dataset for machine learning and identify future avenues of research. To do

so, a specific application of machine learning is tested and evaluated. Namely, one-

vs.-rest multi-class classification is performed for a subset of ten diagnoses. The

machine learning model used is XGBoost (eXtreme Gradient Boosting) [13]. As a

secondary goal of the work, factors that impact the model’s performance, such as

class imbalance, are investigated as well.

1.3 Thesis Overview

Here, the contents of the remaining chapters are outlined in brief. Chapter 2 reviews

relevant concepts. This includes a discussion of machine learning in medicine. The

chapter also reviews XGBoost and motivates its use. Chapter 3 describes how the

dataset was prepared and discusses the specifics of the practical implementation.

Following that, Chapter 4 discusses the results, which will mainly be an evaluation

of the classification task. Finally, Chapter 5 closes the thesis with a conclusion on

the work and an outlook on future research.
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Chapter 2

Basics

In this chapter the theoretical background for later chapters will be presented.

The first section is concerned with machine learning in medicine. It will introduce

relevant machine learning concepts and give an overview of machine learning appli-

cations in medicine. The subsequent section motivates using XGBoost as the sole

machine learning model used in this thesis and discusses essential aspects of the

model.

2.1 Machine Learning in Medicine

2.1.1 Machine Learning Terminology

Machine learning algorithms are usually divided into categories based on the specific

task they perform. Tasks are defined by the data used to train the model and the

desired output. In the field of machine learning, three paradigms have become the

standard for classifying algorithms. These are:

• Supervised learning: Supervised learning refers to machine learning tasks

where labeled data is used, meaning the input data and their correspond-

ing correct outputs are provided during training. The aim is to derive a

mapping from input to output that can be applied to unseen data. The two

most common types of supervised learning tasks are classification (prediction

of discrete values) and regression (prediction of continuous values).

• Unsupervised learning: In unsupervised learning, the model is presented with

unlabeled data during training. The goal consists of discovering patterns,

relationships, and structures within the data without specific guidance from

a human. Clustering and dimensionality reduction are common examples of

unsupervised learning tasks. Clustering involves grouping similar data points,
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while dimensionality reduction aims to reduce input features while preserving

the data’s essential information.

• Reinforcement learning: Reinforcement learning refers to a form of machine

learning where the model emulates an intelligent actor interacting with its

environment. The goal is to find the optimal action based on the environ-

ment’s current state. This type of machine learning is therefore well suited

for robotics and game playing.

This thesis is concerned with classification and therefore falls within the supervised

learning paradigm.

Bias-Variance Tradeoff

A well-known obstacle in supervised learning is the bias-variance tradeoff. In the

application of supervised models, good performance on the training data should also

translate into good performance on unseen data. This is where bias and variance

enter a reciprocal relationship. Bias refers to errors introduced by the model not

being sensitive enough to relationships between input data and the output labels.

Variance, in turn, refers to errors introduced due to the model being overly sensitive

to slight variations within the training data. High variance models perform well on

training data but do not generalize to unseen data. This is referred to as overfitting.

High-bias models perform poorly both on unseen data and on training data. For

optimal performance data, bias and variance have to be balanced such that a model

recognizes patterns but does not learn minor variations present in the training data.

Specific measures to combat overfitting related to the machine learning model used

in this thesis are discussed in Section 2.2.1.

Evaluation Metrics

Classification tasks are referred to as such because the discrete outputs can be con-

ceptualized as classes, and the outputs often represent distinct concepts in practical

applications. Binary classification refers to tasks with only two possible classes. In

many cases, the classes are referred to as positive class and negative class, or simply

as ”1” and ”0”.

Evaluating a model’s performance with only accuracy, meaning the fraction or per-

centage of correctly predicted data, often is inadequate since it neglects to evaluate

performance on individual classes. In binary classification there are several metrics

to assess a model’s performance more comprehensively. One standard method to

visualize performance is to use a confusion matrix. Figure 2.1 shows an example
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Figure 2.1: Confusion matrix

of how a confusion matrix is structured. The number of correctly identified data

are shown in their respective square for both negative and positive classes. Other

metrics can be derived as functions of these fundamental measurements. Relevant

to the evaluation in Chapter 4 are precision, recall, and the F1-score.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1–score = 2× Precision×Recall

Precision+Recall
(2.3)

Precision indicates the fraction of actually positive data points among the entirety

of data predicted to be positive. Recall, or sensitivity, is the fraction of positive

data that were correctly labeled as such. These two metrics are not independent,

and an increase in one might lead to a decrease in the other. For example, an

increase in recall caused by a larger number of positive predictions might lead to

a reduction in precision due to more false positives. The F1-score is the harmonic

mean of precision and recall. It was chosen as the principal evaluation metric for

the experimental part since it represents both earlier metrics as a single value.

2.1.2 Applications in Medicine

As in other research fields, the interest in finding machine learning applications

has increased since the turn of the century. Shehab et al. conducted a literature

review of over 200 publications from 2000 to 2022 [2]. They note a clear upward

trend in the use of the term ”machine learning in the medical field”. In their work,

publications are grouped primarily according to specific diseases. A broader analysis

of machine learning applications in the medical field is provided by Rajkomar, Dean,
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and Kohane [3]. The following is a list of the uses they identify:

• Prognosis: Leveraging large amounts of patient data, machine learning algo-

rithms might be able to predict specific health outcomes better than a single

clinician. One example given for an application already in use is a system

that identifies patients at risk for needing intensive care in the future [14].

• Diagnosis: Mistakes in diagnosis are fairly common. A 2015 report by the

National Academies of Sciences, Engineering, and Medicine found that most

patients experience at least one diagnostic error in their lifetime [15]. Machine

learning algorithms that assist clinicians might lead to a reduction of errors.

• Treatment: For many patients, multiple options are available in treatment.

By using data from former patients, treatment can be adapted to a specific

patient for optimal outcomes.

• Clinician workflow: Practicing clinicians treat several patients per day and

are burdened with extracting relevant patient information from their records.

Using techniques such as automatic summarization or voice dictation, clini-

cians could spend less time reading and writing patient records and focus on

treatment.

• Expanding the availability of clinical expertise: Another challenge to providing

healthcare is that clinicians are unlikely to be able to interact with all the

patients in need of care physically. Automated triage could help identify

patients who require care the most, thus decreasing demand for clinicians and

improving availability.

It is crucial to emphasize that these applications never fully replace a trained clini-

cian and only serve as helpful tools that either extend their capabilities or replace a

specific part of their work. Another thing to note is that this list focuses exclusively

on applications in clinical practice. Other possibilities exist to utilize machine learn-

ing in medicine outside of clinical practice, such as the discovery and development

of novel drugs [4]. In this thesis, patient data are classified according to certain

diseases, meaning that the topic would fall within the paradigm of diagnosis.

Machine Learning for Diagnostic Purposes

Researchers have applied machine learning methods to diagnose various diseases.

Typically, these approaches are focused on a single disease. Certain medical disci-

plines receive more attention than others. In a 2021 review, Bhavsar et al. observe

that the two most common disciplines where machine learning diagnosis is used are

6



cardiology and endocrinology [5]. They identify the prevalence of the associated dis-

eases and the resulting availability of data as the main reason for this observation.

Other disciplines where machine learning has been used for diagnostic purposes in-

clude oncology [6], nephrology [8] and pulmonology [16].

A critical aspect of machine learning applications in diagnostics is the interpretabil-

ity of the model. Black-box models, where there is little mechanistic interpretability,

possibly hurt the trust in the model and prevent disclosure of important information

to patients [17]. It is crucial to note that simpler models, such as linear ones, are

not inherently more interpretable than more complex models, e.g., neural networks.

In certain aspects, deep-learning models might actually be more interpretable, since

deep-learning models typically do not require extensive feature engineering and of-

ten offer good post hoc interpretability since they learn rich representations that

can, for example, be visualized [18].

Related Work

The approach of using a dataset with patient data to predict diagnoses that are not

from the same medical discipline is uncommon. In the following paragraphs, the

focus will therefore be on presenting examples where binary classification is applied

to specific diseases that are also used in this thesis. Finally, one publication with a

similar approach to this thesis is reviewed.

Ogunleye and Wang apply binary classification for the diagnosis of chronic kidney

disease [8]. For model selection, they compare the base performance of several ma-

chine learning models: Linear discriminant analysis, classification and regression

trees, support vector machines, k-nearest neighbor, and XGBoost. As XGBoost

achieved the best base performance, it was elected as the model for the remainder

of their work. After optimizing and training, they report an accuracy of 1.000, a

sensitivity of 1.000, and a specificity of 1.000. Furthermore, a reduced model was

constructed based on the most relevant features. For the reduced model, they re-

port identical scores as for the complete model.

Ismail et al. evaluate 35 different machine learning algorithms in the binary clas-

sification of type 2 diabetes on three different datasets [9]. By using consistent

evaluation metrics, they intend to obtain results to compare the models objectively.

They report high accuracy for all models on all three datasets. But for many mod-

els, the reported F1-score is zero since none of the samples belonging to the positive

class were correctly predicted. They attribute this to high class imbalance within

the datasets used, ultimately hindering the reported goal of comparing models ob-

jectively.

Azarkhish, Raoufy, and Gharibzadeh use both an artificial neural network (ANN)
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and an adaptive neuro-fuzzy inference system (ANFIS) to diagnose iron deficiency

anemia using results from common laboratory blood tests [10]. Furthermore, they

predict serum iron levels. For the evaluation of the predicted diagnoses, the two

models are evaluated against each other and against predictions obtained by logistic

regression. The reported accuracy is 0.9629 for the ANN, 0.9074 for the ANFIS, and

0.6296 for logistic regression. From the reported precision and recall, the following

F1-scores can be calculated: 0.9675 for the ANN, 0.9151 for the ANFIS, and 0.7434

for logistic regression.

The methods that are most similar to this thesis’ approach can be found with

Sakhibgareeva and Zaozersky [11]. They use a dataset containing established diag-

noses, laboratory test results, and patient information such as age and gender. They

restrict prediction to four diagnoses1: iron-deficiency anemia (D50), non-insulin-

dependent diabetes mellitus (E11), other disorders of carbohydrate metabolism

(E74), and disorders of lipoprotein metabolism and other lipidemias (E78). Us-

ing gradient boosting of decision trees, they perform classification in a one-vs.-rest

approach, reducing it to four binary classification tasks. The reported accuracy

values are 0.95 for D50, 0.90 for E11, 0.97 for E74, and 0.89 for E78. Similar to the

previous publication, the F1-score is not explicitly stated but can be calculated from

the reported precision and recall values, resulting in the following scores: 0.7353 for

D50, 0.6531 for E11, 0.3111 for E74, and 0.9237 for E78.

2.2 Selected Machine Learning Algorithm

This section introduces theoretical concepts related to XGBoost that are relevant

to later chapters and motivates the use of XGBoost.

2.2.1 Details about the Algorithm

XGBoost (extreme gradient boosting) was introduced by Chen and Guestrin [13].

The XGBoost library supports multiple types of tasks and multiple models. The

discussion here will be limited to the tree-based gradient boosting model. XGBoost

differs in many regards from other gradient boosting systems. Most differences are

in the technical implementation, not the underlying algorithm. However, XGBoost

diverges from other algorithms in certain aspects, such as its split-finding mechanism

and the use of a regularized objective. In this section, the focus will lie on reviewing

the fundamentals of the underlying algorithm, but the regularized objective will also

be discussed briefly.

1Corresponding ICD-10-GM codes in parentheses
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Decision Trees

The fundamental building block of XGBoost is the decision tree. Decision trees are

machine learning algorithms that split an input space D = {(xi, yi)} (xi ∈ Rm, yi ∈
R) into disjoint subsets. The algorithm starts by splitting the original set D into

two subsets and then recursively splitting the subsets. Splits are made based on

thresholds for single features. More formally, a parent set Dp is split into two subsets

D1,D2 based on a given threshold θ ∈ R. These child subsets are defined as

D1 = {xi | xij < θ, xi ∈ Dp}

D2 = {xi | xij ≥ θ, xi ∈ Dp}

Where j ∈ {0, . . . ,m − 1} is the index of the feature to which the threshold is

applied.

Splits are made in a manner that maximizes a given loss function, e.g., mean squared

error. The splitting procedure is repeated until certain stopping criteria are met,

for example, a fixed number of iterations. The subsets created in the last iteration

of splitting are referred to as leaves. Depending on the task, predictions are made

by either taking the majority class at every leaf (classification) or the mean value

of the leaf (regression). Decision trees can be written in an additive form. Let T be

the number of leaves, Dk the disjoint leaf sets, and w ∈ RT the vector containing

the prediction values of the leaves. Then the tree can be written as:

f(x) =
T∑

k=1

wk1Dk
(x) (2.4)

Where 1Dk
(x) is defined as

1Dk
(x) =

1 if x ∈ Dk

0 else

There are several decision tree algorithms. The one employed by Chen and Guestrin

for XGBoost is CART (classification and regression trees) introduced by Breiman

et al. [19].

Gradient Boosting

Boosting is a method by which weak learners, such as decision trees that only make

a few splits, are combined to make predictions. Gradient boosting, more specifically

TreeBoost proposed by Friedman [20], employs forward stagewise additive modeling,
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meaning trees are added iteratively to an initial prediction during training. Each

new tree is constructed to correct the errors of the previous prediction. At iteration

t the prediction ŷi
t for input xi is given by

ŷi
t = ŷt−1

i + ft(xi) (2.5)

Where ŷt−1
i is the prediction from the previous iteration and ft is the new tree to

be added. Given some loss function l this prediction is optimized by minimizing

the following objective function:

L(t) =
n∑

i=0

l(yi, ŷ
t−1
i + ft(xi)) (2.6)

Where yi is the actual value that corresponds to the input xi. Friedman pro-

poses solving this optimization problem by using the second-order approximation

of L(t) [20]. From the minimum, the optimal leaf values for ft can be derived, which

are used for the split-making process to approximate the optimal structure for ft.

Regularization

The method proposed by Chen and Guestrin follows Friedman’s gradient boosting

implementation but expands the objective function by also including a regulariza-

tion term Ω, resulting in the following objective function:

L(t) =
n∑

i=0

l(yi, ŷ
t−1
i + ft(xi)) + Ω(ft) (2.7)

They define Ω as:

Ω(f) := γT +
1

2
λ∥w∥22 (2.8)

Where T is the number of leaves that f has and w is the vector of leaf weights of f .

Both γ and λ are hyperparameters that can be adjusted. Higher values for γ and λ

increase the objective function. If carefully chosen, these parameters help prevent

overfitting by punishing complex tree structures.

2.2.2 Motivation for Using XGBoost

In any classification task, the question arises as to which model should be used.

XGBoost was selected for several reasons. The primary reason is its performance,

both with regard to classification and computational efficiency. XGBoost has been

shown to outperform simpler algorithms, such as decision trees or support vector
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machines, in classification [8] tasks. In addition, it has been demonstrated that

XGBoost is significantly faster than other implementations of gradient boosting.

XGBoost was reported to be ten times faster when learning compared to scikit-

learn’s implementation of gradient boosting [13]. Furthermore, the XGBoost li-

brary is open source2. Lastly, XGBoost, despite its structural complexity, offers

post hoc interpretability in that the library provides methods to analyze feature

importance. This is especially relevant for machine learning tasks in the medical

field, as discussed in Section 2.1.2.

2Code available at https://github.com/dmlc/xgboost
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Chapter 3

Methods

The upcoming chapter will provide an introduction to the methods employed. The

chapter will begin with a discussion of the dataset. This will include information

about its origin, its structure, and how it was processed for the experimental part.

The hyperparameter tuning procedure will be explained in the latter section of the

chapter.

3.1 Dataset

3.1.1 Swiss BioRef

The dataset used for this thesis is part of a larger dataset created for a research

project entitled Swiss BioRef1 [12]. The stated aim of the project is to create a

sustainable framework for assessing patient-group-specific reference intervals. To

do so, laboratory data from four major Swiss hospitals were collected. The fraction

used in this thesis is the data collected from the University Hospital Bern.

3.1.2 Structure of the Dataset

The data consist of 5,967,846 anonymized laboratory blood measurements from

186,265 patients. Four attributes compromise a measurement: a description of the

laboratory test, a code identifying the laboratory test, a value, and a unit of mea-

surement. The codes follow the Logical Observation Identifiers Names and Codes

(LOINC) standard [22]. The set contains measurements from 39 different tests. A

complete list of the laboratory tests is available in Appendix A. In addition to the

measurement, each entry contains information about the patient. This includes the

1The paper about the project itself has not yet been published. The citation listed is a preprint.
However, specific technical aspects have been published (see Fasquelle-Lopez and Raisaro [21])
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age, administrative gender, and up to five previously established diagnoses consid-

ered relevant. Diagnoses are encoded according to the ICD-10-GM taxonomy2 [23].

Lastly, there is information about the laboratory device used for the test. In total,

a single entry consists of 21 features. A complete list of the features is available in

Appendix A.

One caveat worth noting about the diagnoses is that they precede the laboratory

tests. Since the data were collected to assess reference values, the inclusion of diag-

noses aims to provide information about the patient’s belonging to a specific patient

group, e.g., people with type 2 diabetes. Diagnoses were therefore not made as a

consequence of the laboratory results but rather function as metadata about the

measurements. This is a significant limitation to conducting the main part of this

thesis since a statistical relationship between predictor variables, i.e., the laboratory

results, and diagnosis is assumed for classification tasks.

Another substantial issue arising from the fact that the dataset was created to assess

reference values also requires clarification. The dataset is grouped by measurement,

meaning multiple entries may belong to the same patient; this is often the case, as

the average patient has around 32 entries. Multiple measurements may be relevant

for a certain diagnosis, and using all measurements as predictors for a single patient

is desirable for the classification task. Since the data are anonymized, there exists

no reliable way of grouping the entries by individual patients without deanonymiz-

ing the data. The method to circumnvent this problem is discussed in the next

section.

3.1.3 Preprocessing

As discussed in the previous section, grouping measurements by the patient is im-

possible. However, the data can be restructured to give an approximation of the

cases. Cases differ from patients in that a patient can have multiple cases. To

construct the approximate cases, measurements with the same patient information,

meaning age, gender, and diagnoses, that are directly consecutive are assumed to

belong to the same case and are thus grouped together. The measurements can

then be used as features for a single entry. This restructuring is illustrated as the

first step in Figure 3.1. For simplicity, the representation of the unchanged dataset

at the top of the figure only shows a subset of the actual features. Features with

information about laboratory equipment were disregarded during this first step and

the remainder of the thesis, with the assumption that variation introduced by dif-

2ICD-10-GM does not only encode diagnoses of diseases but also other patient statuses. In the
remainder of the thesis ”diagnosis” is therefore not used in its more colloquial sense, but rather
it is used to mean patient condition codified in the ICD-10-GM texonomy.
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PseudoID Test Value Diag01 … Diag05 Gender Age

Measurement 1 - - - - … - - -

… … … … … … … … …

Measurement 5967846 - - - - … - - -

Test01 … Test39 Diag01 … Diag05 Gender Age

Case 1 - … - - … - - -

… … … … … … … … …

Case 338182 - … - - … - - -

Test01 … Test39 M F Age Label

Case 1 - … - - - - -

… … … … … … … …

Case 338182 - … - - - - -

10×

Figure 3.1: Schematic representation of dataset preparation.

ferent laboratory equipment would not significantly impact the classification.

The dataset contains measurements from 323,600 cases. After reshaping the data

as described above, the number of cases is 338,182. The method is therefore not

optimal, but it suffices as a conservative approximation. Notwithstanding, this

should be considered a limitation to the significance of the results that will follow

in Chapter 3.

After this initial reshaping of the data, copies of the dataset were created for each

target diagnosis. The total number of different diagnoses exceeded 1600. For prac-

tical reasons, the classification was therefore limited to ten diagnoses. Binary labels

were assigned, indicating for each constructed case whether the target diagnosis was

listed. Cases where the diagnosis was present were assigned to the positive class

and cases where the diagnosis was absent were grouped in the negative class. For an

overview of the distribution of the laboratory results of the two classes, letter-value

plots are provided in Appendix B. Lastly, one-hot encoding was used for the gender

feature to avoid having categorical features.

Diagnoses were selected for different reasons. Table 3.1 gives an overview of the

diagnoses and why they were chosen. The four most frequent diagnoses, i.e., the

diagnoses listed the most after the approximation of the cases, were chosen. Three

diagnoses were included due to their potential to work well with the given classi-

fication task. Both diabetes and anemia affect certain blood values. Diabetes is

also a popular subject of machine learning research and has been studied previously

(e.g., Ismail et al. [9]). Specifically, type 2 diabetes and iron deficiency anemia were

selected because both are the most common form of the overarching diagnosis in
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(a) I25 (b) F43

Figure 3.2: Class imbalance for the most and least common diagnosis.
Number of cases with (1) and without (0) diagnosis shown for chronic ischemic
heart disease (I25) and reaction to severe stress and adjustment disorders (F43)

the dataset. Duration of pregnancy is also included. Since duration is not specified

further in the data, O09 will be referred to as pregnancy. Pregnancy was chosen in

response to the limitation that the diagnoses precede the laboratory tests. Preg-

nancy is unlikely to be listed as a diagnosis if the person was not pregnant at the

time of blood sample collection. Thus, possible changes in the measured blood

values would more likely manifest than for other diagnoses. Lastly, the three least

common diagnoses are chosen, with the added condition that there must be more

than 1,500 cases for the diagnosis to be included. Many diagnoses are listed only

once or twice in the entire data. Setting a lower bound was deemed necessary since

classification with such few positive samples would not be practicable.

The intention of including diagnoses with a higher negative-to-positive class ratio is

to see how well the classifier fares with imbalanced data. Class imbalance may refer

to any dataset where class labels are imbalanced, but the common understanding

is that class imbalance refers to more significant differences. There is no precise

definition of what ratio is sufficient to constitute a class imbalance, but there are

heuristics. He and Garcia observe that more severe class imbalance, referred to as

between-class imbalance, commonly includes ratios of 100:1 to 10,000:1 [24]. Hence,

1,500 was elected as a lower limit since the resulting ratio falls within the informal

definition of between-class imbalance while still having an adequate number of pos-

itively labeled data.

Even with the most common diagnosis, the ratio between negative and positive

class is almost 9:1. Figure 3.2 shows a bar plot with the number of cases with and

without the diagnosis for the most common and least common diagnosis. Bar plots

for the remaining diagnoses are provided in Appendix B.
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Reason Code Description Number of Cases

Most
Common

I25 Chronic ischemic heart disease 38506
I10 Essential (primary) hypertension 38440
N18 Chronic kidney disease 24478
I50 Heart failure 19053

Classification
Potential

E11 Diabetes mellitus, type 2 15983
O09 Duration of pregnancy 12019
D50 Iron deficiency anemia 5102

Least Common
(n >1500)

P39 Other infections specific to the perinatal period 1550
A46 Erysipelas 1518
F43 Reaction to severe stress and adjustment disorders 1515

Table 3.1: Chosen target diagnoses. The codes follow ICD-10-GM. Correspond-
ing definitions are listed in the description column. For each diagnosis, the number
of positively labeled data is indicated in the rightmost column.

3.2 Hyperparameter Tuning

Hyperparameters are parameters that influence how the model learns from the data

and are not learned themselves. The choice of hyperparameters can significantly

impact a model’s performance. Hyperparameter tuning is therefore a critical aspect

of optimizing machine learning models. For binary classification with a tree-based

model, XGBoost provides numerous parameters that can be adapted. To avoid un-

necessary complexity, tuning of parameters was therefore restricted further to the

eight parameters shown in Table 3.2.

These hyperparameters control different aspects of the model. Both reg lambda and

gamma are regularization parameters that penalize complex models by increasing

the function value in Equation 2.8. Gamma can also be interpreted as the minimum

loss required to make a specific split. Another regularization term not included in

the function from the paper is reg alpha, which is an L1 regularization term, mean-

ing that it scales the penalty from having more extreme values on the leaves. Higher

values for these three parameters leads to a more conservative model, i.e., a model

less prone to overfitting. The learning rate parameter is a shrinkage factor scaling

the correction from added trees at boosting iterations. Hence, a lower value for

learning rate tends to favor a more conservative model. The parameter colsam-

ple bytree governs column sampling. It indicates the fraction of features used for

constructing the trees. For any value below one only a subset of the features is

used for constructing an individual tree. Max depth controls the depth of the trees

and min child weight controls the minimum sum of instance weights needed in a

child node. To address class imbalance, scale pos weight can be used since it scales

the gradients for positive samples, making them more influential. Since the positive
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Hyperparameter Description Range

learning rate Shrinkage factor for boosting steps. Lower values
decrease the correction from new trees.

[0, 1]

scale pos weight Scaling factor for positive class. Higher values favor
correcting errors in the positive class.

(0,∞)

gamma Minimum loss reduction required to make a split. [0,∞)
max depth Maximal depth for trees. N>0

min child weight Minimum sum of instance weight needed in a child
node. Larger values lead to less partitioning.

[0,∞)

colsample bytree Subsample of features used for constructing each
tree. Lower values lead to a more conservative model

(0, 1]

reg alpha L1 regularization term. [0,∞)
reg lambda L2 regularization term. [0,∞)

Table 3.2: Hyperparameters selected for tuning. The rightmost column indi-
cates theoretical ranges of possible values.

class is also the minority class, an appropriate increase for this parameter can create

a better balance between the majority and minority class.

Different approaches can be taken to tune hyperparameters. One method is to

employ a grid search, in which predetermined parameter ranges are searched by

evaluating performance for all possible parameter combinations. This method has

the obvious downside that complexity increases rapidly with the number of hyper-

parameters. Another way is to select parameter values from a range according to

some probability distribution. Models tuned with random search have been shown

to perform as well as models where grid search was applied [25] with the benefit that

random search is less computationally expensive. Both grid and random search do

not incorporate information from previous iterations when selecting new parameter

combinations. Bayesian optimization on the other hand does so, and thus more effi-

ciently searches the parameter space. Furthermore, Bayesian optimization has been

used in combination with XGBoost in the past [26]. Therefore Bayesian optimiza-

tion, implemented in the Python library Hyperopt [27], was used as the method

of choice in this thesis. In addition to Hyperopt, scikit-learn [28] was used in the

tuning process for performing the cross-validation.

The complete procedure for tuning the hyperparameters was repeated for each of

the ten datasets that were created as described in Section 3.1.3 in order to create a

separate model for each diagnosis. First, a stratified split was applied to use 80%

of the data as a training set and the remaining 20% as a test set. Instead of a vali-

dation set, stratified 10-fold cross-validation of the training dataset was used. The

function to be maximized by Bayesian optimization was the average F1-score on the

ten subsamples created at every iteration. The maximum number of iterations for

the optimization was set as 50. After termination, the optimized parameters were
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used to fit the model on the training data. The model is then evaluated on the test

dataset.

The F1-score is used as a target evaluation metric in the optimization since it cre-

ates a better balance between the classification of the majority and minority class.

If, for example, accuracy were to be used, the choice of parameters would favor cor-

rectly classifying the majority class and neglecting the minority class. Therefore,

using the F1-score is another way of addressing class imbalance.
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Chapter 4

Experimental Evaluation

This chapter demonstrates and discusses the classifiers’ performance. In the first

section, their performance will be evaluated against two different baselines. In addi-

tion, there will be a discussion of the difference in performance between the training

dataset and the test dataset. The first section will conclude with an examination of

the feature importance. In a second section, select results will be examined further.

This will include exploring different target evaluation metrics in the hyperparameter

selection.

4.1 Model Evaluation

4.1.1 Comparison to Baseline

As seen in section 3.1.3 the datasets for the different diagnoses are all somewhat

imbalanced, with most of the data points being labelled negative. By simply la-

belling all data points as the majority class, a näıve classifier could already perform

well with respect to certain evaluation metrics. An actual classifier trained on the

data should outperform this näıve classifier. Hence, in Table 4.1 the performance

of the model and two different baselines are shown.

In the table, zero rate classifier refers to the method described above where all

data points are assigned the negative label. Note that the precision is zero for this

classifier for all diagnoses. Precision cannot be defined in this case since no samples

are assigned the positive class leading to a division by zero in the calculation of the

score (see Equation 2.1). In this case, precision is set to zero as a default. For the

random rate classifier labels are generated randomly. Class distribution is consid-

ered by generating the labels according to the class imbalance of the dataset. For

both of these baseline classifiers and the actual classifier accuracy, precision, recall

and the F1-score are shown across the diagnoses. Diagnoses are indicated with their
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Diagnosis Zero Rate Classifier Random Rate Classifier Trained Classifier
Acc Prec Rec F1 Acc Prec Rec F1 Acc Prec Rec F1

I25 0.886 0.000 0.000 0.000 0.796 0.113 0.116 0.114 0.917 0.669 0.533 0.593
I10 0.886 0.000 0.000 0.000 0.799 0.118 0.119 0.119 0.775 0.275 0.601 0.377
N18 0.928 0.000 0.000 0.000 0.865 0.073 0.074 0.073 0.900 0.384 0.638 0.480
I50 0.944 0.000 0.000 0.000 0.894 0.053 0.052 0.052 0.915 0.308 0.403 0.349
E11 0.953 0.000 0.000 0.000 0.910 0.044 0.043 0.043 0.920 0.298 0.520 0.379
O09 0.964 0.000 0.000 0.000 0.933 0.035 0.034 0.035 0.982 0.696 0.894 0.782
D50 0.985 0.000 0.000 0.000 0.970 0.008 0.009 0.009 0.977 0.304 0.405 0.347
P39 0.995 0.000 0.000 0.000 0.990 0.003 0.003 0.003 0.994 0.337 0.361 0.349
A46 0.996 0.000 0.000 0.000 0.991 0.003 0.003 0.003 0.990 0.107 0.171 0.132
F43 0.996 0.000 0.000 0.000 0.991 0.007 0.007 0.007 0.986 0.046 0.109 0.065

Table 4.1: Model performance in comparison to two baselines. Accuracy
(Acc), precision (Prec), recall (Rec) and F1-score (F1) for zero rate classifier, random
rate classifier, and actual predictions on test dataset. For the predictions on the
test dataset the highest value for each of the metrics is indicated in red.

ICD-10-GM code. Descriptions are provided in Table 3.1

Baseline accuracy is high since it relates to the fraction of negative labels in the

datasets. For the zero rate classifier recall is zero for all diagnoses since none of the

samples from the positive class were labelled as such. The random rate classifier

performs better in that respect since a few positive labels are generated correctly.

Precision is also better since there are a few true positives. Therefore precision can

be calculated, resulting in a higher score than the default score for the zero rate

classifier.

The accuracy of the actual predicted values decreases from the baseline in all but

two cases. The exceptions are chronic ischemic heart disease (I25) and pregnancy

(O09), where predictions are more accurate than the baseline. The reasons for the

lower relative accuracy are twofold: first, the accuracy for the baselines is high due

to class imbalance, and second the F1-score is used as an evaluation metric for pa-

rameter selection. The F1-score weighs the minority class more significantly than

the accuracy score, improving performance in that respect over the baseline. In

return, the misclassification rate in the majority class might increase leading to an

overall lower accuracy.

The classifiers outperform the baseline precision and recall values in all diagnoses.

Consequently, this also applies to the F1-score. The F1-score is nonetheless quite

low and would likely be insufficient for actual clinical use. Performance require-

ments across regulatory bodies are inconsistent and usually depend on the area of

application. For example, a higher false positive rate for pre-screening diseases is

less problematic. On the other hand, false negatives should be avoided as much

as possible in such a use case. Since no specific target was set for this thesis the

performance cannot be evaluated objectively. However, compared to the reported
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performance values for the same diagnoses in Section 2.1.2 the models from this

thesis all yield a worse F1-score.

Poor performance can have several underlying causes and these causes are not nec-

essarily the same for all ten classifiers. The following is a non-exhaustive list:

• Little to no correlation between the diagnosis and the features: Most of the

features are laboratory blood test results. Some diagnoses might not impact

any of these values.

• Diagnoses preceding measurements: This limitation was introduced in sec-

tion 3.1.2. Decreased correlation between target and predictor variables leads

to bad separability of the classes.

• Class imbalance: Imbalance within the training dataset might lead to the

classifier skewing towards labeling the samples as negative.

• Issues with the model: Though XGBoost performs well on classification tasks

(e.g. diagnosing kidney disease [8]) unsuitable choice of hyperparameters

could lead to bad performance.

The first point can be disregarded as a cause with the diagnoses that were explicitly

chosen for their symptoms manifesting in a change of specific blood values, i.e., type

2 diabetes (E11) and iron deficiency anemia (D50). Class imbalance also does not

seem to be the main issue in the case of type 2 diabetes since the classifier for

pregnancy outperforms the classifier for diabetes, despite the pregnancy dataset

being more imbalanced. Hence the two most likely causes for the bad performance

with these diagnoses are the parameter choice or a weak relationship between the

diagnoses and the laboratory results.

4.1.2 Comparison to Training Dataset

Despite using cross-validation when performing the parameter search, overfitting

might occur especially since there was no separate validation set used. Here, the

model’s performance on the training set is compared to performance on test data

to give an impression of how well the models generalize. If the model performs

significantly better on the training dataset than the test dataset, the model is likely

overfitted to the training data. Table 4.2 shows the model’s performance on both

the test and training dataset. For each column, the highest value is indicated in

red.

Comparing the two sets of performance evaluations, it is evident that there is a

decrease in all metrics from the training dataset to the test dataset. The decrease is
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Diagnosis Training Dataset Test Dataset

Acc Prec Rec F1 Acc Prec Rec F1

I25 0.951 0.828 0.723 0.772 0.917 0.669 0.533 0.593
I10 0.813 0.358 0.811 0.497 0.775 0.275 0.601 0.377
N18 0.914 0.442 0.737 0.552 0.900 0.384 0.638 0.480
I50 0.977 0.714 0.995 0.831 0.915 0.308 0.403 0.349
E11 0.936 0.402 0.744 0.522 0.920 0.298 0.520 0.379
O09 0.985 0.721 0.933 0.813 0.982 0.696 0.894 0.782
D50 0.984 0.488 0.718 0.581 0.977 0.304 0.405 0.347
P39 0.996 0.541 0.586 0.562 0.994 0.337 0.361 0.349
A46 0.991 0.220 0.427 0.290 0.990 0.107 0.171 0.132
F43 0.989 0.255 0.700 0.374 0.986 0.046 0.109 0.065

Table 4.2: Performance on test dataset in comparison to performance on
training dataset. Accuracy (Acc), precision (Prec), recall (Rec), and F1-score
(F1) for both datasets. The highest achieved value in each metric is indicated in
red for both datasets.

not consistent across diagnoses. The most significant difference in the performance

for all metrics occurs for heart failure (I50). For the least pronounced difference

in the metrics, there is no single diagnosis. The smallest difference in accuracy is

found with erysipelas (A46). For the remaining metrics, the least pronounced gap

is found with pregnancy (O09).

This leads to the conclusion that the individual classifiers all show some level of

overfitting. Though the difference for heart failure seems more excessive. This

might simply be a consequence of the specific split into training and test dataset

for that diagnosis. In subsection 4.2.1 this possibility will be revisited.

4.1.3 Feature Importance

An advantage of using XGBoost rather than a deep learning model is that the

model retains some level of transparency and interpretability by offering different

metrics on feature importance. By inspecting feature importance, one can check

if the features that impact the classification most are features that relate to the

diagnosis.

In this subsection, gain will be used as the sole metric to gauge feature importance.

Gain is a measure of how much a single feature contributes to the overall accuracy

of the classifier. Importance is calculated first for each tree in the ensemble by

taking the amount a split on a specific feature improves the performance measure.

The final gain for a specific feature is the average over these importance values from

all trees.

Most features do not warrant inclusion in the discussion due to their low relative
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Diagnosis Most Important Features

1st 2nd 3rd

I25 HDL-C f Age
I10 Age HDL-C CH
N18 GFR C Age
I50 Age HDL-C U
E11 G HBA1C Age
O09 Age PT m
D50 HCT MCH Age
P39 Age CRP GFR
A46 CRP O CHL
F43 Age CRP GFR

Table 4.3: The three most important features for each diagnosis according
to gain. Since one-hot encoding is used for gender both male (m) and female (f)
are present as separate features. The featured laboratory values are: cholesterol
in high-density lipoproteins (HDL-C), cholesterol (CH), predicted glomerular filtra-
tion rate (GFR), creatinine (C), urea (U), glucose (G), hemoglobin A1c (HBA1C),
prothrombin time (PT), hematocrit (HCT), mean corpuscular hemoglobin (MCH),
c-reactive protein (CRP), oxygen (O), chloride (CHL).

importance. Therefore, only the three most important features for each classifier

are listed in Table 4.3. The table with the diagnoses is provided in Section 3.1.3.

For a more comprehensive overview of the feature importance, refer to Appendix B,

where figures with the ten most important features are provided for each diagnosis.

The first notable observation in the table is that age is present for all diagnoses

except for one. This can be easily explained, as certain diagnoses are more likely

to occur in specific age ranges or are, per definition, restricted to certain ages. For

example, P39 refers to infections specific to the perinatal period, meaning that only

infants younger than seven days are included with this diagnosis.

The case of P39 also illustrates an issue of using the same features for all the diag-

noses. For certain diagnoses, the inclusion of age can be justified because there are

different guidelines for different age groups as to what constitutes a healthy value

for a particular feature. One such example is cholesterol [29]. By including age as

a feature, the model might be able to differentiate the two classes more accurately.

For other diagnoses, it might be more sensible to exclude samples from a certain age

range and not use age as a feature. An analogous argument against the inclusion

of gender can be made for pregnancy (O09).

In Table 4.1, one can see that the model for pregnancy performs best in all metrics

except for accuracy. The inclusion of gender is insufficient to explain why that is.

If that were the sole reason, one would expect a similarly high performance with

P39. But in Table 4.3, age is the feature with the highest gain for the pregnancy

classifier. Hence, it is possible that the combination of age and gender is sufficient
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Diagnosis Training Dataset Test Dataset

Acc Prec Rec F1 Acc Prec Rec F1

I50 0.952 0.557 0.702 0.621 0.924 0.345 0.384 0.364

Table 4.4: Comparison of performance on training and test dataset after
the new split. Accuracy (Acc), Precision (Prec), Recall (Rec), and F1-score (F1)
are shown.

for the model to perform significantly better than the models for the other diag-

noses.

Up to this point, the importance of other features has been neglected. The ma-

jority of the features in the dataset are laboratory blood values. Cholesterol in

high-density lipoproteins (HDL-C) is listed in Table 4.3 for chronic ischemic heart

disease (I25), essential hypertension (I10), and heart failure (I50). HDL-C is an

effective predictor for cardiovascular disease [30]. For essential hypertension, serum

cholesterol (CH) is also listed. Serum cholesterol has been identified as a predictor

of essential hypertension [31]. Pregnancy (O09) impacts coagulation and hemo-

dynamics, which includes prothrombin time [32]. For other diagnoses the features

listed in Table 4.3 are part of their respective diagnostic criteria. This includes

blood glucose and hemoglobin A1c for diabetes (E11) [33], estimated glomerular

filtration rate for chronic kidney disease (N18) [34], and both hematocrit and mean

corpuscular hemoglobin for iron deficiency anemia (D50) [35]. This leads to the

conclusion that there is a medical rationale behind the feature importance for most

diagnoses, further refuting the possibility mentioned in Section 4.1.1 that there is

little to no correlation between diagnosis and features.

4.2 Further Aspects

This section provides further investigation of certain aspects from the results de-

scribed in Sections 4.1.1 and 4.1.2.

4.2.1 Further Analysis for Heart Failure

As seen in Section 4.1.2, the classifier for heart failure overperforms on the training

dataset. The hyperparameter search and training steps are rerun based on a new

split to find out if this is due to an unfortunate split between the training and test

data sets. Furthermore, the hyperparameter ranges are investigated to rule out the

possibility that the optimal parameters lie outside the chosen range.

Comparing the entry for heart failure (I50) in Table 4.2 and Table 4.4 the differ-
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Hyperparameter Original Split New Split

learning rate 0.174 0.020
scale pos weight 14.000 5.0
gamma 3.885 0.670
max depth 14.000 11.000
min child weight 7.000 2.000
colsample bytree 0.937 0.793
reg alpha 1.804 0.186
reg lambda 0.289 3.712

Table 4.5: Comparison of hyperparameters between splits.

ence is evident. In Table 4.4 with the new split, the performance on the training

dataset is worse than that of the original split. However, performance on the test

dataset improves over the first split. This means that although performance on the

test dataset itself is worse comparatively, due to the model being less overfitted,

performance on the actual test dataset is improved. Hence, the degree to which the

classifier for heart failure overperformed on the first split is likely coincidental and

caused by the specific split. Another possibility is that the choice of hyperparame-

ters differs between the splits.

Table 4.5 shows a comparison of the selected hyperparameters between the two

splits. For an explanation of the hyperparameters themselves, refer to Section 3.2.

Notable is that almost all of the hyperparameters are dissimilar in value when com-

paring the splits. In part, this can be attributed to using a Bayesian method for

the hyperparameter search. Since no specific values are given to choose from, there

will be differences simply due to the generation of different random numbers. Fur-

thermore, certain hyperparameters function similarly and thus have complementary

effects. For example, both reg alpha and reg lambda are regularization parameters

that scale the same variable. Parameters making the model less conservative, i.e.,

more prone to overfitting, might cause the more significant overfitting with the orig-

inal split. The most likely is learning rate, which is more than eight times higher

than in the newer split. A higher learning rate increases the impact of newly added

trees on the overall decision so that minor errors caused by variation in the training

data are overcorrected.

The large difference between the performance on the training and test data is likely

due to either or both of the above reasons and therefore a result of chance and not

of some underlying structure in the data.
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Diagnosis Accuracy Classifier Precision Classifier

Acc Prec Rec F1 Acc Prec Rec F1

I25 0.921 0.757 0.456 0.569 0.921 0.748 0.464 0.572
N18 0.932 0.620 0.167 0.263 0.925 0.483 0.456 0.469
O09 0.983 0.736 0.791 0.763 0.983 0.729 0.810 0.767

Table 4.6: Performance on test dataset after using different target metrics
for hyperparameter selection. Accuracy (Acc), Precision (Prec), Recall (Rec),
and F1-score (F1) are shown for both the classifier where accuracy was used as a
target metric, and the classifier where precision was used as a target metric.

4.2.2 Different Evaluation Metrics for Hyperparameter Tun-

ing

In Section 3.2 the procedure for obtaining optimal hyperparameters was discussed.

The F1-score is used as a metric to evaluate the different hyperparameter combi-

nations. Using different evaluation metrics, the hyperparameters for which perfor-

mance is best might change. Therefore, hyperparameter selection was performed

twice with different target evaluation metrics, once with accuracy and once with

precision. Instead of using all diagnoses, this procedure was limited to the diagnoses

where the classifiers performed best with regards to the F1-score.

Table 4.6 shows the performance with the two new target evaluation metrics being

used. When using accuracy for the hyperparameter selection, the models are more

accurate compared to when the F1-score was used (see Table 4.2). The improvement

is rather small, with the difference for pregnancy (O09) only being 0.001. There

also is an improvement in precision, but simultaneously a decrease in recall leading

to an overall decrease in the F1-score.

When using precision in the hyperparameter search performance improves in that

regard over the performance when the F1-score was used. Accuracy also increases,

but recall drops off, simultaneously decreasing the F1-score. Quite surprising is that

although there is an improvement in precision over the original performance, using

accuracy as the metric leads to a more significant increase. One explanation is that

the hyperparameter search is not exhaustive enough. Not using enough iterations

in the search might cause suboptimal parameters to be chosen. However, this ex-

planation seems less likely since the accuracy classifier performs better regarding

precision for all three diagnoses. Hence, a more plausible cause is that a high pre-

cision measure in the hyperparameter search does not translate as well into high

precision on the test dataset.

In conclusion, using the F1-score for tuning improves the model’s capability to dis-

tinguish between the two classes compared to when accuracy or precision are used.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this thesis, binary classification is applied for the first time to a dataset created

for generating personalized reference intervals. The structure of the dataset places

limitations on the feasibility of any classification task aiming at predicting diag-

noses. This is partially circumvented by approximating cases based on available

patient information.

Performance is assessed primarily with the F1-score. Of the ten diagnoses studied,

classification for pregnancy yielded the highest F1-score. However, overall perfor-

mance was poor compared to similar classification tasks in the literature. Class

imbalance is one of the main reasons for the issues regarding performance. An-

other possible reason that cannot be dismissed is that only previously established

diagnoses were collected. Because of this, the correlation between diagnoses and

laboratory test measurements may be reduced, which would have an impact not

only on classification but also on other applications of the dataset.

Nevertheless, the assessment of which features are relevant to specific diagnoses es-

tablishes a base correlation between some of the examined diagnoses and relevant

features. This is an important confirmation of the suitability of the dataset for

machine learning applications. In the subsequent section, possible measures to im-

prove performance in classification tasks are discussed. Moreover, the section will

briefly explore other possible avenues of future research.
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5.2 Future Work

5.2.1 Addressing Limitations

As mentioned above, class imbalance is a significant hindrance to the model distin-

guishing the two classes. This is not only a problem with this specific thesis but

with medical data in general since they are typically imbalanced. There are several

ways of dealing with class imbalance, among which the most studied approaches

address the issue at an algorithmic or data level [36]. One example of using al-

gorithmic methods is the scale pos weight hyperparameter provided by XGBoost.

No data-based approach has been applied in this thesis. One way of doing so is to

either over- or undersample the training set. Oversampling involves generating new

data points for the minority class, whereas undersampling reduces the number of

data in the majority class. If such methods are to be used, undersampling should

be preferred [37].

From the comparison of performance between training and test data, some degree of

overfitting was evident. The work fails to provide a reliable estimate of the general-

ization error caused by overfitting, with the only estimate being a single comparison.

A common way of obtaining a better estimate is to perform cross-validation on the

training set to obtain multiple values and perform statistical analysis. In addi-

tion, to address the problem of overfitting more generally, one can choose not to

optimize certain hyperparameters and instead opt for fixed values. Such hyperpa-

rameters could include the max depth parameter or regularization parameters such

as reg alpha and reg lambda.

One part of the results that might be caused by one of the limitations of the work

also warrants further investigation. Classification for pregnancy yielded the best

performance in all metrics but accuracy. As discussed in Section 4.1.3, the inclu-

sion of gender for pregnancy is redundant. To ascertain whether the difference in

performance is simply due to a combination of gender and age and not an under-

lying aspect of the data, such as the immediacy of the blood test to the diagnosis,

classification should be repeated with different conditions. For example, retraining

and testing the model on data where entries from males have been excluded.

Another limitation not previously discussed is the approach of this work itself. Be-

cause of its exploratory nature, the focus is not on specific diagnoses. Restricting

the research to a specific diagnosis would allow the emphasis to be placed more care-

fully, for example, by performing feature selection or incorporating domain-specific

knowledge from specialists for a particular diagnosis. Such measures are certainly

possible with approaches similar to the one used in this work, but the effort required

increases with the number of diagnoses studied, reducing feasibility.
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5.2.2 Extending the Scope

Beyond using binary classification, other classification methods might be suitable

for the specific dataset used in this work. One such method is described by Hansen,

Sagi, and Hose, who use a Graph Convolutional Network-based approach for multi-

label diagnostic prediction of electronic health records [38]. They introduce a novel

method of using pre-initialized graph node embeddings derived from hierarchical

medical taxonomies, such as LOINC and the ICD-9 diagnostic codification. The

use of semantic data contained in the taxonomies in that way is also applicable to

the data used in this work, making it an appropriate method for multiple classifi-

cation. Moreover, graph-based data representations could potentially eliminate the

need for grouping the data by patient as described in this thesis.

Helpful with any classification task would be a more extensive exploratory analysis.

For example, performing clustering on positive cases for a specific diagnosis could

help identify distinct data clusters. Excluding some of these clusters for training

could improve performance since these clusters might correspond to patients who

have received treatment for the illness. Medical experts would have to be consulted

to identify clusters with relevant laboratory measurements.

Lastly, linking the data to other datasets might provide helpful insight into the pro-

gression and treatment of diseases. This is, however, difficult to implement since

it would require renewed patient consent and approval from an ethics committee,

among other complications. A more straightforward approach is extending research

to a larger fraction of the entire Swiss BioRef data. This would still require approval

from the respective data provider institutes and impose some technical hurdles, but

it is still more feasible than linking other forms of data. Especially if a successful

machine learning application is developed on the data from the University Hospital

Bern, other data providers might be more inclined to approve the use of their data.
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Feature Description

SubjectPseudoIdentifier Patient identifier
AdministrativeCase Case identifier
DataProviderInstitute Data provider identifier
Labtest Description of the laboratory test
LOINC LOINC code corresponding to the test
LabResultValue Measured value
LabResultUnit Unit of measurement for the corresponding value
Diag01 ICD-10-GM code of relevant diagnosis 1
Diag02 ICD-10-GM code of relevant diagnosis 2
Diag03 ICD-10-GM code of relevant diagnosis 3
Diag04 ICD-10-GM code of relevant diagnosis 4
Diag05 ICD-10-GM code of relevant diagnosis 5
Age Patient’s age
AgeUnit Age unit
AgeType LOINC identifying the age type
AdministrativeGender Patient’s administrative gender
device udi Unique device identifier from the Global Unique Device Identifi-

cation Database
device type Device type identifiers from the Global Medical Device Nomen-

clature
testkit udi Unique testkit identifier from the Global Unique Device Identifi-

cation Database
testkit type Testkit type identifiers from the Global Medical Device Nomen-

clature
RFIKey device -

Table A.1: Complete list of features present in the dataset
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LOINC Description

2823-3 Potassium [Moles/volume] in Serum or Plasma
2951-2 Sodium [Moles/volume] in Serum or Plasma
5894-1 Prothrombin time (PT) actual/Normal
1988-5 C reactive protein [Mass/volume] in Serum or Plasma
14749-6 Glucose [Moles/volume] in Serum or Plasma
14682-9 Creatinine [Moles/volume] in Serum or Plasma
6690-2 Leukocytes [#/volume] in Blood by Automated count
777-3 Platelets [#/volume] in Blood by Automated count
718-7 Hemoglobin [Mass/volume] in Blood
789-8 Erythrocytes [#/volume] in Blood by Automated count
4544-3 Hematocrit [Volume Fraction] of Blood by Automated count
787-2 MCV [Entitic volume] by Automated count
785-6 MCH [Entitic mass] by Automated count
786-4 MCHC [Mass/volume] by Automated count
6301-6 INR in Platelet poor plasma by Coagulation assay
788-0 Erythrocyte distribution width [Ratio] by Automated count
32623-1 Platelet mean volume [Entitic volume] in Blood by Automated count
62238-1 Glomerular filtration rate/1.73 sq M.predicted [Volume Rate/Area] in Serum,

Plasma or Blood by Creatinine-based formula (CKD-EPI)
5902-2 Prothrombin time (PT)
1743-4 Alanine aminotransferase [Enzymatic activity/volume] in Serum or Plasma by

With P-5’-P
30239-8 Aspartate aminotransferase [Enzymatic activity/volume] in Serum or Plasma

by With P-5’-P
22664-7 Urea [Moles/volume] in Serum or Plasma
11558-4 pH of Blood
11557-6 Carbon dioxide [Partial pressure] in Blood
11556-8 Oxygen [Partial pressure] in Blood
2075-0 Chloride [Moles/volume] in Serum or Plasma
14979-9 aPTT in Platelet poor plasma by Coagulation assay
20564-1 Oxygen saturation in Blood
59826-8 Creatinine [Moles/volume] in Blood
14927-8 Triglyceride [Moles/volume] in Serum or Plasma
14647-2 Cholesterol [Moles/volume] in Serum or Plasma
14646-4 Cholesterol in HDL [Moles/volume] in Serum or Plasma
39469-2 Cholesterol in LDL [Moles/volume] in Serum or Plasma by calculation
4548-4 Hemoglobin A1c/Hemoglobin.total in Blood by IFCC protocol
46418-0 INR in Capillary blood by Coagulation assay
83071-1 25-Hydroxyvitamin D2+25-Hydroxyvitamin D3 [Moles/volume] in Serum or

Plasma by Immunoassay
69419-0 Cholesterol in LDL [Moles/volume] in Serum or Plasma by Direct assay
62292-8 25-Hydroxyvitamin D2+25-Hydroxyvitamin D3 [Moles/volume] in Serum or

Plasma
20448-7 Insulin [Units/volume] in Serum or Plasma

Table A.2: Complete list of laboratory tests present in the dataset
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(a) I25

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(b) I10

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(c) N18

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(d) I50

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(e) E11

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(f) O09

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(g) D50

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one,
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(h) P39

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(i) A46

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.

42



(j) F43

Figure B.1: Comparison of measured values between patients with and
without the diagnosis. To account for outliers, values were shifted up by one
and the logarithm was taken. Logarithmic values are on the y-axis. The x-axis
indicates the patient group; (1) diagnosis present and (0) diagnosis absent.
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(a) I10 (b) N18

(c) I50 (d) E11

(e) O09 (f) D50

(g) P39 (h) A46

Figure B.2: Class imbalance. Number of cases with (1) and without (0) diagnosis.
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(a) I25

(b) I10

(c) N18

Figure B.3: Ten most important features for each diagnosis according to
gain. Diagnoses are indicated by their ICD-10-GM codes.
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(d) I50

(e) E11

(f) O09

Figure B.3: Ten most important features for each diagnosis according to
gain. Diagnoses are indicated by their ICD-10-GM codes.
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(g) D50

(h) P39

(i) A46

Figure B.3: Ten most important features for each diagnosis according to
gain. Diagnoses are indicated by their ICD-10-GM codes.
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(j) F43

Figure B.3: Ten most important features for each diagnosis according to
gain. Diagnoses are indicated by their ICD-10-GM codes.
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